CSCE 314 Programming Languages

Haskell: Declaring Types and Classes

Dr. Hyunyoung Lee

Outline

- Declaring Data Types

- Class and Instance Declarations

Defining New Types

Three constructs for defining types:

1. data - Define a new algebraic data type from scratch, describing its constructors
2.type - Define a synonym for an existing type (like typedef in C)
2. newtype - A restricted form of data that is more efficient when it fits (if the type has exactly one constructor with exactly one field inside it). Used for defining "wrapper" types

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

$$
\text { data Bool = Fa1se | True } \quad \begin{aligned}
& \text { Bool is a new type, with two } \\
& \text { new values False and True. }
\end{aligned}
$$

- The two values False and True are called the constructors for the data type Bool.
- Type and constructor names must begin with an uppercase letter.
- Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.
More examples from standard Prelude:

$$
\begin{aligned}
& \text { data }()=() \text {-- unit datatype } \\
& \text { data Char }=\ldots . \text { | 'a' | 'b' | ... }
\end{aligned}
$$

Values of new types can be used in the same ways as those of built in types. For example, given
data Answer = Yes | No | Unknown
we can define:

$$
\begin{array}{ll}
\text { answers } & :: \text { [Answer] } \\
\text { answers } & =\text { [Yes,No,Yes, Unknown] } \\
& :: \text { Answer -> Answer } \\
\text { flip } & =\text { No } \\
\text { flip Yes } & =\text { Yes } \\
\text { flip No } & =\text { Unknown } \\
\text { flip Unknown } & =\text { Under }
\end{array}
$$

Constructors construct values, or serve as patterns

Another example:

data Weekday $=$ Mon | Tue | Wed | Thu | Fri | Sat | Sun

Constructors construct values, or serve as patterns

```
next :: Weekday -> Weekday
next Mon = Tue
next Tue = Wed
next Wed = Thu
next Thu = Fri
next Fri = Sat
next Sat = Sun
next Sun = Mon
workDay :: Weekday -> Boo1
workDay Sat = False
workDay Sun = False
workDay _ = True
```


Constructors with Arguments

The constructors in a data declaration can also have parameters. For example, given

data Shape = Circle Float | Rect Float Float

we can define:

square		$::$ Float \rightarrow Shape
square n		$=$ Rect $n \mathrm{n}$
area	$:$	Shape \rightarrow Float
area (Circle r)	$=p i * r \wedge 2$	
area (Rect x	$y)$	$=x * y$

- Shape has values of the form Circle r where r is a float, and Rect x y where x and y are floats.
- Circle and Rect can be viewed as functions that construct values of type Shape:

$$
\begin{aligned}
& \text { Circle }:: \text { Float } \rightarrow \text { Shape } \\
& \text { Rect }:: \text { Float } \rightarrow \text { Float } \rightarrow \text { Shape } \\
& \hline
\end{aligned}
$$

Another example:

```
data Person = Person Name Gender Age
type Name = String
data Gender = Male | Female
type Age = Int
```

With just one constructor in a data type, often constructor is named the same as the type (cf. Person). Now we can do:

$$
\begin{aligned}
& \text { let } x=\text { Person "Jerry" Female } 12 \\
& y=\text { Person "Tom" Male } 12 \\
& \text { in ... }
\end{aligned}
$$

Quiz: What are the types of the constructors Male and Person?

Ma1e :: Gender
Person :: Name -> Gender -> Age -> Person

Pattern Matching

$$
\begin{aligned}
& \text { name }\left(\text { Person } n_{-}\right)=n \\
& \text { oldMan (Person _ Male a) } \mid \text { a }>100=\text { True } \\
& \text { oldMan }\left(P e r s o n_{\ldots} \text {) }=\right.\text { False }
\end{aligned}
$$

$$
\text { > 1et yoda = Person "Yoda" Ma1e } 999
$$

in oldMan yoda

True

| $\mathrm{n}=\mathrm{m}=\mathrm{p}$
| otherwise = findPrsn n ps
> findPrsn "Tom"
[Person "Yoda" Male 999, Person "Tom" Male 7]
Person "Tom" Male 7

Parameterized Data Declarations

Not surprisingly, data declarations themselves can also have parameters. For example, given

$$
\text { data Pair } a \operatorname{b}=\text { Pair } a b
$$

we can define:
$x=$ Pair 12
y = Pair "Howdy" 42
first :: Pair a b -> a
first (Pair x _) = x
apply :: (a->a') -> (b->b') -> Pair a b -> Pair a' b' apply f g (Pair x y) $=\operatorname{Pair}(f x)(g y)$

Another example:
Maybe type holds a value (of any type) or holds nothing
data Maybe $a=$ Nothing | Just a
a is a type parameter, can be bound to any type
Just True :: Maybe Bool
Just "x" :: Maybe [Char]
Nothing :: Maybe a
we can define:

> safediv $\quad::$ Int \rightarrow Int \rightarrow Maybe Int
> safediv $-0=$ Nothing
> safediv m n $=$ Just $(\mathrm{m}$ `div` n$)$
safehead :: [a] \rightarrow Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

Type Declarations

A new name for an existing type can be defined using a type declaration.
type String = [Char]
String is a synonym for the type [Char].

