CSCE 314 Programming Languages

Haskell: Declaring Types and Classes

Dr. Hyunyoung Lee

Outline

Declaring Data Types

Class and Instance Declarations

Defining New Types

Three constructs for defining types:

1. data – Define a new algebraic data type from scratch, describing its constructors

2.type - Define a synonym for an existing type (like typedef in C)

3. newtype – A restricted form of data that is more efficient when it fits (if the type has exactly one constructor with exactly one field inside it). Used for defining "wrapper" types

Data Declarations

A completely new type can be defined by specifying its values using a <u>data declaration</u>.

data Bool = False | True

Bool is a new type, with two new values False and True.

- The two values False and True are called the <u>constructors</u> for the data type Bool.
- Type and constructor names must begin with an uppercase letter.
- Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.

More examples from standard Prelude:

data () = () -- unit datatype data Char = \dots | 'a' | 'b' | \dots

Values of new types can be used in the same ways as those of built in types. For example, given

data Answer = Yes | No | Unknown

we can define:

- answers :: [Answer]
 answers = [Yes,No,Yes,Unknown]
- flip :: Answer -> Answer
- flip Yes = No
- flip No = Yes
- flip Unknown = Unknown

Constructors construct values, or serve as patterns

Another example:

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Constructors construct values, or serve as <u>patterns</u>

```
next :: Weekday -> Weekday
next Mon = Tue
next Tue = Wed
next Wed = Thu
next Thu = Fri
next Fri = Sat
next Sat = Sun
next Sun = Mon
workDay :: Weekday -> Bool
workDay Sat = False
workDay Sun = False
workDay _ = True
```

Constructors with Arguments

The constructors in a data declaration can also have parameters. For example, given

data Shape =	Circle Float	Rect Float Float
we can define:	square : square n	: Float → Shape = Rect n n
	area : area (Circle r) = area (Rect x y) =	: Shape → Float = pi * r^2 = x * y

- Shape has values of the form Circle r where r is a float, and Rect x y where x and y are floats.
- Circle and Rect can be viewed as <u>functions</u> that construct values of type Shape:

Another example:

```
data Person = Person Name Gender Age
type Name = String
data Gender = Male | Female
type Age = Int
```

With just one constructor in a data type, often constructor is named the same as the type (cf. Person). Now we can do:

```
let x = Person "Jerry" Female 12
    y = Person "Tom" Male 12
in ...
```

Quiz: What are the types of the constructors Male and Person?

```
Male :: Gender
Person :: Name -> Gender -> Age -> Person
```

Pattern Matching

name (Person n $_$ _) = n

```
oldMan (Person _ Male a) | a > 100 = True
oldMan (Person _ _ _) = False
```

> let yoda = Person "Yoda" Male 999
 in oldMan yoda
True

> findPrsn "Tom"
 [Person "Yoda" Male 999, Person "Tom" Male 7]
Person "Tom" Male 7

Parameterized Data Declarations

Not surprisingly, data declarations themselves can also have parameters. For example, given

we can define:

```
x = Pair 1 2
y = Pair "Howdy" 42
```

```
first :: Pair a b -> a
first (Pair x _) = x
```

```
apply :: (a \rightarrow a') \rightarrow (b \rightarrow b') \rightarrow Pair a b \rightarrow Pair a' b'
apply f g (Pair x y) = Pair (f x) (g y)
```

Another example:

Maybe type holds a value (of any type) or holds nothing

data Maybe a = Nothing | Just a

a is a type parameter, can be bound to any type

Just True :: Maybe Bool Just "x" :: Maybe [Char] Nothing :: Maybe a

we can define:

```
safehead :: [a] \rightarrow Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)
```

Type Declarations

A new name for an existing type can be defined using a <u>type declaration</u>.

Type declarations can be used to make other types easier to read. For example, given

type Pos = (Int,Int)
we can define: origin :: Pos
origin = (0,0)
left :: Pos \rightarrow Pos
left (x,y) = (x-1,y)

Like function definitions, type declarations can also have <u>parameters</u>. For example, given

type Pair
$$a = (a,a)$$

we can define:

copy x = (x, x)

Type declarations can be nested:

However, they cannot be recursive:

Recursive Data Types

New types can be declared in terms of themselves. That is, data types can be <u>recursive</u>.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat and Succ :: Nat -> Nat.

A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values: Zero

Succ Zero

Succ (Succ Zero)

Example function:

Parameterized Recursive Data Types - Lists

- data List a = Nil | Cons a (List a)
- sum :: List Int -> Int
 sum Nil = 0
 sum (Cons x xs) = x + sum xs

```
> sum Nil
```

- 0
- > sum (Cons 1 (Cons 2 (Cons 2 Nil)))
 5

Trees

A binary <u>Tree</u> is either <u>Tnil</u>, or a <u>Node</u> with a value of type <u>a</u> and two subtrees (of type <u>Tree a</u>)

data Tree a = Tnil | Node a (Tree a) (Tree a)

Find an element:

Compute the depth:

Arithmetic Expressions

Consider a simple form of <u>expressions</u> built up from integers using addition and multiplication.

