
Lee CSCE 314 TAMU

1

CSCE 314

Programming Languages

A Tour of Language Implementation

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

Programming Language Characteristics

Different approaches to

¢  describe computations, instruct computing devices

E.g., Imperative, declarative, functional

¢  communicate ideas between humans

E.g., Procedural, object-oriented, domain-specific
languages

Programming language specification: meaning
(semantics) of all sentences (program syntax) of the
language should be unambiguously specified

Lee CSCE 314 TAMU

3

Programming Language Expressiveness

Haskell, Prolog sum[1..100]

Scheme, Java mynum.add(5)

C i++;

Assembly language iadd

Machine language 10111001010110

Different levels of abstraction

More

abstract

Lee CSCE 314 TAMU

4

Evolution of Languages

¢  1940’s: connecting wires to represent 0’s and 1’s

¢  1950’s: assemblers, FORTRAN, COBOL, LISP

¢  1960’s: ALGOL, BCPL (→ B → C), SIMULA

¢  1970’s: Prolog, FP, ML, Miranda

¢  1980’s: Eiffel, C++

¢  1990’s: Haskell, Java, Python

¢  2000’s: D, C#, Spec#, F#, X10, Scala, Ruby, . . .

¢  2010’s: Agda, Coq

¢  . . .

Evolution has been and is toward higher level of abstraction

Lee CSCE 314 TAMU

5

Defining a Programming Language

¢  Syntax: Defines the set of valid programs

Usually defined with the help of grammars and other
conditions

 if-statement ::= if cond-expr then stmt else stmt

 | if cond-expr then stmt

 cond-expr ::= . . .

 stmt ::= . . .

¢  Semantics: Defines the meaning of programs

Defined, e.g., as the effect of individual language
constructs to the values of program variables

 if cond then true-part else false-part

If cond evaluates to true, the meaning is that of true-
part; if cond evaluates to false, the meaning is that of
false-part

Lee CSCE 314 TAMU

6

Implementing a Programming Language

¢  Task is to undo abstraction. From the source:

 int i;

 i = 2;

 i = i + 7;

¢  to assembly (this is actually Java bytecode):

 iconst_2 // Put integer 2 on stack

 istore_1 // Store the top stack value at location 1

 iload_1 // Put the value at location 1 on stack

 bipush 7 // Put the value 7 on the stack

 iadd // Add two top stack values together

 istore_1 // The sum, on top of stack, stored at location 1

¢  to machine language:

 00101001010110

 01001010100101

Lee CSCE 314 TAMU

7

Implementing a Programming Language –
How to Undo the Abstraction

Source	
program	

Lexer	 Parser	 Type	
checker	

Interpreter	

Op8mizer	

Code	
generator	

Machine	code	

Bytecode	

Machine	

Virtual	machine	
I/O	

JIT	

I/O	

I/O	

Lee CSCE 314 TAMU

8

Lexical Analysis

From a stream of characters

 if (a == b) return;

to a stream of tokens

 keyword[‘if‘]

 symbol[‘(‘]

 identifier[‘a‘]

 symbol[‘==‘]

 identifier[‘b‘]

 symbol[‘)‘]

 keyword[‘return‘]

 symbol[‘;‘]

Lee CSCE 314 TAMU

9

Syntactic Analysis (Parsing)

From a stream of
characters

 if (a == b) return;

to a stream of tokens

 keyword[‘if‘]

 symbol[‘(‘]

 identifier[‘a‘]

 symbol[‘==‘]

 identifier[‘b‘]

 symbol[‘)‘]

 keyword[‘return‘]

 symbol[‘;‘]

 to a syntax tree (parse tree)

if-statement	

statement	

iden8fier	

b	a	

iden8fier	

expression	

equality	operator	 return	stmt	

Lee CSCE 314 TAMU

10

Type Checking

 if (a == b) return;

Annotate syntax tree
with types, check that
types are used correctly

if-statement	:	OK	

statement	:	OK	

iden8fier	:	int	

b	a	

iden8fier	:	int	

expression	:	bool	

equality	operator	:	
integer	equality	

return	stmt	:	void	

Lee CSCE 314 TAMU

11

Optimization

int a = 10;

int b = 20 – a;

if (a == b) return;

Constant propagation can deduce
that always a==b, allowing the
optimizer to transform the tree:

if-statement	:	OK	

statement	:	OK	

iden8fier	:	int	

b	a	

iden8fier	:	int	

expression	:	bool	

equality	operator	:	
integer	equality	

return	stmt	:	void	

if-statement	:	OK	

statement	:	OK	

true	

constant	:	bool	

return	stmt	:	void	

return	stmt	:	void	

Lee CSCE 314 TAMU

12

Code Generation

Code generation is essentially undoing abstractions, until
code is executable by some target machine:

§  Control structures become jumps and conditional jumps

to labels (essentially goto statements)

§  Variables become memory locations

§  Variable names become addresses to memory locations

§  Abstract data types etc. disappear. What is left is

data types directly supported by the machine such as
integers, bytes, floating point numbers, etc.

§  Expressions become loads of memory locations to
registers, register operations, and stores back to
memory

Lee CSCE 314 TAMU

13

Phases of Compilation/Execution
Characterized by Errors Detected

¢  Lexical analysis:

5abc

a === b

¢  Syntactic analysis:

if + then;

int f(int a];

¢  Type checking:

void f(); int a; a + f();

¢  Execution time:

int a[100]; a[101] = 5;

Lee CSCE 314 TAMU

14

Compiling and Interpreting (1)

¢  Typically compiled languages:

§ C, C++, Eiffel, FORTRAN

§ Java, C# (compiled to bytecode)

¢  Typically interpreted languages:

§ Python, Perl, Prolog, LISP

¢  Both compiled and interpreted:

§ Haskell, ML, Scheme

Lee CSCE 314 TAMU

15

Compiling and Interpreting (2)

¢  Borderline between interpretation and

compilation not clear (not that important either)

¢  Same goes with machine code vs. byte code

¢  Examples of modern compiling/interpreting/

executing scenarios:

§ C and C++ can be compiled to LLVM bytecode

§ Java compiled to bytecode, bytecode

interpreted by JVM, unless it is first JITted
to native code, which can then be run on a
virtual machine such as VMWare

