
Lee CSCE 314 TAMU

1

CSCE 314
Programming Languages

Haskell: Declaring Types and Classes

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

❚ Declaring Data Types

❚

Outline

Lee CSCE 314 TAMU

3

Three constructs for defining types:
1.data - Define a new algebraic data type from
scratch, describing its constructors

2.type - Define a synonym for an existing type
(like typedef in C)

3.newtype - A restricted form of data that is
more efficient when it fits (if the type has exactly one
constructor with exactly one field inside it). Used for
defining “wrapper” types

Defining New Types

Lee CSCE 314 TAMU

4

Data Declarations
A completely new type can be defined by specifying
its values using a data declaration.
data Bool = False | True Bool is a new type, with two

new values False and True.

❚ The two values False and True are called the
constructors for the data type Bool.

❚ Type and constructor names must begin with an upper-
case letter.

❚ Data declarations are similar to context free grammars.
The former specifies the values of a type, the latter the
sentences of a language.

More examples from standard Prelude:
data () = () -- unit datatype
data Char = … | ‘a’ | ‘b’ | …

Lee CSCE 314 TAMU

5

answers :: [Answer]
answers = [Yes,No,Yes,Unknown]

flip :: Answer -> Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways
as those of built in types. For example, given

Constructors construct values, or serve as patterns

Lee CSCE 314 TAMU

6

next :: Weekday -> Weekday
next Mon = Tue
next Tue = Wed
next Wed = Thu
next Thu = Fri
next Fri = Sat
next Sat = Sun
next Sun = Mon

workDay :: Weekday -> Bool
workDay Sat = False
workDay Sun = False
workDay _ = True

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Constructors construct values, or serve as patterns

Another example:

Lee CSCE 314 TAMU

7

The constructors in a data declaration can also have
parameters. For example, given
data Shape = Circle Float | Rect Float Float

square :: Float ® Shape
square n = Rect n n

area :: Shape ® Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:

Constructors with Arguments

❚ Shape has values of the form Circle r where r is a float,
and Rect x y where x and y are floats.

❚ Circle and Rect can be viewed as functions that
construct values of type Shape:

Circle :: Float ® Shape
Rect :: Float ® Float ® Shape

Lee CSCE 314 TAMU

8

let x = Person “Jerry” Female 12
y = Person “Tom” Male 12

in …

data Person = Person Name Gender Age
type Name = String
data Gender = Male | Female
type Age = Int

With just one constructor in a data type, often constructor is
named the same as the type (cf. Person). Now we can do:

Another example:

Quiz: What are the types of the constructors Male and
Person?

Male :: Gender
Person :: Name -> Gender -> Age -> Person

Lee CSCE 314 TAMU

9

name (Person n _ _) = n

oldMan (Person _ Male a) | a > 100 = True
oldMan (Person _ _ _) = False

> let yoda = Person “Yoda” Male 999
in oldMan yoda

True

findPrsn n (p@(Person m _ _):ps)
| n == m = p
| otherwise = findPrsn n ps

> findPrsn “Tom”
[Person “Yoda” Male 999, Person “Tom” Male 7]

Person “Tom” Male 7

Pattern Matching

Lee CSCE 314 TAMU

10

Not surprisingly, data declarations themselves can also
have parameters. For example, given

x = Pair 1 2
y = Pair "Howdy" 42

first :: Pair a b -> a
first (Pair x _) = x

apply :: (a->a’) -> (b->b’) -> Pair a b -> Pair a’ b’
apply f g (Pair x y) = Pair (f x) (g y)

we can define:

Parameterized Data Declarations

data Pair a b = Pair a b

Lee CSCE 314 TAMU

11

Another example:
Maybe type holds a value (of any type) or holds nothing

data Maybe a = Nothing | Just a

safediv :: Int ® Int ® Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] ® Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:

a is a type parameter, can be bound to any type
Just True :: Maybe Bool
Just “x” :: Maybe [Char]
Nothing :: Maybe a

Lee CSCE 314 TAMU

12

Type Declarations
A new name for an existing type can be defined using a
type declaration.

