CSCE 314 Programming Languages

Final Review Part I

Dr. Hyunyoung Lee

Programming Language Characteristics

- Different approaches to describe computations, to instruct computing devices
 - E.g., Imperative, declarative, functional
- Different approaches to communicate ideas between humans
 - E.g., Procedural, object-oriented, domain-specific languages
- Programming languages need to have a specification: meaning (semantics) of all sentences (programs) of the language should be unambiguously specified

Evolution of Programming Languages

- 1940's: connecting wires to represent 0's and 1's
- 1950's: assemblers, FORTRAN, COBOL, LISP
- 1960's: ALGOL, BCPL (\rightarrow B \rightarrow C), SIMULA
- 1970's: Prolog, FP, ML, Miranda
- 1980's: Eiffel, C++
- 1990's: Haskell, Java, Python
- 2000's: D, C#, Spec#, F#, X10, Fortress, Scala, Ruby, . . .
- 2010's: Agda, Coq

Evolution has been and is toward higher level of abstraction

Implementing a Programming Language – How to Undo the Abstraction

Phases of Compilation/Execution Characterized by Errors Detected

Lexical analysis:

5abc

a === b

Syntactic analysis:
 if + then;
 int f(int a];

Type checking:

void f(); int a; a + f();

Execution time: int a[100]; a[101] = 5;

What Is a Programming Language?

- Language = syntax + semantics
- The syntax of a language is concerned with the form of a program: how expressions, commands, declarations etc. are put together to result in the final program.
- The semantics of a language is concerned with the meaning of a program: how the programs behave when executed on computers
- Syntax defines the set of valid programs, semantics how valid programs behave

Language Syntax

- Statement is a sequence of tokens
- Token is a sequence of characters
- Lexical analyzer produces a sequence of tokens from a character sequence
- Parser

produces a statement representation from the token sequence

 Statements are represented as parse trees (abstract syntax tree)

Backus-Naur Form (BNF)

- BNF is a common notation to define programming language grammars
- A BNF grammar G = (N, T, P, S)
 - A set of non-terminal symbols N
 - A set of terminal symbols T (tokens)
 - A set of grammar rules P
 - A start symbol S
- Grammar rule form (describe context-free grammars):

<non-terminal>

::= <sequence of terminals and non-terminals>

Ambiguity

- A grammar is ambiguous if there exists a string which gives rise to more than one parse tree
- E.g., infix binary operators `-'
 <expr> ::= <num> | <expr> `-' <expr>
- Now parse 1 2 3

Resolving Ambiguities

- 1. Between two calls to the same binary operator
 - Associativity rules
 - left-associative: a op b op c parsed as (a op b) op c
 - right-associative: a op b op c parsed as a op (b op c)
 - By disambiguating the grammar
 <expr> ::= <num> | <expr> `-' <expr> vs.

<expr> ::= <num> | <expr> `-' <num>

- 2. Between two calls to different binary operator
 - Precedence rules
 - if op1 has higher-precedence than op2 then a op1 b op2 c => (a op1 b) op2 c
 - if op2 has higher-precedence than op1 then a op1 b op2 c => a op1 (b op2 c)

Resolving Ambiguities (Cont.)

- Rewriting the ambiguous grammar: <expr> ::= <num> | <expr> + <expr> | <expr> * <expr> | <expr> == <expr>
- Let us give * the highest precedence, + the next highest, and == the lowest

```
<expr> ::= <sum> { == <sum> }
<sum> ::= <term> | <sum> + <term>
<term> ::= <num> | <term> * <num>
```

Chomsky Hierarchy

Four classes of grammars that define particular classes of languages Type 0 – Phrase-structure Grammars

- 1. Regular grammars
- 2. Context free grammars
- 3. Context sensitive grammars
- Phrase-structure (unrestricted) grammars

Ordered from less expressive to more expressive (but faster to slower to parse)

Regular grammars and CF grammars are of interest in theory of programming languages

Summary of the Productions

- Phrase-structure (unrestricted) grammars
 A -> B where A is string in V* containing at least one
 nonterminal symbol, and B is a string in V*.
- 2. Context sensitive grammars |Ar -> |wr where A is a nonterminal symbol, and w a $nonempty string in V[*]. Can contain S -> <math>\lambda$ if S does not occur on RHS of any production.

