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Higher-order Functions
A function is called higher-order if it takes a 
function as an argument or returns a function as 
a result.
twice    :: (a ® a) ® a ® a
twice f x = f (f x)

twice is higher-order 
because it takes a 
function as its first 

argument.

Note:
§ Higher-order functions are very common in Haskell 

(and in functional programming).
§ Writing higher-order functions is crucial practice for 

effective programming in Haskell, and for 
understanding others’ code.
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Why Are They Useful?

❚ Common programming idioms can be encoded 
as functions within the language itself.

❚ Domain specific languages can be defined as 
collections of higher-order functions. For 
example, higher-order functions for 
processing lists.

❚ Algebraic properties of higher-order 
functions can be used to reason about 
programs.
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The map Function
map applies a function to every element of a list.

map :: (a ® b) ® [a] ® [b]

For example: > map (+1) [1,3,5,7]

[2,4,6,8]

The map function can be defined in a particularly simple 
manner using a list comprehension:

map f xs = [f x | x ¬ xs]

map f []     = []

map f (x:xs) = f x : map f xs

Alternatively, it can also be defined using recursion: 
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The filter Function
filter selects every element from a list that satisfies a 
predicate.

filter :: (a ® Bool) ® [a] ® [a]

For example: > filter even [1..10]

[2,4,6,8,10]

Alternatively, it can be defined using recursion:

filter can be defined using a list comprehension:

filter p xs = [x | x ¬ xs, p x]

filter p []     = []

filter p (x:xs)

| p x        = x : filter p xs

| otherwise  = filter p xs
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The foldr Function
Many functions on lists can be defined using the 
following simple pattern of recursion:

f []     = v
f (x:xs) = x Å f xs

f maps the empty list to some value v, 
and any non-empty list to some function 
Å applied to its head and f of its tail.
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For example:

sum []     = 0

sum (x:xs) = x + sum xs

and []     = True

and (x:xs) = x && and xs

product []     = 1
product (x:xs) = x * product xs

v = 0
Å = +

v = 1
Å = *

v = True
Å = &&
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The higher-order library function foldr (fold 
right) encapsulates this simple pattern of 
recursion, with the function Å and the value v as 
arguments.

For example:
sum     = foldr (+) 0

product = foldr (*) 1

or      = foldr (||) False 

and     = foldr (&&) True
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foldr itself can be defined using recursion:

foldr :: (a ® b ® b) ® b ® [a] ® b

foldr f v []     = v

foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-
recursively, as simultaneously replacing each (:) in 
a list by a given function, and [] by a given value.
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sum [1,2,3]

foldr (+) 0 [1,2,3]=

foldr (+) 0 (1:(2:(3:[])))=

1+(2+(3+0))=

6=

For example:

Replace each (:)
by (+) and [] by 0.
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product [1,2,3]

foldr (*) 1 [1,2,3]=

foldr (*) 1 (1:(2:(3:[])))=

1*(2*(3*1))=

6=

For example:

Replace each (:)
by (*) and [] by 1.
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Other foldr Examples

Even though foldr encapsulates a simple pattern 
of recursion, it can be used to define many more 
functions than might first be expected.

Recall the length function:

length       :: [a] ® Int

length []     = 0

length (_:xs) = 1 + length xs
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length [1,2,3]

length (1:(2:(3:[])))=

1+(1+(1+0))=

3=

Hence, we have:
length = foldr (\_ n -> 1+n) 0

Replace each (:) by
l_ n ® 1+n and [] by 0

For example:
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Now the reverse function:

reverse []     = []
reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))=

(([] ++ [3]) ++ [2]) ++ [1]=

[3,2,1]=

For example:
Replace each (:) by 
lx xs ® xs ++ [x] 

and [] by []

Hence, we have:
reverse = foldr (\x xs -> xs ++ [x]) []



Lee CSCE 314 TAMU

15

Why Is foldr Useful?

❚ Some recursive functions on lists, such as sum, 
are simpler to define using foldr.

❚ Properties of functions defined using foldr can 
be proved using algebraic properties of foldr.

❚ Advanced program optimizations can be simpler 
if foldr is used in place of explicit recursion.
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foldr and foldl

❚ foldr   1 : 2 : 3 : [] => (1 + (2 + (3 + 0)))
❚ foldl   1 : 2 : 3 : [] => (((0 + 1) + 2) + 3)

foldr :: (a ® b ® b) ® b ® [a] ® b

foldr f v []     = v

foldr f v (x:xs) = f x (foldr f v xs)

foldl :: (a ® b ® a) ® a ® [b] ® a

foldl f v []     = v

foldl f v (x:xs) = foldl f (f v x) xs

Left and right folds

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldr

1 : 2 : 3 : [] � (1 + (2 + (3 + 0)))

foldl

1 : 2 : 3 : [] � (((0 + 1) + 2) + 3)
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Other Library Functions
The library function (.) returns the composition of two 
functions as a single function.

(.)   :: (b -> c) -> (a -> b) -> (a -> c)
f . g  = \x -> f (g x)

For example: odd :: Int ® Bool
odd  = not . even

Exercise: Define filterOut p xs that retains elements 
that do not satisfy p.

filterOut p xs = filter (not . p) xs

> filterOut odd [1..10]

[2,4,6,8,10]
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The library function all decides if every element 
of a list satisfies a given predicate.

all     :: (a ® Bool) ® [a] ® Bool
all p xs = and [p x | x ¬ xs]

For example:

> all even [2,4,6,8,10]

True
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Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any     :: (a ® Bool) ® [a] ® Bool
any p xs = or [p x | x ¬ xs]

For example:

> any isSpace "abc def"

True
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The library function takeWhile selects elements 
from a list while a predicate holds of all the 
elements.

takeWhile :: (a ® Bool) ® [a] ® [a]
takeWhile p []     = []
takeWhile p (x:xs)

| p x           = x : takeWhile p xs
| otherwise     = []

For example:

> takeWhile isAlpha "abc def"

"abc"
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Dually, the function dropWhile removes elements 
while a predicate holds of all the elements.

dropWhile :: (a ® Bool) ® [a] ® [a]
dropWhile p []     = []
dropWhile p (x:xs)

| p x           = dropWhile p xs
| otherwise     = x:xs

For example:

> dropWhile isSpace "   abc"

"abc"
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filter, map and foldr
Typical use is to select certain elements, and then 
perform a mapping, for example,

sumSquaresOfPos ls
= foldr (+) 0 (map (^2) (filter (>= 0) ls)) 

> sumSquaresOfPos [-4,1,3,-8,10]
110

In pieces:
keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos ls = sum (mapSquare (keepPos ls))

sumSquaresOfPos = sum . mapSquare . keepPos

Alternative definition: 


