
Lee CSCE 314 TAMU

1

CSCE 314
Programming Languages

Haskell: Types, Currying and
Polymorphism

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

Types
A type is a collection of related values. For
example,
❚ Bool contains the two logical values True and False
❚ Int contains values −263, …, −1, 0, 1, ..., 263 −1

If evaluating an expression e would produce a
value of type T, then e has type T, written

Every well-formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference

e :: T

Lee CSCE 314 TAMU

3

Type Errors

Applying a function to one or more arguments of
the wrong type is called a type error

Static type checking - all type errors are found at
compile time, which makes programs safer and
faster by removing the need for type checks at
run time

> 1 + False
Error

1 is a number and False is
a logical value, but +
requires two numbers

Lee CSCE 314 TAMU

4

Type Annotations
Programmer can (and at times must) annotate
expressions with type in the form
For example,

❚ True :: Bool
❚ 5 :: Int -- type is really (Num t) => t
❚ (5 + 5) :: Int -- likewise
❚ (7 < 8) :: Bool

Some expressions can have many types, e.g.,
5 :: Int, 5 :: Integer, 5 :: Float

GHCi command :type e shows
the type of (the result of) e

e :: T

> not False
True

> :type not False
not False :: Bool

Lee CSCE 314 TAMU

5

Basic Types
Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

Integer - arbitrary-precision integers

Float - single-precision floating-point numbers

String - lists of characters type String = [Char]

Int - fixed-precision integers

Double - double-precision floating-point numbers

Lee CSCE 314 TAMU

6

List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c‘] :: [Char]

“abc” :: [Char]

[[True, True], []] :: [[Bool]]

A list is sequence of values of the same type:

Note:
• [t] has the type list with elements of type t
• The type of a list says nothing about its length
• The type of the elements is unrestricted
• Lists can be infinite: l = [1..]

Lee CSCE 314 TAMU

7

Tuple Types
A tuple is a sequence of values of different types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

(“Howdy”,(True,2)) :: ([Char],(Bool,Int))

Note:
• (t1,t2,…,tn) is the type of n-tuples whose i-th

component has type ti for any i in 1…n
• The type of a tuple encodes its size
• The type of the components is unrestricted
• Tuples with arity one are not supported: (t) is

parsed as t, parentheses are ignored

Lee CSCE 314 TAMU

8

Function Types

not :: Bool -> Bool

isDigit :: Char -> Bool

toUpper :: Char -> Char

(&&) :: Bool -> Bool -> Bool

Note:
The argument and result types
are unrestricted. Functions with
multiple arguments or results are
possible using lists or tuples:

A function is a mapping from values of one type
(T1) to values of another type (T2), with the type
T1 -> T2

add :: (Int,Int) ® Int
add (x,y) = x+y

zeroto :: Int ® [Int]
zeroto n = [0..n]

One parameter functions!

Lee CSCE 314 TAMU

9

Curried Functions
Functions with multiple arguments are also
possible by returning functions as results:
add :: (Int,Int) ® Int
add (x,y) = x+y

add’ :: Int ® (Int ® Int)

add’ x y = x+y

add’ takes an int x and
returns a function add’ x. In

turn, this function takes an int
y and returns the result x+y

Note:
• add and add’ produce the same final result, but add
takes its two arguments at the same time, whereas add’
takes them one at a time
• Functions that take their arguments one at a time are
called curried functions, celebrating the work of Haskell
Curry on such functions

Lee CSCE 314 TAMU

10

Functions with more than two arguments can be
curried by returning nested functions:

mult :: Int ® (Int ® (Int ® Int))
mult x y z = x*y*z

mult takes an integer x and returns a function mult x,
which in turn takes an integer y and returns a

function mult x y, which finally takes an integer z and
returns the result x*y*z

Note:
• Functions returning functions: an example of higher-order functions
• Unless tupling is explicitly required, all functions in Haskell are

normally defined in curried form

Lee CSCE 314 TAMU

11

Why is Currying Useful?
Curried functions are more flexible than functions on
tuples, because useful functions can often be made by
partially applying a curried function

For example: add’ 1 :: Int -> Int

take 5 :: [a] -> [a]

drop 5 :: [a] -> [a]

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

> map (add’ 1) [1,2,3]
[2,3,4]

Lee CSCE 314 TAMU

12

Currying Conventions

1. The arrow ® (type constructor) associates to
the right

2. As a consequence, it is then natural for
function application to associate to the left

Int ® Int ® Int ® Int

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

Means Int ® (Int ® (Int ® Int))

mult x y z Means ((mult x) y) z

Lee CSCE 314 TAMU

13

Polymorphic Functions
A function is called polymorphic (“of many forms”)
if its type contains one or more type variables
Thus, polymorphic functions work with many types
of arguments

id :: a ® a

for any type a, length takes
a list of values of type a and

returns an integer

length :: [a] ® Int

for any type a, id maps a
value of type a to itself

a is a type variable

head :: [a] ® a

take :: Int®[a]®[a]

Lee CSCE 314 TAMU

14

Type variables can be instantiated to different
types in different circumstances:

Type variables must begin with a lower-case letter, and
are usually named a, b, c, etc.