Using recursion, a suitable new type to represent such expressions can be declared by:

data Expr = Val Int | Add Expr Expr | Mul Expr Expr

For example, the expression on the previous slide would be represented as follows:

Add (Val 1) (Mul (Val 2) (Val 3))

Using recursion, it is now easy to define functions that process expressions. For example:

size :: Expr \rightarrow Int size (Val n) = 1size (Add x y) = size x + size ysize (Mul x y) = size x + size y eval :: Expr \rightarrow Int eval (Val n) = neval (Add x y) = eval x + eval y eval (Mul x y) = eval x * eval y

Note:

The three constructors have types:

Val :: Int \rightarrow Expr Add :: Expr \rightarrow Expr \rightarrow Expr Mul :: Expr \rightarrow Expr \rightarrow Expr

Many functions on expressions can be defined by replacing the constructors by other functions using a suitable <u>fold</u> function. For example:

eval = fold id (+) (*)

About Folds

A fold operation for Trees:

How? Replace all <u>Thil</u> constructors with f, all <u>Node</u> constructors with g. Examples:

Exercise 1

4

Exercise 2

24

Deriving

- Experimenting with the above definitions will give you many errors
- Data types come with no functionality by default, you cannot, e.g., compare for equality, print (show) values etc.
- Real definition of Bool

data Bool = False | True deriving (Eq, Ord, Enum, Read, Show, Bounded)

- A few standard type classes can be listed in a <u>deriving</u> clause
- Implementations for the necessary functions to make a data type an instance of those classes are generated by the compiler
- <u>deriving</u> can be considered a shortcut, we will discuss the general mechanism later

Exercises

- (1) Using recursion and the function add, define a function that <u>multiplies</u> two natural numbers.
- (2) Define a suitable function <u>fold</u> for expressions, and give a few examples of its use.
- (3) A binary tree is <u>complete</u> if the two sub-trees of every node are of equal size. Define a function that decides if a binary tree is complete.

Outline

Declaring Data Types

Class and Instance Declarations

Type Classes

- A new class can be declared using the <u>class</u> construct
- Type classes are <u>classes</u> of types, thus not types themselves
- Example:
 - class Eq a where

x == y = not (x /= y)

- For a type a to be an instance of the class Eq, it must support equality and inequality operators of the specified types
- Definitions are given in an instance declaration
- A class can specify <u>default definitions</u>

Instance Declarations

class Eq a where (==), (/=) :: a -> a -> Bool x /= y = not (x == y) x == y = not (x /= y)

Let us make Bool be a member of Eq

instance Eq Bool where

Due to the default definition, (/=) need not be defined
 <u>deriving Eq</u> would generate an equivalent definition

Showable Weekdays

```
class Show a where
  show :: a -> String
Option 1:
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
               deriving Show
> map show [Mon, Tue, Wed]
["Mon", "Tue", "Wed"]
Option 2:
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
instance Show Weekday where
  show Mon = "Monday"
  show Tue = "Tuesday"
  . . .
> map show [Mon, Tue, Wed]
["Monday", "Tuesday", "Wednesday"]
```

Parameterized Instance Declarations

Every list is showable if its elements are

instance Show a => Show [a] where
show [] = "[]"
show (x:xs) = "[" ++ show x ++ showRest xs
where showRest [] = "]"
showRest (x:xs) = "," ++ show x ++ showRest xs

Now this works:

> show [Mon, Tue, Wed]
"[Monday,Tuesday,Wednesday]"

Showable, Readable, and Comparable Weekdays data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun deriving (Show, Read, Eq, Ord, Bounded, Enum) *Main> show Wed "Wed" *Main> read "Fri" :: Weekday Fri *Main> Sat == Sun False *Main> Sat == Sat True *Main> Mon < Tue True *Main> Tue < Tue False *Main> Wed `compare` Thu LT

Bounded and Enumerable Weekdays

```
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Show, Read, Eq, Ord, Bounded, Enum)
```

```
*Main> minBound :: Weekday
Mon
*Main> maxBound :: Weekday
Sun
*Main> succ Mon
Tue
*Main> pred Fri
Thu
*Main> [Fri .. Sun]
[Fri,Sat,Sun]
*Main> [minBound .. maxBound] :: [Weekday]
[Mon, Tue, Wed, Thu, Fri, Sat, Sun]
```