type String = [Char]
String is a synonym
for the type [Char].

origin :: Pos
origin = (0,0)

left :: Pos ® Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:

Type declarations can be used to make other types easier to
read. For example, given

Lee CSCE 314 TAMU

13

Like function definitions, type declarations can also have
parameters. For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int -> Int
mult (m,n) = m*n

copy :: a -> Pair a
copy x = (x,x)

Lee CSCE 314 TAMU

14

Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos -> Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])

Lee CSCE 314 TAMU

15

Recursive Data Types
New types can be declared in terms of themselves. That is,
data types can be recursive.

data Nat = Zero | Succ Nat
Nat is a new type, with
constructors Zero :: Nat
and Succ :: Nat -> Nat.

A value of type Nat is either Zero, or of the form Succ n
where n :: Nat. That is, Nat contains the following infinite
sequence of values:

Example function:

Zero

Succ Zero

Succ (Succ Zero)

. . .

add :: Nat -> Nat -> Nat
add Zero n = n
add (Succ m) n = Succ (add m n)

Lee CSCE 314 TAMU

16

Parameterized Recursive Data Types - Lists

data List a = Nil | Cons a (List a)

sum :: List Int -> Int
sum Nil = 0
sum (Cons x xs) = x + sum xs

> sum Nil
0
> sum (Cons 1 (Cons 2 (Cons 2 Nil)))
5

Lee CSCE 314 TAMU

17

Trees
A binary Tree is either Tnil, or a Node with a value of type a
and two subtrees (of type Tree a)

data Tree a = Tnil | Node a (Tree a) (Tree a)

Find an element:

Compute the depth: depth Tnil = 0
depth (Node _ left right) = 1 +
(max (depth left) (depth right))

treeElem :: (a -> Bool) -> Tree a -> Maybe a
treeElem p Tnil = Nothing
treeElem p t@(Node v left right)

| p v = Just v
| otherwise = treeElem p left `combine` treeElem p right
where combine (Just v) r = Just v

combine Nothing r = r

Lee CSCE 314 TAMU

18

Arithmetic Expressions

Consider a simple form of expressions built up from
integers using addition and multiplication.

1

+

*

32

Lee CSCE 314 TAMU

19

Using recursion, a suitable new type to represent
such expressions can be declared by:

For example, the expression on the previous slide
would be represented as follows:

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))

Lee CSCE 314 TAMU

20

Using recursion, it is now easy to define functions
that process expressions. For example:

size :: Expr ® Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr ® Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

Lee CSCE 314 TAMU

21

Note:

❚ The three constructors have types:
Val :: Int ® Expr
Add :: Expr ® Expr ® Expr
Mul :: Expr ® Expr ® Expr

❚ Many functions on expressions can be defined by replacing
the constructors by other functions using a suitable fold
function. For example:

fold :: (Int->Int)->(Int->Int->Int)->
(Int->Int->Int)->Expr->Int

fold f g h (Val n) = f n
fold f g h (Add a b) = g (fold f g h a) (fold f g h b)
fold f g h (Mul a b) = h (fold f g h a) (fold f g h b)

eval = fold id (+) (*)

Lee CSCE 314 TAMU

22

About Folds
A fold operation for Trees:
treeFold :: t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x l r)

= g x (treeFold f g l) (treeFold f g r)

How? Replace all Tnil constructors with f, all Node
constructors with g. Examples:
> let tt = Node 1 (Node 2 Tnil Tnil)

(Node 3 Tnil (Node 4 Tnil Tnil))
> treeFold 1 (\x y z -> 1 + max y z) tt
4
> treeFold 1 (\x y z -> x * y * z) tt
24
> treeFold 0 (\x y z -> x + y + z) tt
10

Lee CSCE 314 TAMU

23

Exercise 1
treeFold :: t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x l r)

= g x (treeFold f g l) (treeFold f g r)

> let tt = Node 1 (Node 2 Tnil Tnil)
(Node 3 Tnil (Node 4 Tnil Tnil))