> length [False,True]
2
> length [1,2,3,4]
4

a = Bool

a = Int

Polymorphic types and type variables

A polymorphic type is a type that contains one or more type variables
Think of it as a schema or template from which to instantiate other
types by binding values to the type variables

expression polymorphic type type variable bindings resulting type
id a -> a a=Int Int -> Int
id a -> a a=Bool Bool -> Bool
length [a] -> Int a=Char [Char] -> Int
fst (a, b) -> a a=Char, b=Bool Char
snd (a, b) -> b a=Char, b=Bool Bool
([], []) ([a], [b]) a=Char, b=Bool ([Char], [Bool])

Type variables must start with lowercase letters
Typical conventions: a, b, c, . . . , t, u, . . . , a1, a2, . . . , a’, a’’,
. . .

Jaakko Järvi (TAMU) Programming Languages CSCE-314 September 5, 2012 42 / 49

Polymorphic Types

Lee CSCE 314 TAMU

15

Overloaded Functions
A polymorphic function is called overloaded if its
type contains one or more class constraints

sum :: Num a Þ [a] ® a
for any numeric type a,
sum takes a list of values
of type a and returns a

value of type a
Constrained type variables can be instantiated to
any types that satisfy the constraints:

> sum [1,2,3]
6
> sum [1.1,2.2,3.3]
6.6
> sum [’a’,’b’,’c’]
ERROR

Char is not a numeric type

a = Int

a = Float

Lee CSCE 314 TAMU

16

Recall that polymorphic types can be instantiated
with all types, e.g.,
id :: t -> t length :: [t] -> Int
This is when no operation is subjected to values of type t

What are the types of these functions?
min :: Ord a => a -> a -> a

min x y = if x < y then x else y

elem :: Eq a => a -> [a] -> Bool

elem x (y:ys) | x == y = True

elem x (y:ys) = elem x ys
elem x [] = False

Class Constraints

Ord a and Eq a are
class constraints

Type variables
can only be
bound to types
that satisfy
the constraints

Lee CSCE 314 TAMU

17

Constraints arise because values of the generic
types are subjected to operations that are not
defined for all types:

min :: Ord a => a -> a -> a

min x y = if x < y then x else y

elem :: Eq a => a -> [a] -> Bool

elem x (y:ys) | x == y = True

elem x (y:ys) = elem x ys

elem x [] = False

Ord and Eq are type classes:
Num (Numeric types)
Eq (Equality types)
Ord (Ordered types)

Type Classes

(+) :: Num a Þ a ® a ® a

(==) :: Eq a Þ a ® a ® Bool

(<) :: Ord a Þ a ® a ® Bool

Lee CSCE 314 TAMU

18

Haskell 98 Class Hierarchy
For detailed explanation, refer
http://www.haskell.org/onlinereport/basic.html

Lee CSCE 314 TAMU

19

The Eq and Ord Classes
class Eq a where

(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

compare x y | x == y = EQ
| x <= y = LT
| otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT

max x y | x <= y = y
| otherwise = x

min x y | x <= y = x
| otherwise = y

Lee CSCE 314 TAMU

20

The Enum Class
class Enum a where

toEnum :: Int -> a
fromEnum :: a -> Int
succ, pred :: a -> a
. . .

-- Minimal complete definition: toEnum, fromEnum
Note: these methods only make sense for types
that map injectively into Int using fromEnum
and toEnum
succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum

Lee CSCE 314 TAMU

21

The Show and Read Classes
class Show a where class Read a where

show :: a -> String read :: String -> a

Many types are showable and/or readable
> show 10 > read “10” :: Int
“10” 10
> show [1,2,3] > read “[1,2,3]” :: [Int]
“[1,2,3]” [1,2,3]

> map (* 2.0) (read “[1,2]”)
[2.0,4.0]

Lee CSCE 314 TAMU

22

Hints and Tips
When defining a new function in Haskell, it is
useful to begin by writing down its type

Within a script, it is good practice to state the
type of every new function defined

When stating the types of polymorphic
functions that use numbers, equality or
orderings, take care to include the necessary
class constraints

Lee CSCE 314 TAMU

23

Exercises

[’a’,’b’,’c’]

(’a’,’b’,’c’)

[(False,’0’),(True,’1’)]

([False,True],[’0’,’1’])

[tail,init,reverse]

What are the types of the following values?(1)

Lee CSCE 314 TAMU

24

second xs = head (tail xs)

swap (x,y) = (y,x)

pair x y = (x,y)

double x = x*2

palindrome xs = reverse xs == xs

lessThanHalf x y = x * 2 < y

What are the types of the following functions?(2)

Check your answers using GHCi.(3)

