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❚ Declaring Data Types

❚

Outline
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Three constructs for defining types:
1.data - Define a new algebraic data type from 
scratch, describing its constructors

2.type - Define a synonym for an existing type 
(like typedef in C)

3.newtype - A restricted form of data that is 
more efficient when it fits (if the type has exactly one 
constructor with exactly one field inside it).  Used for 
defining “wrapper” types 

Defining New Types 
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Data Declarations
A completely new type can be defined by specifying 
its values using a data declaration.
data Bool = False | True Bool is a new type, with two 

new values False and True.

❚ The two values False and True are called the 
constructors for the data type Bool.

❚ Type and constructor names must begin with an upper-
case letter.

❚ Data declarations are similar to context free grammars.  
The former specifies the values of a type, the latter the 
sentences of a language.

More examples from standard Prelude:
data () = ()  -- unit datatype
data Char = … | ‘a’ | ‘b’ | …
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answers     :: [Answer]
answers      = [Yes,No,Yes,Unknown]

flip        :: Answer -> Answer
flip Yes     = No
flip No      = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways 
as those of built in types.  For example, given 

Constructors construct values, or serve as patterns
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next :: Weekday -> Weekday
next Mon = Tue
next Tue = Wed
next Wed = Thu
next Thu = Fri
next Fri = Sat
next Sat = Sun
next Sun = Mon

workDay :: Weekday -> Bool
workDay Sat = False
workDay Sun = False
workDay _   = True

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Constructors construct values, or serve as patterns

Another example:
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The constructors in a data declaration can also have 
parameters.  For example, given
data Shape = Circle Float | Rect Float Float

square         :: Float ® Shape
square n        = Rect n n

area           :: Shape ® Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:

Constructors with Arguments 

❚ Shape has values of the form Circle r where r is a float, 
and Rect x y where x and y are floats.

❚ Circle and Rect can be viewed as functions that 
construct values of type Shape:

Circle :: Float ® Shape
Rect   :: Float ® Float ® Shape
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let x = Person “Jerry” Female 12
y = Person “Tom” Male 12

in …

data Person = Person Name Gender Age
type Name = String
data Gender = Male | Female
type Age = Int

With just one constructor in a data type, often constructor is 
named the same as the type (cf. Person).  Now we can do:

Another example:

Quiz: What are the types of the constructors Male and 
Person?

Male :: Gender
Person :: Name -> Gender -> Age -> Person
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name (Person n _ _) = n

oldMan (Person _ Male a) | a > 100 = True
oldMan (Person _ _ _) = False

> let yoda = Person “Yoda” Male 999
in oldMan yoda

True

findPrsn n (p@(Person m _ _):ps) 
| n == m = p
| otherwise = findPrsn n ps

> findPrsn “Tom”
[Person “Yoda” Male 999, Person “Tom” Male 7]

Person “Tom” Male 7

Pattern Matching 
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Not surprisingly, data declarations themselves can also 
have parameters.  For example, given

x = Pair 1 2
y = Pair "Howdy" 42

first :: Pair a b -> a
first (Pair x _) = x

apply :: (a->a’) -> (b->b’) -> Pair a b -> Pair a’ b’
apply f g (Pair x y) = Pair (f x) (g y)

we can define:

Parameterized Data Declarations 

data Pair a b = Pair a b
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Another example:
Maybe type holds a value (of any type) or holds nothing

data Maybe a = Nothing | Just a

safediv    :: Int ® Int ® Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead   :: [a] ® Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:

a is a type parameter, can be bound to any type
Just True :: Maybe Bool
Just “x”  :: Maybe [Char]
Nothing   :: Maybe a
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Type Declarations
A new name for an existing type can be defined using a 
type declaration.

type String = [Char]
String is a synonym 
for the type [Char].

origin    :: Pos
origin     = (0,0)

left      :: Pos ® Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:

Type declarations can be used to make other types easier to 
read.  For example, given
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Like function definitions, type declarations can also have 
parameters.  For example, given

type Pair a = (a,a)

we can define:

mult      :: Pair Int -> Int
mult (m,n) = m*n

copy      :: a -> Pair a
copy x     = (x,x)
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Type declarations can be nested:

type Pos   = (Int,Int)

type Trans = Pos -> Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])
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Recursive Data Types
New types can be declared in terms of themselves.  That is, 
data types can be recursive.

data Nat = Zero | Succ Nat
Nat is a new type, with 
constructors Zero :: Nat 
and Succ :: Nat -> Nat.

A value of type Nat is either Zero, or of the form Succ n 
where n :: Nat.  That is, Nat contains the following infinite 
sequence of values:

Example function:

Zero

Succ Zero

Succ (Succ Zero)

. . .

add :: Nat -> Nat -> Nat
add Zero n = n
add (Succ m) n = Succ (add m n)
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Parameterized Recursive Data Types - Lists

data List a = Nil | Cons a (List a)

sum :: List Int -> Int
sum Nil          = 0
sum (Cons x xs)  = x + sum xs

> sum Nil
0
> sum (Cons 1 (Cons 2 (Cons 2 Nil)))
5
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Trees
A binary Tree is either Tnil, or a Node with a value of type a
and two subtrees (of type Tree a)

data Tree a = Tnil | Node a (Tree a) (Tree a)

Find an element:

Compute the depth: depth Tnil                = 0
depth (Node _ left right) = 1 +
(max (depth left) (depth right))

treeElem :: (a -> Bool) -> Tree a -> Maybe a
treeElem p Tnil = Nothing
treeElem p t@(Node v left right)

| p v = Just v
| otherwise = treeElem p left `combine` treeElem p right
where combine (Just v) r = Just v

combine Nothing r  = r
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Arithmetic Expressions

Consider a simple form of expressions built up from 
integers using addition and multiplication.

