Lee CSCE 314 TAMU

CSCE 314
Programming Languages

A Tour of Language Implementation

Dr. Hyunyoung Lee



Lee CSCE 314 TAMU

Programming Language Characteristics

Different approaches to

m describe computations, instruct computing devices
E.g., Imperative, declarative, functional

m communicate ideas between humans

E.g., Procedural, object-oriented, domain-specific
languages

Programming language specification: meaning
(semantics) of all sentences (program syntax) of the
language should be unambiguously specified



Programming Language Expressiveness

Different levels of abstraction

More Haskell, Prolog sum(1..100]
abstract
Scheme, Java mynum.add(5)
C i++;

Assembly language iadd

Machine language 10111001010110



Lee CSCE 314 TAMU

Evolution of Languages

1940’s: connecting wires to represent O's and 1's
1950’s: assemblers, FORTRAN, COBOL, LISP
1960°s: ALGOL, BCPL (— B — C), SIMULA
1970’s: Prolog, FP, ML, Miranda

1980’s: Eiffel, C++

1990’s: Haskell, Java, Python

2000's: D, C#, Spec#, F#, X10, Scala, Ruby, . . .
2010’s: Agda, Coqg

Evolution has been and is tfoward higher level of abstraction



Defining a Programming Language

m Syntax: Defines the set of valid programs

Usually defined with the help of grammars and other
conditions
if-statement ::= if cond-expr then stmft else stmt
| if cond-expr then stmt
cond-expr = . . .
stmt = . ..

m Semantics: Defines the meaning of programs

Defined, e.g., as the effect of individual language
constructs to the values of program variables

if cond then true-part else false-part

If cond evaluates to true, the meaning is that of frue-
part; if cond evaluates to false, the meaning is that of
false-part



Lee CSCE 314 TAMU

Implementing a Programming Language

m Task is to undo abstraction. From the source:
int i;
i = 2;
i=i+7;

m to assembly (this is actually Java bytecode):
iconst_2 // Put integer 2 on stack
istore_1 // Store the top stack value at location 1
iload_1  // Put the value at location 1 on stack
bipush 7 // Put the value 7 on the stack
iadd // Add two top stack values together
istore_1 // The sum, on top of stack, stored at location 1

m to machine language:

00101001010110
01001010100101



Lee CSCE 314 TAMU

Implementing a Programming Language -
How to Undo the Abstraction

Source
program

Lexer > Parser

Type

Optimizer

l

checker

l

"Interpreter"

T\

/0

Code
generator

Machine code

/O

Machine

Bytecode JIT

Virtual machine ||

A

/O




Lee CSCE 314 TAMU

Lexical Analysis

From a stream of characters
if (a == b) return;

to a stream of fokens

keyword['if']
symbol['(']
identifier['a']
symbol['=="'
identifier['b']
symbol[')']
keyword['return’]
symbol[';']



Syntactic Analysis (Parsing)

From a stream of to a syntax tree (parse tree)
characters .
if-statement
if (a == b) return;
\
to a stream of tokens expression statement
keyword['if'] \4 l
symbol[*('] equality operator return stmt
identifier['a']
symbol['=="
identifier['b’] identifier identifier
symbol[')']
keyword['return']

symbol[*;"] a b



Lee CSCE 314 TAMU

Type Checking

if (a == b) return; if-statement : OK
Annotate synfax free expreésion :bool  statement : OK
with types, check that
types are used correctly l

equality operator:  return stmt : void
integer equality

identifier : int identifier : int

l l

a b

10



Lee CSCE 314 TAMU

Optimization

int a =10; Constant propagation can deduce
int b =20 - a; that always a==b, allowing the

if (a == b) return; optimizer to transform the tree:
if-statement : OK |:> if-statement : OK |:> return stmt : void

express‘lron : bool statement : OK
¢ statement : OK
l constant : bool

.Y
equality operator :
integer equality

return stmt : void

M \ o
identifier : int  identifier : int true return’stmt : void

Lo

a b

1



Lee CSCE 314 TAMU

Code Generation

Code generation is essentially undoing abstractions, until
code is executable by some target machine:

- Control structures become jumps and conditional jumps
to labels (essentially goto statements)

Variables become memory locations
Variable names become addresses to memory locations

Abstract data types etc. disappear. What is left is
data types directly supported by the machine such as
integers, bytes, floating point numbers, etc.

Expressions become loads of memory locations to
registers, register operations, and stores back to
memory

12



Lee CSCE 314 TAMU

Phases of Compilation/Execution
Characterized by Errors Detected

m Lexical analysis:
5abc
a ===
m Syntactic analysis:
if + then;
int f(int a];
m Type checking:
void f(); int a; a + f();
m Execution time:
int a[100]; a[l101] = 5;

13



Lee CSCE 314 TAMU

Compiling and Interpreting (1)

m Typically compiled languages:
= C, C++, Eiffel, FORTRAN
= Java, C# (compiled to bytecode)

m Typically interpreted languages:
" Python, Perl, Prolog, LISP

m Both compiled and interpreted:
" Haskell, ML, Scheme

14



Compiling and Interpreting (2)

m Borderline between interpretation and
compilation not clear (not that important either)

m Same goes with machine code vs. byte code

m Examples of modern compiling/interpreting/
executing scenarios:

" C and C++ can be compiled to LLVM bytecode

" Java compiled to bytecode, bytecode
interpreted by JVM, unless it is first JITted
to native code, which can then be run on a
virtual machine such as VMWare

15