Type declarations can be used to make other types easier to read. For example, given
type Pos = (Int,Int)
we can define:

| origin $:$
 origin $=$
 left $:$
 lefos Pos \rightarrow Pos
 left (x, y) $=$ $\mathrm{(x-1,y)}$ |
| :--- | :--- |

Like function definitions, type declarations can also have parameters. For example, given

$$
\text { type Pair } a=(a, a)
$$

we can define:

$$
\begin{array}{ll}
\text { mult } & :: \text { Pair Int }->\text { Int } \\
\text { mult }(m, n) & =m * n \\
& \\
\text { copy } & :: \text { a -> Pair a } \\
\text { copy } x & =(x, x)
\end{array}
$$

Type declarations can be nested:

$$
\begin{aligned}
& \text { type Pos }=\text { (Int,Int) } \\
& \text { type Trans }=\text { Pos -> Pos }
\end{aligned}
$$

However, they cannot be recursive:
type Tree = (Int, [Tree])

Recursive Data Types

New types can be declared in terms of themselves. That is, data types can be recursive.
data Nat = Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat and Succ :: Nat -> Nat.

A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values: Zero

Succ Zero Succ (Succ Zero)

Example function: add : : Nat -> Nat -> Nat add Zero $\mathrm{n}=\mathrm{n}$ add (Succ m) $n=$ Succ (add $m n$)

Parameterized Recursive Data Types - Lists

data List $a=N i 1$ | Cons $a(L i s t ~ a)$
sum :: List Int -> Int
sum $\mathrm{Ni} 1=0$
sum (Cons x xs) $=\mathrm{x}+$ sum xs
$>$ sum Ni 1
0
> sum (Cons 1 (Cons 2 (Cons 2 Ni1)))
5

Trees

A binary Tree is either Tnil, or a Node with a value of type a and two subtrees (of type Tree a)

```
data Tree a = Tni1 | Node a (Tree a) (Tree a)
```

Find an element:

```
treeElem :: (a -> Bool) -> Tree a -> Maybe a
treeElem p Tnil = Nothing
treeElem p t@(Node v left right)
    | p v = Just v
    | otherwise = treeElem p left `combine` treeElem p right
    where combine (Just v) r = Just v
        combine Nothing r = r
```

Compute the depth:

depth Tni1	$=0$
depth (Node - left right)	$=1+$
(max (depth left) (depth right))	

Arithmetic Expressions

Consider a simple form of expressions built up from integers using addition and multiplication.

Using recursion, a suitable new type to represent such expressions can be declared by:

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr

For example, the expression on the previous slide would be represented as follows:

Add (Va1 1) (Mul (Va1 2) (Va1 3))

Using recursion, it is now easy to define functions that process expressions. For example:

$$
\begin{aligned}
& \text { size } \quad:: \text { Expr } \rightarrow \text { Int } \\
& \text { size (Val n) = } 1 \\
& \text { size (Add } x \text { y) }=\text { size } x+\text { size } y \\
& \text { size (Mul x y) = size } x+\operatorname{size} y \\
& \text { eval : : Expr } \rightarrow \text { Int } \\
& \text { eval (Val n) }=n \\
& \text { eval (Add } x \text { y) }=e v a 1 x+e v a l y \\
& \text { eval (Mul } x \text { y) }=\text { eval } x \text { * eval } y
\end{aligned}
$$

Note:

- The three constructors have types:

$$
\begin{aligned}
& \text { Val }:: \text { Int } \rightarrow \text { Expr } \\
& \text { Add }:: \text { Expr } \rightarrow \text { Expr } \rightarrow \text { Expr } \\
& \text { Mu1 }:: \text { Expr } \rightarrow \text { Expr } \rightarrow \text { Expr }
\end{aligned}
$$

- Many functions on expressions can be defined by replacing the constructors by other functions using a suitable fold function. For example:

```
fold :: (Int->Int)->(Int->Int->Int)->
    (Int->Int->Int)->Expr->Int
fold f g h (Val n) = f n
fold f g h (Add a b) = g (fold f g h a) (fold f g h b)
fold f g h (Mul a b) = h (fold f g h a) (fold f g h b)
eval = fold id (+) (*)
```


About Folds

A fold operation for Trees:

```
treeFold : : t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x 1 r)
    \(=g \times\) (treeFold \(f \mathrm{~g}\) 1) (treeFold f g r )
```

How? Replace all Tnil constructors with f, all Node constructors with g. Examples:

```
> let tt = Node 1 (Node 2 Tni1 Tni1)
(Node 3 Tnil (Node 4 Tnil Tnil))
> treeFold 1 (\x y z -> 1 + max y z) tt
4
> treeFold 1 (\x y z -> x * y * z) tt
24
> treeFold 0 (\x y z -> x + y + z) tt
10
```