1

+

*

32
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Using recursion, a suitable new type to represent 
such expressions can be declared by:

For example, the expression on the previous slide 
would be represented as follows:

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))
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Using recursion, it is now easy to define functions 
that process expressions.  For example:

size          :: Expr ® Int

size (Val n)   = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y 

eval          :: Expr ® Int

eval (Val n)   = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y
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Note:

❚ The three constructors have types:
Val :: Int ® Expr
Add :: Expr ® Expr ® Expr
Mul :: Expr ® Expr ® Expr

❚ Many functions on expressions can be defined by replacing 
the constructors by other functions using a suitable fold
function.  For example:

fold :: (Int->Int)->(Int->Int->Int)->
(Int->Int->Int)->Expr->Int

fold f g h (Val n) = f n
fold f g h (Add a b) = g (fold f g h a) (fold f g h b)
fold f g h (Mul a b) = h (fold f g h a) (fold f g h b)

eval = fold id (+) (*)
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About Folds
A fold operation for Trees:
treeFold :: t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x l r) 

= g x (treeFold f g l) (treeFold f g r)

How?  Replace all Tnil constructors with f, all Node
constructors with g.  Examples:
> let tt = Node 1 (Node 2 Tnil Tnil)

(Node 3 Tnil (Node 4 Tnil Tnil))
> treeFold 1 (\x y z -> 1 + max y z) tt
4
> treeFold 1 (\x y z -> x * y * z) tt
24
> treeFold 0 (\x y z -> x + y + z) tt
10
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Exercise 1
treeFold :: t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x l r) 

= g x (treeFold f g l) (treeFold f g r)

> let tt = Node 1 (Node 2 Tnil Tnil)
(Node 3 Tnil (Node 4 Tnil Tnil))

> treeFold 1 (\x y z -> 1 + max y z) tt
4
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Exercise 2
treeFold :: t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x l r) 

= g x (treeFold f g l) (treeFold f g r)

> let tt = Node 1 (Node 2 Tnil Tnil)
(Node 3 Tnil (Node 4 Tnil Tnil))

> treeFold 1 (\x y z -> x * y * z) tt
24
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• Experimenting with the above definitions will give you many errors

• Data types come with no functionality by default, you cannot, e.g., 
compare for equality, print (show) values etc.

• Real definition of Bool

data Bool = False | True
deriving (Eq, Ord, Enum, Read, Show, Bounded)

• A few standard type classes can be listed in a deriving clause
• Implementations for the necessary functions to make a data type 

an instance of those classes are generated by the compiler
• deriving can be considered a shortcut, we will discuss the general 

mechanism later

Deriving
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Exercises

(1) Using recursion and the function add, define a 
function that multiplies two natural numbers.

(2) Define a suitable function fold for expressions, 
and give a few examples of its use.

(3) A binary tree is complete if the two sub-trees of 
every node are of equal size.  Define a function 
that decides if a binary tree is complete.
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❚

❚ Class and Instance Declarations

Outline
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❚ A new class can be declared using the class construct
❚ Type classes are classes of types, thus not types 

themselves
❚ Example:

class Eq a where

(==), (/=) :: a -> a -> Bool
-- Minimal complete definition: (==) and (/=)

x /= y   = not (x == y)

x == y   = not (x /= y)

❚ For a type a to be an instance of the class Eq, it must 
support equality and inequality operators of the specified 
types

❚ Definitions are given in an instance declaration
❚ A class can specify default definitions

Type Classes
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class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y   = not (x == y)

x == y   = not (x /= y)

Let us make Bool be a member of Eq

instance Eq Bool where

(==) False False  = True

(==) True True    = True

(==) _ _          = False

❚ Due to the default definition, (/=) need not be defined
❚ deriving Eq would generate an equivalent definition

Instance Declarations
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class Show a where  
show :: a -> String

Option 1:
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

deriving Show

> map show [Mon, Tue, Wed]
[“Mon”, “Tue”, “Wed”]

Showable Weekdays

Option 2:
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

instance Show Weekday where
show Mon = “Monday”

show Tue = “Tuesday”

. . .

> map show [Mon, Tue, Wed]

[“Monday”, “Tuesday”, “Wednesday”]
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Every list is showable if its elements are
instance Show a => Show [a] where
show []     = “[]”

show (x:xs) = “[“ ++ show x ++ showRest xs

where showRest []     = “]”

showRest (x:xs) = “,” ++ show x ++ showRest xs

Now this works:

> show [Mon, Tue, Wed]
“[Monday,Tuesday,Wednesday]”

Parameterized Instance Declarations
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data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Show, Read, Eq, Ord, Bounded, Enum)

*Main> show Wed

"Wed”

*Main> read "Fri" :: Weekday

Fri
*Main> Sat == Sun

False

*Main> Sat == Sat

True

*Main> Mon < Tue
True

*Main> Tue < Tue

False

*Main> Wed `compare` Thu

LT

Showable, Readable, and Comparable Weekdays
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data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Show, Read, Eq, Ord, Bounded, Enum)

*Main> minBound :: Weekday

Mon

*Main> maxBound :: Weekday
Sun

*Main> succ Mon

Tue

*Main> pred Fri

Thu
*Main> [Fri .. Sun]

[Fri,Sat,Sun]

*Main> [minBound .. maxBound] :: [Weekday]

[Mon,Tue,Wed,Thu,Fri,Sat,Sun]

Bounded and Enumerable Weekdays