3. Context free grammars

A -> B where A is a nonterminal symbol.

4. Regular grammars

A -> aB or A -> a where A, B are nonterminal symbols and a is a terminal symbol. Can contain S -> λ .

Haskell Lazy Pure Functional Language

The Standard Prelude

Haskell comes with a large number of standard library functions. In addition to the familiar numeric functions such as + and *, the library also provides many useful functions on <u>lists</u>.

-- Select the first element of a list:

-- Remove the first element from a list:

-- Select the nth element of a list:

-- Select the first n elements of a list:

-- Remove the first n elements from a list:

-- Append two lists:

-- Reverse a list:

-- Calculate the length of a list:

-- Calculate the sum of a list of numbers:

-- Calculate the product of a list of numbers:

Basic Types

Boo1

Char

Int

Integer

Float

Haskell has a number of <u>basic types</u>, including:

logical values

- single characters
- **String** lists of characters type String = [Char]
 - fixed-precision integers
 - arbitrary-precision integers
 - single-precision floating-point numbers
- **Double** double-precision floating-point numbers

List Types

A list is sequence of values of the same type:

```
[False,True,False] :: [Bool]
['a','b','c'] :: [Char]
"abc" :: [Char]
[[True, True], []] :: [[Bool]]
```

- [t] has the type list with elements of type t
- The type of a list says nothing about its length
- The type of the elements is unrestricted
- Composite types are built from other types using type constructors
- Lists can be infinite: l = [1..]

Tuple Types

A <u>tuple</u> is a sequence of values of <u>different</u> types:

(False,True) :: (Bool,Bool)
(False,'a',True) :: (Bool,Char,Bool)
("Howdy",(True,2)) :: ([Char],(Bool,Int))

- (t1,t2,...,tn) is the type of n-tuples whose i-th component has type ti for any i in 1...n
- The type of a tuple encodes its size
- The type of the components is unrestricted
- Tuples with arity one are not supported:
 (t) is parsed as t, parentheses are ignored

Function Types

A <u>function</u> is a mapping from values of one type (T1) to values of another type (T2), with the type

T1 -> T2

not :: Bool -> Bool isDigit :: Char -> Bool toUpper :: Char -> Char (&&) :: Bool -> Bool -> Bool

- The argument and result types are unrestricted. Functions with multiple arguments or results are possible using lists or tuples:
- Only single parameter functions!

add ::	$(Int,Int) \rightarrow Int$
add (x,y)	= x+y
zeroto :: zeroto n	$Int \rightarrow [Int] = [0n]$

Curried Functions

Functions with multiple arguments are also possible by returning <u>functions as results</u>:

- add and add' produce the same final result, but add takes its two arguments at the same time, whereas add' takes them one at a time
- Functions that take their arguments one at a time are called <u>curried</u> functions, celebrating the work of Haskell Curry on such functions.

Why is Currying Useful?

Curried functions are more flexible than functions on tuples, because useful functions can often be made by <u>partially applying</u> a curried function.

For example:	add' 1 :: Int -> Int take 5 :: [a] -> [a] drop 5 :: [a] -> [a]				
<pre>map :: (a->b) -> [a] -> [b] map f [] = [] map f (x:xs) = f x : map f xs</pre>					
> map (add [2,3,4]	i'1) [1,2,3]				

Polymorphic Functions

A function is called <u>polymorphic</u> ("of many forms") if its type contains one or more type variables. Thus, polymorphic functions work with many types of arguments.

Polymorphic Types

Type variables can be instantiated to different types in different circumstances:

expression	polymorphic type	type variable bindings	resulting type	
id	a -> a	a= Int	Int -> Int	
id	a -> a	a= Bool	Bool -> Bool	
length	[a] -> Int	a= Char	[Char] -> Int	
fst	(a, b) -> a	a= Char, b= Bool	Char	
snd	(a, b) -> b	a= Char, b= Bool	Bool	
([], [])	([a], [b])	a= Char, b= Bool	([Char], [Bool])	

Type variables must begin with a lower-case letter, and are usually named a, b, c, etc.

Overloaded Functions

A polymorphic function is called <u>overloaded</u> if its type contains one or more class constraints.

sum :: Num
$$a \Rightarrow [a] \rightarrow a$$

for any numeric type a, sum takes a list of values of type a and returns a value of type a

Constrained type variables can be instantiated to any types that satisfy the constraints:

Class Constraints

Recall that polymorphic types can be instantiated with all types, e.g.,

id :: t -> t length :: [t] -> Int This is when no operation is subjected to values of type t

Type Classes

Constraints arise because values of the generic types are subjected to operations that are not defined for all types:

min :: Ord a => a -> a -> a min x y = if x < y then x else y</pre>

elem :: Eq a => a -> [a] -> Bool
elem x (y:ys) | x == y = True
elem x (y:ys) = elem x ys
elem x [] = False

Ord and Eq are type classes:

Num (Numeric types) Eq (Equality types) Ord (Ordered types)

(+) :: Num $a \Rightarrow a \rightarrow a \rightarrow a$ (==) :: Eq $a \Rightarrow a \rightarrow a \rightarrow Bool$ (<) :: Ord $a \Rightarrow a \rightarrow a \rightarrow Bool$

Conditional Expressions

As in most programming languages, functions can be defined using <u>conditional expressions</u>: <u>if</u> cond <u>then</u> e1 <u>else</u> e2

• el and e2 must be of the same type

else branch is always present

Guarded Equations

As an alternative to conditionals, functions can also be defined using <u>guarded equations</u>.

Prelude: otherwise = True

Guarded equations can be used to make definitions involving multiple conditions easier to read:

compare with ...

List Patterns

Internally, every non-empty list is constructed by repeated use of an operator (:) called "<u>cons</u>" that adds an element to the start of a list.

Functions on lists can be defined using <u>x:xs</u> patterns.

Lambda Expressions

Functions can be constructed *without naming* the functions by using <u>lambda expressions</u>.

$$\lambda x \rightarrow x + x$$
 This nameless function takes a number
x and returns the result x+x.

- The symbol λ is the Greek letter <u>lambda</u>, and is typed at the keyboard as a backslash \.
- In mathematics, nameless functions are usually denoted using the \mapsto symbol, as in $x \mapsto x+x$.
- In Haskell, the use of the λ symbol for nameless functions comes from the <u>lambda calculus</u>, the theory of functions on which Haskell is based.

List Comprehensions

- A convenient syntax for defining lists
- Set comprehension In mathematics, the <u>comprehension</u> notation can be used to construct new sets from old sets. E.g.,

 $\{(x^2,y^2)|x \in \{1,2,...,10\}, y \in \{1,2,...,10\}, x^2+y^2 \le 101\}$

Same in Haskell: new lists from old lists

 $[(x^2, y^2) | x \le [1..10], y \le [1..10], x^2 + y^2 \le 101]$

generates:

[(1,1),(1,4),(1,9),(1,16),(1,25),(1,36),(1,49),(1,64),(1,81),(1,100),(4,1),(4,4),(4,9),(4,16), (4,25),(4,36),(4,49),(4,64),(4,81),(9,1),(9,9),(9,16),(9,25),(9,36),(9,49),(9,64),(9,81), (16,1),(16,4),(16,9),(16,16),(16,25),(16,36),(16,49),(16,64),(16,81),(25,1),(25,4),(25,9), (25,16),(25,25),(25,36),(25,49),(25,64),(36,1),(36,4),(36,9),(36,16),(36,25),(36,36), (36,49),(36,64),(49,1),(49,4),(49,9),(49,16),(49,25),(49,36),(49,49),(64,1),(64,4),(64,9), (64,16),(64,25),(64,36),(81,1),(81,4),(81,9),(81,16),(100,1)]

Recursive Functions

Functions can also be defined in terms of themselves. Such functions are called <u>recursive</u>.

Recursion on Lists

<u>Lists</u> have naturally a recursive structure. Consequently, recursion is used to define functions on <u>lists</u>.

product ::
$$[Int] \rightarrow Int$$

product [] = 1
product (n:ns) = n * product ns
product [2,3,4] = 2 * product [3,4]
= 2 * (3 * product [4])
= 2 * (3 * (4 * product []))
= 2 * (3 * (4 * 1))
= 24

Using the same pattern of recursion as in product we can define the <u>length</u> function on lists.

length		::	[a]	\rightarrow Int	
length	[]	=	0		
length	(_:xs)	=	1 +	length	XS

length maps the empty list to 0, and any non-empty list to the successor of the length of its tail.

length [1,2,3]

- = 1 + length [2,3]
- = 1 + (1 + length [3])
- = 1 + (1 + (1 + length []))
- = 1 + (1 + (1 + 0))

= 3

Higher-order Functions

A function is called <u>higher-order</u> if it takes a function as an argument or returns a function as a result.

twice :: $(a \rightarrow a) \rightarrow a \rightarrow a$ twice f x = f (f x) twice is higher-order because it takes a function as its first argument.

- Higher-order functions are very common in Haskell (and in functional programming).
- Writing higher-order functions is crucial practice for effective programming in Haskell, and for understanding others' code.

The map Function

The higher-order library function called \underline{map} applies a function to every element of a list.

map ::
$$(a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

For example: > map (+1) [1,3,5,7] [2,4,6,8]

The map function can be defined in a particularly simple manner using a list comprehension:

map
$$f xs = [f x | x \leftarrow xs]$$

Alternatively, it can also be defined using recursion:

The filter Function

The higher-order library function <u>filter</u> selects every element from a list that satisfies a predicate.

filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]

For example: > filter even [1..10] [2,4,6,8,10]

Filter can be defined using a list comprehension:

filter p xs = [x | x ← xs, p x]

Alternatively, it can be defined using recursion:

The foldr Function

A number of functions on lists can be defined using the following simple pattern of recursion:

filter, map and foldr

Typical use is to select certain elements, and then perform a mapping, for example,

```
sumSquaresOfPos ls
= foldr (+) 0 (map (^2) (filter (>= 0) ls))
> sumSquaresOfPos [-4,1,3,-8,10]
```

In pieces:

110

```
keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos ls = sum (mapSquare (keepPos ls))
```

Alternative definition:

sumSquaresOfPos = sum . mapSquare . keepPos

Defining New Types

Three constructs for defining types:

- data Define a new algebraic data type from scratch, describing its constructors
- 2. type Define a synonym for an existing type (like typedef in C)
- newtype A restricted form of data that is more efficient when it fits (if the type has *exactly one constructor* with *exactly one field* inside it). Uesd for defining "wrapper" types

Data Declarations

A completely new type can be defined by specifying its values using a <u>data declaration</u>.

data Bool = False | True

Bool is a new type, with two new values False and True.

- The two values False and True are called the <u>constructors</u> for the data type Bool.
- Type and constructor names must begin with an upper-case letter.
- Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.

More examples from standard Prelude:

data () = () -- unit datatype data Char = ... | 'a' | 'b' | ...

Constructors with Arguments The constructors in a data declaration can also

have parameters. For example, given

data Shape = Circle Float | Rect Float Float

we can define:square:: Float \rightarrow Shape
square nsquare n= Rect n narea:: Shape \rightarrow Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

- Shape has values of the form Circle r where r is a float, and Rect x y where x and y are floats.
- Circle and Rect can be viewed as <u>functions</u> that construct values of type Shape:

Circle :: Float \rightarrow Shape Rect :: Float \rightarrow Float \rightarrow Shape

Parameterized Data Declarations

Not surprisingly, data declarations themselves can also have parameters. For example, given

we can define:

```
x = Pair 1 2
y = Pair "Howdy" 42
```

first :: Pair a b -> a first (Pair x _) = x

```
apply :: (a \rightarrow a') \rightarrow (b \rightarrow b') \rightarrow Pair a b \rightarrow Pair a' b'
apply f g (Pair x y) = Pair (f x) (g y)
```

Another example:

Maybe type holds a value (of any type) or holds nothing

data Maybe a = Nothing | Just a

a is a type parameter, can be bound to any type

Just True :: Maybe Bool Just "x" :: Maybe [Char] Nothing :: Maybe a

we can define:

```
safediv :: Int \rightarrow Int \rightarrow Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)
```

```
safehead :: [a] \rightarrow Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)
```

Recursive Data Types

New types can be declared in terms of themselves. That is, data types can be <u>recursive</u>.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat and Succ :: Nat -> Nat.

A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values: Zero

Succ Zero

Succ (Succ Zero)

Example function:

add :: Nat -> Nat -> Nat add Zero n = n add (Succ m) n = Succ (add m n)

```
Showable, Readable, and Comparable Weekdays
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
     deriving (Show, Read, Eq, Ord, Bounded, Enum)
*Main> show Wed
"Wed"
*Main> read "Fri" :: Weekday
Fri
*Main> Sat Prelude.== Sun
False
*Main> Sat Prelude == Sat
True
*Main> Mon < Tue
True
*Main> Tue < Tue
False
*Main> Wed `compare` Thu
LT
```

Bounded and Enumerable Weekdays

```
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Show, Read, Eq, Ord, Bounded, Enum)
```

```
*Main> minBound :: Weekday
Mon
*Main> maxBound :: Weekday
Sun
*Main> succ Mon
Tue
*Main> pred Fri
Thu
*Main> [Fri .. Sun]
[Fri,Sat,Sun]
*Main> [minBound .. maxBound] :: [Weekday]
[Mon, Tue, Wed, Thu, Fri, Sat, Sun]
```

Modules

- A Haskell program consists of a collection of modules. The purposes of using a module are:
 - 1. To control namespaces.
 - 2. To create abstract data types.
- A module contains various declarations: First, import declarations, and then, data and type declarations, class and instance declarations, type signatures, function definitions, and so on (in any order)
- Module names must begin with an uppercase letter
- One module per file

export list

Example of a Module

```
module Tree ( Tree(Leaf,Branch), fringe ) where
data Tree a = Leaf a | Branch (Tree a) (Tree a)
fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right
```

A module declaration begins with the keyword module

- The module name may be the same as that of the type
- Same indentation rules as with other declarations apply
- The type name and its constructors need be grouped together, as in Tree(Leaf, Branch); short-hand possible, Tree(...) import list:
- Now, the Tree module may be imported:

omitting it will <u>cause</u> all *entities* exported from Tree

module Main (main) where import Tree (Tree(Leaf,Branch), fringe) to be imported main = print (fringe (Branch (Leaf 1) (Leaf 2)))

Functors

Class of types that support mapping of function. For example, lists and trees.

fmap :: (a -> b) -> f a -> f b

(f a) is a data structure that contains elements of type a

fmap takes a function of type (a ->b) and a structure of type (f a), applies the function to each element of the structure, and returns a structure of type (f b).

Functor instance example 1: the list structure []

instance Functor [] where

class Functor f where

-- fmap :: (a -> b) -> [a] -> [b]

fmap = map

Functor instance example 2: the Maybe type

data Maybe a = Nothing | Just a

instance Functor Maybe where

-- fmap :: (a -> b) -> Maybe a -> Maybe b

fmap _ Nothing = Nothing

fmap g (Just x) = Just (g x)

Now, you can do

> fmap (+1) Nothing
Nothing
> fmap not (Just True)
Just False

Applicative

class (Functor f) => Applicative f where pure :: a -> f a (<*>) :: f (a -> b) -> f a -> f b

The function pure takes a value of any type as its argument and returns a structure of type f a, that is, an applicative functor that contains the value.

The operator $<^*>$ is a generalization of function application for which the argument function, the argument value, and the result value are all contained in f structure.

<*> associates to the left: (g < x) < y) < z

fmap g x = pure g <*> x = g <\$> x

```
Applicative functor instance example 1: Maybe
data Maybe a = Nothing | Just a
instance Applicative Maybe where
  -- pure :: a -> Maybe a
  pure = Just
  -- (<*>) :: Maybe (a->b) -> Maybe a -> Maybe b
  Nothing <^*> _ = Nothing
  (Just g) <*> mx = fmap g mx
```

```
> pure (+1) <*> Nothing
Nothing
> pure (+) <*> Just 2 <*> Just 3
Just 5
> mult3 x y z = x*y*z
> pure mult3 <*> Just 1 <*> Just 2 <*> Just 4
Just 8
```

Applicative functor instance example 2: list type []

instance Applicative [] where -- pure :: a -> [a] pure x = [x] -- (<*>) :: [a -> b] -> [a] -> [b] gs <*> xs = [g x | g <- gs, x <- xs]</pre>

pure transforms a value into a singleton list.

<*> takes a list of functions and a list of arguments, and applies each function to each argument in turn, returning all the results in a list.

Monads

```
class (Applicative m) => Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
  return = pure
```

- Roughly, a monad is a strategy for combining computations into more complex computations.
- Another pattern of *effectful programming* (applying pure functions to (side-)effectful arguments)

Note: return may be removed from the Monad class in the future, and become a library function instead.

Monad instance example 1: Maybe

data Maybe a = Nothing | Just a

instance Monad Maybe where -- (>>=):: Maybe a -> (a -> Maybe b) -> Maybe b Nothing >>= _ = Nothing (Just x) >>= f = f x

div2 x = if even x then Just (x `div` 2) else Nothing

Monad instance example 2: list type []

What is a Parser?

A <u>parser</u> is a program that takes a string of characters (or a set of tokens) as input and determines its <u>syntactic structure</u>.

The Parser Type

In a functional language such as Haskell, parsers can naturally be viewed as <u>functions</u>.

A parser is a function that takes a string and returns some form of tree.

However, a parser might not require all of its input string, so we also return any <u>unused input</u>:

type Parser = String
$$\rightarrow$$
 (Tree, String)

A string might be parsable in many ways, including *none*, so we <u>generalize</u> to a <u>list of results</u>:

type Parser = String \rightarrow [(Tree,String)]

Furthermore, a parser might not always produce a tree, so we generalize to a value of <u>any type</u>:

type Parser $a = String \rightarrow [(a, String)]$

Finally, a parser might take token streams instead of character streams:

type TokenParser b a =
$$[b] \rightarrow [(a, [b])]$$

Note:

For simplicity, we will only consider parsers that either fail and return the empty list as results, or succeed and return a <u>singleton list</u>.

Basic Parsers (Building Blocks)

The parser <u>item</u> fails if the input is empty, and consumes the first character otherwise:

Example:

We can make it more explicit by letting the function <u>parse</u> apply a parser to a string:

parse :: Parser a -> String -> [(a,String)]
parse p inp = p inp -- essentially id function

Example:

> parse item "Howdy all"
[('H',"owdy all")]

Sequencing Parser

Often, we need to combine parsers in sequence, e.g., the following grammar: <if-stmt> :: if (<expr>) then <stmt> First parse if, then (, then <expr>, then), ...

To combine parsers in sequence, we make the Parser type into a monad:

Sequencing Parser (do)

Now a sequence of parsers can be combined as a single composite parser using the keyword <u>do</u>.

The parser <u>return v</u> always succeeds, returning the value v without consuming any input:

return :: a -> Parser a
return v = \inp -> [(v,inp)]

Making Choices

What if we have to backtrack? First try to parse p, then q? The parser p <|> q behaves as the parser p if it succeeds, and as the parser q otherwise.

The "Monadic" Way

Parser sequencing operator

p >>= f

- fails if p fails
- otherwise applies f to the result of p
- this results in a new parser, which is then applied

Example

> parse ((empty <|> item) >>= (_ -> item)) "abc" [('b',"c")]

Examples

```
11 11
> parse item
> parse item "abc"
[('a',"bc")]
> parse empty "abc"
Γ٦
> parse (return 1) "abc"
[(1, "abc")]
> parse (item <|> return 'd') "abc"
[('a',"bc")]
> parse (empty <|> return 'd') "abc"
[('d',"abc")]
```

Key benefit: The result of first parse is available for the subsequent parsers