CSCE 314 Programming Languages

Haskell: Higher-order Functions

Dr. Hyunyoung Lee

Higher-order Functions

A function is called higher-order if it takes a function as an argument or returns a function as a result.

$$
\begin{aligned}
& \text { twice }::(a \rightarrow a) \rightarrow a \rightarrow a \\
& \text { twice } f x=f(f x)
\end{aligned}
$$

twice is higher-order because it takes a function as its first argument.

Note:

- Higher-order functions are very common in Haskell (and in functional programming).
- Writing higher-order functions is crucial practice for effective programming in Haskell, and for understanding others' code.

Why Are They Useful?

- Common programming idioms can be encoded as functions within the language itself.
- Domain specific languages can be defined as collections of higher-order functions. For example, higher-order functions for processing lists.
- Algebraic properties of higher-order functions can be used to reason about programs.

The map Function

 map applies a function to every element of a list.$$
\text { map }::(\mathrm{a} \rightarrow \mathrm{~b}) \rightarrow[\mathrm{a}] \rightarrow[\mathrm{b}]
$$

For example: $\quad>\operatorname{map}(+1)[1,3,5,7]$

$$
[2,4,6,8]
$$

The map function can be defined in a particularly simple manner using a list comprehension:

$$
\operatorname{map} \mathrm{f} x \mathrm{x}=[\mathrm{f} x \mid \mathrm{x} \leftarrow \mathrm{xs}]
$$

Alternatively, it can also be defined using recursion:

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

The filter Function

filter selects every element from a list that satisfies a predicate.

$$
\text { filter }::(a \rightarrow \text { Bool }) \rightarrow[a] \rightarrow[a]
$$

For example: > filter even [1..10]
[2,4,6, 8,10$]$
filter can be defined using a list comprehension:

$$
\text { filter } p \text { xs }=[x \mid x \leftarrow x s, p x]
$$

Alternatively, it can be defined using recursion:
filter p [] = []
filter p (x:xs)
| $\mathrm{p} x \quad=\mathrm{x}$: filter p xs
| otherwise = filter p xs

The foldr Function

Many functions on lists can be defined using the following simple pattern of recursion:

$$
\begin{array}{ll}
f[] & =v \\
f(x: x s) & =x \oplus f x s
\end{array}
$$

f maps the empty list to some value v, and any non-empty list to some function \oplus applied to its head and f of its tail.

For example:

$\operatorname{sum}[]$	$=0$
$\operatorname{sum}(x: x s)$	$=x+\operatorname{sum} x s$

$\mathrm{v}=0$
$\oplus=+$
$\begin{array}{ll}\text { product [] } & =1 \\ \text { product (x :xs) } & =x * \text { product } x s\end{array}$

$$
\begin{aligned}
& \mathrm{V}=1 \\
& \oplus=*
\end{aligned}
$$

$\begin{array}{ll}\text { and }[] & =\text { True } \\ \text { and (x:xs) } & =x \& \& \text { and } x s\end{array}$

The higher-order library function foldr (fold right) encapsulates this simple pattern of recursion, with the function \oplus and the value v as arguments.

For example:

$$
\begin{array}{ll}
\text { sum } & =\text { foldr (+) } 0 \\
\text { product } & =\text { foldr (*) } 1 \\
\text { or } \quad & \text { foldr (||) False } \\
\text { and } \quad=\text { foldr (\&\&) True }
\end{array}
$$

foldr itself can be defined using recursion:

$$
\begin{aligned}
& \text { foldr : : }(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow[a] \rightarrow b \\
& \text { foldr } f \vee[]=v \\
& \text { foldr } f \vee(x: x s)=f x(f o l d r f \vee x s)
\end{aligned}
$$

However, it is best to think of foldr nonrecursively, as simultaneously replacing each (:) in a list by a given function, and [] by a given value.

For example:

$$
\begin{aligned}
& \text { sum }[1,2,3] \\
= & \text { fold }(+) 0[1,2,3] \\
= & \text { fold }(+) 0(1:(2:(3:[]))) \\
= & 1+(2+(3+0)) \\
= & 6
\end{aligned} \begin{array}{r}
\text { Replace each }(:) \\
\text { by }(+) \text { and }[] \text { by } 0 .
\end{array}
$$

For example:

$$
\begin{aligned}
& \text { product }[1,2,3] \\
= & \text { fold }(*) 1[1,2,3] \\
= & \text { fold }(*) 1(1:(2:(3:[]))) \\
= & 1 *(2 *(3 * 1)) \\
= & 6 \quad \begin{array}{r}
\text { Replace each }(:) \\
\text { by }(*) \text { and }[] \text { by } 1 .
\end{array}
\end{aligned}
$$

Other foldr Examples

Even though foldr encapsulates a simple pattern of recursion, it can be used to define many more functions than might first be expected.

Recall the length function:

$$
\begin{array}{ll}
\text { length } & ::[a] \rightarrow \text { Int } \\
\text { length [] } & =0 \\
\text { length (_:xs) } & =1+\text { length xs }
\end{array}
$$

For example:

$$
\begin{aligned}
& \text { length }[1,2,3] \\
= & \text { length }(1:(2:(3:[]))) \\
= & 1+(1+(1+0)) \\
= & 3
\end{aligned} \begin{gathered}
\text { Replace each }(:) \text { by } \\
\lambda _n \rightarrow 1+n \text { and }[] \text { by } 0
\end{gathered}
$$

Hence, we have:

$$
\text { 1ength }=\text { foldr }\left(\backslash_{-} n->1+n\right) 0
$$

Now the reverse function:

$$
\begin{array}{ll}
\operatorname{reverse} & {[]} \\
\text { reverse (x:xs) } & =\text { reverse xs ++ [x] }
\end{array}
$$

For example:

Hence, we have:

$$
\text { reverse }=\text { foldr }(\backslash x \text { xs }->\text { xs }++[x]) \quad[]
$$

Why Is foldr Useful?

- Some recursive functions on lists, such as sum, are simpler to define using foldr.
- Properties of functions defined using foldr can be proved using algebraic properties of foldr.
- Advanced program optimizations can be simpler if foldr is used in place of explicit recursion.

foldr and foldl

foldr : : $\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{b}) \rightarrow \mathrm{b} \rightarrow[\mathrm{a}] \rightarrow \mathrm{b}$
foldr $\mathrm{f} v[] \quad=\mathrm{v}$
$\mathrm{foldr} \mathrm{f} v(\mathrm{x}: \mathrm{xs})=\mathrm{f} \times($ foldr $\mathrm{f} \vee \mathrm{xs})$
fold1 : : $(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow[\mathrm{b}] \rightarrow \mathrm{a}$
fold1 f v [] $=v$
fold1 $f v(x: x s)=$ fold $f(f \vee x) x s$

- foldr $1: 2: 3:[] \Rightarrow(1+(2+(3+0)))$
- foldl $1: 2: 3:[] \Rightarrow(((0+1)+2)+3)$

Other Library Functions

The library function (.) returns the composition of two functions as a single function.

$$
\begin{aligned}
& \text { (.) }::(\mathrm{b} \text {-> c) -> (a -> b) -> (a -> c) } \\
& \mathrm{f} . \mathrm{g}=(\mathrm{x} \text {-> f (g x) }
\end{aligned}
$$

For example:

$$
\begin{aligned}
& \text { odd : : Int } \rightarrow \text { Boo l } \\
& \text { odd }=\text { not } . \text { even } \\
& \hline
\end{aligned}
$$

Exercise: Define filterOut p xs that retains elements that do not satisfy p.
filterOut p xs = filter (not . p) xs
> filterOut odd [1..10]
[2,4,6,8,10]

The library function all decides if every element of a list satisfies a given predicate.

$$
\begin{aligned}
& \text { a11 }::(a \rightarrow \text { Bool }) \rightarrow[a] \rightarrow \text { Bool } \\
& \text { a11 p xs }=\text { and }[p \times \mid x \leftarrow x s]
\end{aligned}
$$

For example:

$$
\text { > all even }[2,4,6,8,10]
$$

True

Dually, the library function any decides if at least one element of a list satisfies a predicate.

$$
\begin{aligned}
& \text { any } \quad::(\mathrm{a} \rightarrow \mathrm{Bool}) \rightarrow[\mathrm{a}] \rightarrow \text { Bool } \\
& \text { any } \mathrm{p} \times \mathrm{xs}=\text { or }[\mathrm{p} \mathrm{x} \mid \mathrm{x} \leftarrow \mathrm{xs}]
\end{aligned}
$$

For example:
> any isSpace "abc def"
True

The library function takeWhile selects elements from a list while a predicate holds of all the elements.

$$
\begin{aligned}
& \text { takeWhile : : (a } \rightarrow \text { Bool) } \rightarrow \text { [a] } \rightarrow \text { [a] } \\
& \text { takeWhile p [] = [] } \\
& \text { takeWhile p (x:xs) } \\
& \begin{array}{ll}
\mid \mathrm{px} & =\mathrm{x} \text { : takeWhile p xs } \\
\text { | otherwise } & =[]
\end{array}
\end{aligned}
$$

For example:
> takeWhile isAlpha "abc def"
"abc"

Dually, the function dropWhile removes elements while a predicate holds of all the elements.

$$
\begin{aligned}
& \text { dropWhile :: (a } \rightarrow \text { Bool) } \rightarrow \text { [a] } \rightarrow \text { [a] } \\
& \text { dropWhile p [] } \\
& \text { dropWhile p (x:xs) } \\
& \qquad \begin{array}{ll}
\text { d x } & =\text { dropWhile p xs } \\
\mid \text { otherwise } & =x: x s
\end{array}
\end{aligned}
$$

For example:

$$
\begin{array}{|l}
\hline>\text { dropWhile isSpace " abc" } \\
\text { "abc" }
\end{array}
$$

filter, map and foldr

Typical use is to select certain elements, and then perform a mapping, for example,

sumSquaresOfPos 1s

$$
=\text { foldr }(+) 0(\operatorname{map}(\wedge 2)(f i l t e r(>=0) 1 s))
$$

> sumSquaresOfPos $[-4,1,3,-8,10]$
110
In pieces:

```
keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos 1s = sum (mapSquare (keepPos 1s))
```

Alternative definition:
sumSquaresOfPos = sum . mapSquare . keepPos