Exercise 1

```
treeFold :: t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x 1 r)
        =g x (treeFold f g 1) (treeFold f g r)
```

> 1et tt $=$ Node 1 (Node 2 Tnil Tnil)
(Node 3 Tnil (Node 4 Tnil Tni1))
> treeFold 1 ($\backslash x$ y z-> $1+\max y z) ~ t t$
4

Exercise 2

```
treeFold :: t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x 1 r)
    = g x (treeFold f g 1) (treeFold f g r)
```

> 1et tt $=$ Node 1 (Node 2 Tnil Tnil)
(Node 3 Tnil (Node 4 Tnil Tni1))
$>$ treeFold 1 ($\backslash x$ y z-> x * y * z) tt
24

Deriving

- Experimenting with the above definitions will give you many errors
- Data types come with no functionality by default, you cannot, e.g., compare for equality, print (show) values etc.
- Real definition of Bool
data Bool = False | True deriving (Eq, Ord, Enum, Read, Show, Bounded)
- A few standard type classes can be listed in a deriving clause
- Implementations for the necessary functions to make a data type an instance of those classes are generated by the compiler
- deriving can be considered a shortcut, we will discuss the general mechanism later

Exercises

(1) Using recursion and the function add, define a function that multiplies two natural numbers.
(2) Define a suitable function fold for expressions, and give a few examples of its use.
(3) A binary tree is complete if the two sub-trees of every node are of equal size. Define a function that decides if a binary tree is complete.

Outline

I Declaring Data Types

I Class and Instance Declarations

Type Classes

- A new class can be declared using the class construct
- Type classes are classes of types, thus not types themselves
- Example:
class Eq a where

$$
\begin{aligned}
& (==),(/=):: \text { a -> a -> Bool } \\
& -- \text { Minimal complete definition: (==) and (/=) } \\
& x /=y \quad=\text { not }(x==y) \\
& x==y \quad=\operatorname{not}(x /=y)
\end{aligned}
$$

- For a type a to be an instance of the class Eq, it must support equality and inequality operators of the specified types
- Definitions are given in an instance declaration
- A class can specify default definitions

Instance Declarations

class Eq a where

$$
\begin{aligned}
& (==),(/=):: a->a->\text { Boo } 1 \\
& x /=y=\operatorname{not}(x==y) \\
& x=y=n=\operatorname{not}(x /=y)
\end{aligned}
$$

Let us make Bool be a member of Eq
instance Eq Bool where

$$
\begin{array}{ll}
(==) \text { False False } & =\text { True } \\
\text { (==) True True } & =\text { True } \\
(==) \quad- & =\text { False }
\end{array}
$$

- Due to the default definition, (/=) need not be defined
- deriving Eq would generate an equivalent definition

Showable Weekdays

class Show a where
show :: a -> String

Option 1:
data Weekday $=$ Mon | Tue | Wed | Thu | Fri | Sat | Sun deriving Show
> map show [Mon, Tue, Wed]
["Mon", "Tue", "Wed"]

Option 2:
data Weekday $=$ Mon | Tue | Wed | Thu | Fri | Sat | Sun instance Show Weekday where
show Mon = "Monday"
show Tue = "Tuesday"
> map show [Mon, Tue, Wed]
["Monday", "Tuesday", "Wednesday"]

Parameterized Instance Declarations

Every list is showable if its elements are

instance Show a => Show [a] where
show [] = "[]"
show (x:xs) = "[" ++ show x ++ showRest xs
where showRest [] = "]"
showRest (x:xs) = "," ++ show x ++ showRest xs
Now this works:
> show [Mon, Tue, Wed]
"[Monday,Tuesday,Wednesday]"

Showable, Readable, and Comparable Weekdays

 data Weekday $=$ Mon | Tue | Wed | Thu | Fri | Sat | Sun deriving (Show, Read, Eq, Ord, Bounded, Enum)*Main> show Wed
"Wed"
*Main> read "Fri" : : Weekday
Fri
*Main> Sat == Sun
False
*Main> Sat == Sat
True
*Main> Mon < Tue
True
*Main> Tue < Tue
False
*Main> Wed `compare` Thu
LT

Bounded and Enumerable Weekdays

data Weekday $=$ Mon | Tue | Wed | Thu | Fri | Sat | Sun deriving (Show, Read, Eq, Ord, Bounded, Enum)
*Main> minBound :: Weekday
Mon
*Main> maxBound :: Weekday
Sun
*Main> succ Mon
Tue
*Main> pred Fri
Thu
*Main> [Fri .. Sun]
[Fri,Sat,Sun]
*Main> [minBound .. maxBound] :: [Weekday]
[Mon, Tue, Wed, Thu, Fri, Sat, Sun]

