Lee CSCE 314 TAMU

CSCE 314
Programming Languages

Haskell: Higher-order Functions

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

Higher-order Functions

A function is called higher-order if it takes a

function as an argument or returns a function as
a result.

twice is higher-order
twice :: (a > a) > a—> a because it takes a
twice f x = f (f xX) function as its first
argument. D
Note:

= Higher-order functions are very common in Haskell
(and in functional programming).

= Writing higher-order functions is crucial practice for
effective programming in Haskell, and for
understanding others’ code.

Lee CSCE 314 TAMU

Why Are They Useful?

B Common programming idioms can be encoded
as functions within the language itself.

B Domain specific languages can be defined as
collections of higher-order functions. For
example, higher-order functions for
processing lists.

B Algebraic properties of higher-order
functions can be used to reason about
programs.

The map Function

map applies a function to every element of a list.
map :: (a > b) - [a] — [b]
For example: > map (+1) [1,3,5,7]
[2,4,6,8]

The map function can be defined in a particularly simple
manner using a list comprehension:

map f xs = [T x | X <« xs]
Alternatively, it can also be defined using recursion:

map f [] = []
map f (x:xs) = f x : map T xs

The filter Function

filter selects every element from a list that satisfies a

predicate. filter :: (a » Bool) - [a] — [a]

For example: > filter even [1..10]
[2,4,6,8,10]
filter can be defined using a list comprehension:

filter p xs [X | X <« xs, p x]

Alternatively, it can be defined using recursion:

filter p [] = []
filter p (x:xs)
| p X = X : filter p xs

| otherwise filter p xs

Lee CSCE 314 TAMU

The foldr Function

Many functions on lists can be defined using the
following simple pattern of recursion:

t []
f (x:xs)

V
X & f xs

4 N
f maps the empty list o some value v,

and any non-empty list to some function
@ applied to its head and f of its tail.

Lee CSCE 314 TAMU

For example:

sum []
sum (X:XS)

0 Vv
X + sum XsS S,

product [] =1
product (x:xs) = X

and [] = True \%
and (x:xs) = x &% and xs @

n o n
+ O
—

* product Xxs

D <

non

= =
—

nou

)

S
—

Lee CSCE 314 TAMU

The higher-order library function foldr (fold
right) encapsulates this simple pattern of
recursion, with the function ® and the value v as
arguments.

For example:

sum = foldr (+) O
product = foldr (*) 1

or = foldr (||) False
and = foldr (&&) True

Lee CSCE 314 TAMU

foldr itself can be defined using recursion:

foldr :: (a > b > b) > b > [a] > Db
foldr f v [] =V
foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-
recursively, as simultaneously replacing each (:) in
a list by a given function, and [] by a given value.

Lee CSCE 314 TAMU

For example:

sum [1,2,3]

foldr (+) 0 [1,2,3]

foldr (+) 0 (1:(2:(3:[1)))

= 1+(2+(3+0))

6 Replace each (:)
by (+) and [] by O.

10

Lee CSCE 314 TAMU

For example:

product [1,2,3]

foldr (*) 1 [1,2,3]

foldr (*) 1 (1:(2:(3:[1)))

1*(2*(3*1))

6 Replace each (:)
by (*) and [] by 1.

1"

Lee CSCE 314 TAMU

Other foldr Examples

Even though foldr encapsulates a simple pattern
of recursion, it can be used to define many more
functions than might first be expected.

Recall the length function:

length :: [a] —» Int
length [] =0
length (_:xs) = 1 + length xs

12

Lee CSCE 314 TAMU

For example:
length [1,2,3]

length (1:(2:(3:[1)))
1+(1+(1+0))

3 Replace each (:) by
A_n—>l+nand [] by O

Hence, we have:
length = foldr (A_ n -> 1+n) O

13

Lee CSCE 314 TAMU

Now the reverse function:

reverse [] = []
reverse (X:Xs) = reverse XS ++ [Xx]

For example:

reverse [1,2,3] Replace each (:) by\
= reverse (1:(2:(3:[1D)) AX XS$ = XS ++ [X]
= (([1 ++ [31) ++ [2]) ++ [1] and [I by [I
= [3,2,1]

Hence, we have:

reverse = foldr (A\x xs -> xs ++ [x]) []

14

Why Is foldr Useful?

I Some recursive functions on lists, such as sum,
are simpler to define using foldr.

B Properties of functions defined using foldr can
be proved using algebraic properties of foldr.

§ Advanced program optimizations can be simpler
if foldr is used in place of explicit recursion.

15

Lee CSCE 314 TAMU

foldr and foldl

foldr :: (@ > b >b) > b > [a] > b
foldr f v [] =V

foldr f v (x:xs) = f x (foldr f v xs)

foldl :: (a > b > a) > a - [b] » a
foldl f v [] =V
foldl f v (x:xs) = foldl f (f v x) xs

I foldr 1:2:3:[]=0Q+(2+(3+0))
B foldl 1:2:3:[]1=O0+1)+2)+3)

foldr f z foldl fz

.-"; mﬂ"\-.. ‘_.-"".fxx .-__.-"':"'\.M I - .-"-.flh“'\.
17 1 f 17 f. 5
2.-"'-. x\-\.‘ 2 “"\-f 2-""-. ""H,._ f.- 14
LR et AN VAN
3 3" f. 3" fo 3
i s f “‘x__. f.-""' ““\-.2

4 P 4 N 4 e A

16

Other Library Functions

The library function (.) returns the composition of two
functions as a single function.

(.) 2 (b->¢c) > (a ->Db) > (a > 0
f.g =\x->71 (g x)
For example: odd :: Int — Bool
odd = not . even

Exercise: Define f1lterOut p xs that retains elements
that do not satisfy p.

filterOut p xs = filter (not . p) Xxs

> filterOut odd [1..10]
[2,4,6,8,10]

17

Lee CSCE 314 TAMU

The library function all decides if every element
of a list satisfies a given predicate.

all :: (a > Bool) —» [a] — Bool
all p xs = and [p X | X « xs]

For example:

> all even [2,4,6,8,10]

True

18

Lee CSCE 314 TAMU

Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any :: (a » Bool) —» [a] — Bool
any p Xs = or [p X | X « xs]

For example:

> any 1sSpace "abc def"

True

19

Lee CSCE 314 TAMU

The library function takeWhile selects elements
from a list while a predicate holds of all the
elements.

takeWhile :: (a —» Bool) —» [a] — [a]
takewWhile p [] = []
takeWhile p (x:xs)
| p X = X : takeWhile p xs
| otherwise = []

For example:

> takeWhile 1sAlpha "abc def"

abc

20

Lee CSCE 314 TAMU

Dually, the function dropWhile removes elements
while a predicate holds of all the elements.

dropWhile :: (a —» Bool) —» [a] — [a]
dropWhile p [] = []
dropWhile p (x:xs)

| p X = dropWhile p xs

| otherwise = X:XS

For example:

> dropWhile 1sSpace abc

abc

21

filter, map and foldr

Typical use is to select certain elements, and then
perform a mapping, for example,

sumSquaresOfPos 1s
= foldr (+) 0 (map (A2) (filter (>= 0) 1s))

> sumSquaresOfPos [-4,1,3,-8,10]
110

In pieces:

keepPos = filter (>= 0)

mapSquare = map (A2)

sum = foldr (+) O

sumSquaresOfPos 1s = sum (mapSquare (keepPos 1s))

Alternative definition:

sumSquaresOfPos = sum . mapSquare . keepPos

22

