
Lee CSCE 314 TAMU

1

CSCE 314
Programming Languages

Haskell: Higher-order Functions

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

Higher-order Functions
A function is called higher-order if it takes a
function as an argument or returns a function as
a result.
twice :: (a ® a) ® a ® a
twice f x = f (f x)

twice is higher-order
because it takes a
function as its first

argument.

Note:
§ Higher-order functions are very common in Haskell

(and in functional programming).
§ Writing higher-order functions is crucial practice for

effective programming in Haskell, and for
understanding others’ code.

Lee CSCE 314 TAMU

3

Why Are They Useful?

❚ Common programming idioms can be encoded
as functions within the language itself.

❚ Domain specific languages can be defined as
collections of higher-order functions. For
example, higher-order functions for
processing lists.

❚ Algebraic properties of higher-order
functions can be used to reason about
programs.

Lee CSCE 314 TAMU

4

The map Function
map applies a function to every element of a list.

map :: (a ® b) ® [a] ® [b]

For example: > map (+1) [1,3,5,7]

[2,4,6,8]

The map function can be defined in a particularly simple
manner using a list comprehension:

map f xs = [f x | x ¬ xs]

map f [] = []

map f (x:xs) = f x : map f xs

Alternatively, it can also be defined using recursion:

Lee CSCE 314 TAMU

5

The filter Function
filter selects every element from a list that satisfies a
predicate.

filter :: (a ® Bool) ® [a] ® [a]

For example: > filter even [1..10]

[2,4,6,8,10]

Alternatively, it can be defined using recursion:

filter can be defined using a list comprehension:

filter p xs = [x | x ¬ xs, p x]

filter p [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

Lee CSCE 314 TAMU

6

The foldr Function
Many functions on lists can be defined using the
following simple pattern of recursion:

f [] = v
f (x:xs) = x Å f xs

f maps the empty list to some value v,
and any non-empty list to some function
Å applied to its head and f of its tail.

Lee CSCE 314 TAMU

7

For example:

sum [] = 0

sum (x:xs) = x + sum xs

and [] = True

and (x:xs) = x && and xs

product [] = 1
product (x:xs) = x * product xs

v = 0
Å = +

v = 1
Å = *

v = True
Å = &&

Lee CSCE 314 TAMU

8

The higher-order library function foldr (fold
right) encapsulates this simple pattern of
recursion, with the function Å and the value v as
arguments.

For example:
sum = foldr (+) 0

product = foldr (*) 1

or = foldr (||) False

and = foldr (&&) True

Lee CSCE 314 TAMU

9

foldr itself can be defined using recursion:

foldr :: (a ® b ® b) ® b ® [a] ® b

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-
recursively, as simultaneously replacing each (:) in
a list by a given function, and [] by a given value.

Lee CSCE 314 TAMU

10

sum [1,2,3]

foldr (+) 0 [1,2,3]=

foldr (+) 0 (1:(2:(3:[])))=

1+(2+(3+0))=

6=

For example:

Replace each (:)
by (+) and [] by 0.

Lee CSCE 314 TAMU

11

product [1,2,3]

foldr (*) 1 [1,2,3]=

foldr (*) 1 (1:(2:(3:[])))=

1*(2*(3*1))=

6=

For example:

Replace each (:)
by (*) and [] by 1.

Lee CSCE 314 TAMU

12

Other foldr Examples

Even though foldr encapsulates a simple pattern
of recursion, it can be used to define many more
functions than might first be expected.

Recall the length function:

length :: [a] ® Int

length [] = 0

length (_:xs) = 1 + length xs

Lee CSCE 314 TAMU

13

length [1,2,3]

length (1:(2:(3:[])))=

1+(1+(1+0))=

3=

Hence, we have:
length = foldr (_ n -> 1+n) 0

Replace each (:) by
l_ n ® 1+n and [] by 0

For example:

Lee CSCE 314 TAMU

14

Now the reverse function:

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))=

(([] ++ [3]) ++ [2]) ++ [1]=

[3,2,1]=

For example:
Replace each (:) by
lx xs ® xs ++ [x]

and [] by []

Hence, we have:
reverse = foldr (\x xs -> xs ++ [x]) []

Lee CSCE 314 TAMU

15

Why Is foldr Useful?

❚ Some recursive functions on lists, such as sum,
are simpler to define using foldr.

❚ Properties of functions defined using foldr can
be proved using algebraic properties of foldr.

❚ Advanced program optimizations can be simpler
if foldr is used in place of explicit recursion.

Lee CSCE 314 TAMU

16

foldr and foldl

❚ foldr 1 : 2 : 3 : [] => (1 + (2 + (3 + 0)))
❚ foldl 1 : 2 : 3 : [] => (((0 + 1) + 2) + 3)

foldr :: (a ® b ® b) ® b ® [a] ® b

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldl :: (a ® b ® a) ® a ® [b] ® a

foldl f v [] = v

foldl f v (x:xs) = foldl f (f v x) xs

Left and right folds

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldr

1 : 2 : 3 : [] � (1 + (2 + (3 + 0)))

foldl

1 : 2 : 3 : [] � (((0 + 1) + 2) + 3)

Jaakko Järvi (TAMU) Programming Languages CSCE-314 September 6, 2012 33 / 35

Left and right folds

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldr

1 : 2 : 3 : [] � (1 + (2 + (3 + 0)))

foldl

1 : 2 : 3 : [] � (((0 + 1) + 2) + 3)

Jaakko Järvi (TAMU) Programming Languages CSCE-314 September 6, 2012 33 / 35

Lee CSCE 314 TAMU

17

Other Library Functions
The library function (.) returns the composition of two
functions as a single function.

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \x -> f (g x)

For example: odd :: Int ® Bool
odd = not . even

Exercise: Define filterOut p xs that retains elements
that do not satisfy p.

filterOut p xs = filter (not . p) xs

> filterOut odd [1..10]

[2,4,6,8,10]

Lee CSCE 314 TAMU

18

The library function all decides if every element
of a list satisfies a given predicate.

all :: (a ® Bool) ® [a] ® Bool
all p xs = and [p x | x ¬ xs]

For example:

> all even [2,4,6,8,10]

True

Lee CSCE 314 TAMU

19

Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any :: (a ® Bool) ® [a] ® Bool
any p xs = or [p x | x ¬ xs]

For example:

> any isSpace "abc def"

True

Lee CSCE 314 TAMU

20

The library function takeWhile selects elements
from a list while a predicate holds of all the
elements.

takeWhile :: (a ® Bool) ® [a] ® [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

For example:

> takeWhile isAlpha "abc def"

"abc"

Lee CSCE 314 TAMU

21

Dually, the function dropWhile removes elements
while a predicate holds of all the elements.

dropWhile :: (a ® Bool) ® [a] ® [a]
dropWhile p [] = []
dropWhile p (x:xs)

| p x = dropWhile p xs
| otherwise = x:xs

For example:

> dropWhile isSpace " abc"

"abc"

Lee CSCE 314 TAMU

22

filter, map and foldr
Typical use is to select certain elements, and then
perform a mapping, for example,

sumSquaresOfPos ls
= foldr (+) 0 (map (^2) (filter (>= 0) ls))

> sumSquaresOfPos [-4,1,3,-8,10]
110

In pieces:
keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos ls = sum (mapSquare (keepPos ls))

sumSquaresOfPos = sum . mapSquare . keepPos

Alternative definition:

