
Lee CSCE 314 TAMU

1

CSCE 314

Programming Languages

Final Review Part I

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

Programming Language Characteristics

¢  Different approaches to describe computations,

to instruct computing devices

§  E.g., Imperative, declarative, functional

¢  Different approaches to communicate ideas
between humans

§  E.g., Procedural, object-oriented, domain-specific

languages

¢  Programming languages need to have a

specification: meaning (semantics) of all
sentences (programs) of the language should
be unambiguously specified

Lee CSCE 314 TAMU

3

Evolution of Programming Languages

¢  1940’s: connecting wires to represent 0’s and 1’s

¢  1950’s: assemblers, FORTRAN, COBOL, LISP

¢  1960’s: ALGOL, BCPL (→ B → C), SIMULA

¢  1970’s: Prolog, FP, ML, Miranda

¢  1980’s: Eiffel, C++

¢  1990’s: Haskell, Java, Python

¢  2000’s: D, C#, Spec#, F#, X10, Fortress, Scala, Ruby, . . .

¢  2010’s: Agda, Coq

¢  . . .

Evolution has been and is toward higher level of abstraction

Lee CSCE 314 TAMU

4

Implementing a Programming Language –
How to Undo the Abstraction

Source	
program	

Lexer	 Parser	 Type	
checker	

Interpreter	

Op8mizer	

Code	
generator	

Machine	code	

Bytecode	

Machine	

Virtual	machine	
I/O	

JIT	

I/O	

I/O	

Lee CSCE 314 TAMU

5

Phases of Compilation/Execution
Characterized by Errors Detected

¢  Lexical analysis:

5abc

a === b

¢  Syntactic analysis:

if + then;

int f(int a];

¢  Type checking:

void f(); int a; a + f();

¢  Execution time:

int a[100]; a[101] = 5;

Lee CSCE 314 TAMU

6

•  Language = syntax + semantics

•  The syntax of a language is concerned with the
form of a program: how expressions, commands,
declarations etc. are put together to result in
the final program.

•  The semantics of a language is concerned with
the meaning of a program: how the programs
behave when executed on computers

•  Syntax defines the set of valid programs,
semantics how valid programs behave

What Is a Programming Language?

Lee CSCE 314 TAMU

7

•  Statement is a sequence of tokens

•  Token is a sequence of characters

•  Lexical analyzer

produces a sequence of tokens from a
character sequence

•  Parser

produces a statement representation
from the token sequence

•  Statements are represented as
parse trees (abstract syntax tree)

Language Syntax

Syntax

Language Syntax

Statement is a sequence of tokens
Token is a sequence of characters
Lexical analyzer:

produces a token sequence from a
character sequence

Parser
produces a statement representation
from a token sequence

Statements are represented as parse
trees (abstract syntax trees)

Lexical Analyzer

Parser

characters

tokens

sentences

8 / 33

Lee CSCE 314 TAMU

8

•  BNF is a common notation to define programming
language grammars

•  A BNF grammar G = (N, T, P, S)

•  A set of non-terminal symbols N

•  A set of terminal symbols T (tokens)

•  A set of grammar rules P

•  A start symbol S

•  Grammar rule form (describe context-free
grammars):

 <non-terminal>

 ::= <sequence of terminals and non-terminals>

Backus-Naur Form (BNF)

Lee CSCE 314 TAMU

9

•  A grammar is ambiguous if there exists a string which
gives rise to more than one parse tree

•  E.g., infix binary operators ‘-’

 <expr> ::= <num> | <expr> ‘-’ <expr>

•  Now parse 1 – 2 - 3

Ambiguity

As (1-2)-3
 As 1-(2-3)

Parsing

Parse 1

As (1 - 2) - 3:

<expr>

'-'<expr> <expr>

'-'

<num>

<expr>

2

<expr> <num>

3

1

<num>

20 / 33

Parsing

Parse 2

As 1 - (2 - 3):

<expr>

'-' <expr><expr>

'-'

<num>

<expr>

3

<expr><num>

1

2

<num>

21 / 33

Lee CSCE 314 TAMU

10

1.  Between two calls to the same binary operator

•  Associativity rules

•  left-associative: a op b op c parsed as (a op b) op c

•  right-associative: a op b op c parsed as a op (b op c)

•  By disambiguating the grammar

 <expr> ::= <num> | <expr> ‘-’ <expr>

 vs.

 <expr> ::= <num> | <expr> ‘-’ <num>

2.  Between two calls to different binary operator

•  Precedence rules

•  if op1 has higher-precedence than op2 then

 a op1 b op2 c => (a op1 b) op2 c

•  if op2 has higher-precedence than op1 then

 a op1 b op2 c => a op1 (b op2 c)

Resolving Ambiguities

Lee CSCE 314 TAMU

11

•  Rewriting the ambiguous grammar:

 <expr> ::= <num> | <expr> + <expr>

 | <expr> * <expr>

 | <expr> == <expr>

•  Let us give * the highest precedence, + the next highest,

and == the lowest

 <expr> ::= <sum> { == <sum> }

 <sum> ::= <term> | <sum> + <term>

 <term> ::= <num> | <term> * <num>

Resolving Ambiguities (Cont.)

Lee CSCE 314 TAMU

12

Four classes of grammars that define particular classes of
languages

1.  Regular grammars

2. Context free grammars

3. Context sensitive

 grammars

4.  Phrase-structure

 (unrestricted) grammars

Ordered from less expressive

to more expressive (but faster to slower to parse)

Regular grammars and CF grammars are of interest in theory of

programming languages

Chomsky Hierarchy

Type 0 – Phrase-structure Grammars

Type 1 –
Context-Sensitive

Type 2 –
Context-Free

Type 3 –
Regular

Lee CSCE 314 TAMU

13

1. Phrase-structure (unrestricted) grammars

 A -> B where A is string in V* containing at least one

 nonterminal symbol, and B is a string in V*.

2. Context sensitive grammars

 lAr -> lwr where A is a nonterminal symbol, and w a

 nonempty string in V*. Can contain S ->λ if S does not

 occur on RHS of any production.

3. Context free grammars

 A -> B where A is a nonterminal symbol.

4. Regular grammars

 A -> aB or A -> a where A, B are nonterminal symbols

 and a is a terminal symbol. Can contain S -> λ.

Summary of the Productions

Lee CSCE 314 TAMU

14

Haskell

Lazy

Pure

Functional Language

Lee CSCE 314 TAMU

15

The Standard Prelude

Haskell comes with a large number of standard
library functions. In addition to the familiar
numeric functions such as + and *, the library
also provides many useful functions on lists.

-- Select the first element of a list:

> head [1,2,3,4,5]
1

-- Remove the first element from a list:

> tail [1,2,3,4,5]
[2,3,4,5]

Lee CSCE 314 TAMU

16

-- Select the nth element of a list:

> [1,2,3,4,5] !! 2
3

-- Select the first n elements of a list:

> take 3 [1,2,3,4,5]
[1,2,3]

-- Remove the first n elements from a list:

> drop 3 [1,2,3,4,5]
[4,5]

-- Append two lists:

> [1,2,3] ++ [4,5]
[1,2,3,4,5]

Lee CSCE 314 TAMU

17

-- Calculate the length of a list:

> length [1,2,3,4,5]
5

-- Calculate the sum of a list of numbers:

> sum [1,2,3,4,5]
15

-- Calculate the product of a list of numbers:

> product [1,2,3,4,5]
120

-- Reverse a list:

> reverse [1,2,3,4,5]
[5,4,3,2,1]

Lee CSCE 314 TAMU

18

Basic Types

Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

Integer - arbitrary-precision integers

Float - single-precision floating-point numbers

String - lists of characters type String = [Char]

Int - fixed-precision integers

Double - double-precision floating-point numbers

Lee CSCE 314 TAMU

19

List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c‘] :: [Char]

“abc” :: [Char]

[[True, True], []] :: [[Bool]]

A list is sequence of values of the same type:

Note:

•  [t] has the type list with elements of type t

•  The type of a list says nothing about its length

•  The type of the elements is unrestricted

•  Composite types are built from other types

using type constructors

•  Lists can be infinite: l = [1..]

Lee CSCE 314 TAMU

20

Tuple Types

A tuple is a sequence of values of different types:

Note:

•  (t1,t2,…,tn) is the type of n-tuples whose i-th

component has type ti for any i in 1…n

•  The type of a tuple encodes its size

•  The type of the components is unrestricted

•  Tuples with arity one are not supported:

 (t) is parsed as t, parentheses are ignored

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

(“Howdy”,(True,2)) :: ([Char],(Bool,Int))

Lee CSCE 314 TAMU

21

Function Types

not :: Bool -> Bool

isDigit :: Char -> Bool

toUpper :: Char -> Char

(&&) :: Bool -> Bool -> Bool
Note:

•  The argument and result types

are unrestricted. Functions
with multiple arguments or
results are possible using lists
or tuples:

•  Only single parameter functions!