> treeFold 1 (\x y z -> 1 + max y z) tt
4

Lee CSCE 314 TAMU

24

Exercise 2
treeFold :: t -> (a -> t -> t -> t) -> Tree a -> t
treeFold f g Tnil = f
treeFold f g (Node x l r)

= g x (treeFold f g l) (treeFold f g r)

> let tt = Node 1 (Node 2 Tnil Tnil)
(Node 3 Tnil (Node 4 Tnil Tnil))

> treeFold 1 (\x y z -> x * y * z) tt
24

Lee CSCE 314 TAMU

25

• Experimenting with the above definitions will give you many errors

• Data types come with no functionality by default, you cannot, e.g.,
compare for equality, print (show) values etc.

• Real definition of Bool

data Bool = False | True
deriving (Eq, Ord, Enum, Read, Show, Bounded)

• A few standard type classes can be listed in a deriving clause
• Implementations for the necessary functions to make a data type

an instance of those classes are generated by the compiler
• deriving can be considered a shortcut, we will discuss the general

mechanism later

Deriving

Lee CSCE 314 TAMU

26

Exercises

(1) Using recursion and the function add, define a
function that multiplies two natural numbers.

(2) Define a suitable function fold for expressions,
and give a few examples of its use.

(3) A binary tree is complete if the two sub-trees of
every node are of equal size. Define a function
that decides if a binary tree is complete.

Lee CSCE 314 TAMU

27

❚

❚ Class and Instance Declarations

Outline

Lee CSCE 314 TAMU

28

❚ A new class can be declared using the class construct
❚ Type classes are classes of types, thus not types

themselves
❚ Example:

class Eq a where

(==), (/=) :: a -> a -> Bool
-- Minimal complete definition: (==) and (/=)

x /= y = not (x == y)

x == y = not (x /= y)

❚ For a type a to be an instance of the class Eq, it must
support equality and inequality operators of the specified
types

❚ Definitions are given in an instance declaration
❚ A class can specify default definitions

Type Classes

Lee CSCE 314 TAMU

29

class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

x == y = not (x /= y)

Let us make Bool be a member of Eq

instance Eq Bool where

(==) False False = True

(==) True True = True

(==) _ _ = False

❚ Due to the default definition, (/=) need not be defined
❚ deriving Eq would generate an equivalent definition

Instance Declarations

Lee CSCE 314 TAMU

30

class Show a where
show :: a -> String

Option 1:
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

deriving Show

> map show [Mon, Tue, Wed]
[“Mon”, “Tue”, “Wed”]

Showable Weekdays

Option 2:
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

instance Show Weekday where
show Mon = “Monday”

show Tue = “Tuesday”

. . .

> map show [Mon, Tue, Wed]

[“Monday”, “Tuesday”, “Wednesday”]

Lee CSCE 314 TAMU

31

Every list is showable if its elements are
instance Show a => Show [a] where
show [] = “[]”

show (x:xs) = “[“ ++ show x ++ showRest xs

where showRest [] = “]”

showRest (x:xs) = “,” ++ show x ++ showRest xs

Now this works:

> show [Mon, Tue, Wed]
“[Monday,Tuesday,Wednesday]”

Parameterized Instance Declarations

Lee CSCE 314 TAMU

32

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Show, Read, Eq, Ord, Bounded, Enum)

*Main> show Wed

"Wed”

*Main> read "Fri" :: Weekday

Fri
*Main> Sat == Sun

False

*Main> Sat == Sat

True

*Main> Mon < Tue
True

*Main> Tue < Tue

False

*Main> Wed `compare` Thu

LT

Showable, Readable, and Comparable Weekdays

Lee CSCE 314 TAMU

33

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Show, Read, Eq, Ord, Bounded, Enum)

*Main> minBound :: Weekday

Mon

*Main> maxBound :: Weekday
Sun

*Main> succ Mon

Tue

*Main> pred Fri

Thu
*Main> [Fri .. Sun]

[Fri,Sat,Sun]

*Main> [minBound .. maxBound] :: [Weekday]

[Mon,Tue,Wed,Thu,Fri,Sat,Sun]

Bounded and Enumerable Weekdays