A function is a mapping from values of one type
(T1) to values of another type (T2), with the type
T1 -> T2

add :: (Int,Int) → Int
add (x,y) = x+y

zeroto :: Int → [Int]
zeroto n = [0..n]

Lee CSCE 314 TAMU

22

Curried Functions

Functions with multiple arguments are also
possible by returning functions as results:

add :: (Int,Int) → Int
add (x,y) = x+y

add’ :: Int → (Int → Int)
add’ x y = x+y

add’ takes an int x and
returns a function add’ x. In
turn, this function takes an int
y and returns the result x+y.

Note:

•  add and add’ produce the same final result, but add

takes its two arguments at the same time, whereas
add’ takes them one at a time

•  Functions that take their arguments one at a time are
called curried functions, celebrating the work of Haskell
Curry on such functions.

Lee CSCE 314 TAMU

23

Why is Currying Useful?

Curried functions are more flexible than functions on
tuples, because useful functions can often be made by
partially applying a curried function.

For example:
 add’ 1 :: Int -> Int

take 5 :: [a] -> [a]

drop 5 :: [a] -> [a]

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

> map (add’ 1) [1,2,3]
[2,3,4]

Lee CSCE 314 TAMU

24

Polymorphic Functions

A function is called polymorphic (“of many forms”)
if its type contains one or more type variables.
Thus, polymorphic functions work with many types
of arguments.

id :: a → a

for any type a, length takes
a list of values of type a and

returns an integer

length :: [a] → Int

for any type a, id maps a
value of type a to itself

a is a type variable

head :: [a] → a

take :: Int→[a]→[a]

Lee CSCE 314 TAMU

25

Type variables can be instantiated to different
types in different circumstances:

Type variables must begin with a lower-case letter, and
are usually named a, b, c, etc.

> length [False,True]
2

> length [1,2,3,4]
4

a = Bool

a = Int

Polymorphic types and type variables

A polymorphic type is a type that contains one or more type variables
Think of it as a schema or template from which to instantiate other
types by binding values to the type variables

expression polymorphic type type variable bindings resulting type
id a -> a a=Int Int -> Int
id a -> a a=Bool Bool -> Bool
length [a] -> Int a=Char [Char] -> Int
fst (a, b) -> a a=Char, b=Bool Char
snd (a, b) -> b a=Char, b=Bool Bool
([], []) ([a], [b]) a=Char, b=Bool ([Char], [Bool])

Type variables must start with lowercase letters
Typical conventions: a, b, c, . . . , t, u, . . . , a1, a2, . . . , a’, a’’,
. . .

Jaakko Järvi (TAMU) Programming Languages CSCE-314 September 5, 2012 42 / 49

Polymorphic Types

Lee CSCE 314 TAMU

26

Overloaded Functions

A polymorphic function is called overloaded if its
type contains one or more class constraints.

sum :: Num a ⇒ [a] → a
for any numeric type a,
sum takes a list of values
of type a and returns a

value of type a

Constrained type variables can be instantiated to
any types that satisfy the constraints:

> sum [1,2,3]
6
> sum [1.1,2.2,3.3]
6.6
> sum [’a’,’b’,’c’]
ERROR

Char is not a numeric type

a = Int

a = Float

Lee CSCE 314 TAMU

27

Recall that polymorphic types can be instantiated
with all types, e.g.,

 id :: t -> t length :: [t] -> Int
This is when no operation is subjected to values of type t

What are the types of these functions?

 min :: Ord a => a -> a -> a
 min x y = if x < y then x else y

 elem :: Eq a => a -> [a] -> Bool

 elem x (y:ys) | x == y = True

 elem x (y:ys) = elem x ys
 elem x [] = False

Class Constraints

Ord a and Eq a
are class constraints

Type variables
can only be
bound to types
that satisfy
the constraints

Lee CSCE 314 TAMU

28

Constraints arise because values of the generic
types are subjected to operations that are not
defined for all types:

 min :: Ord a => a -> a -> a

 min x y = if x < y then x else y

 elem :: Eq a => a -> [a] -> Bool

 elem x (y:ys) | x == y = True

 elem x (y:ys) = elem x ys

 elem x [] = False

Ord and Eq are type classes:

Num (Numeric types)

Eq (Equality types)

Ord (Ordered types)

Type Classes

(+) :: Num a ⇒ a → a → a

(==) :: Eq a ⇒ a → a → Bool

(<) :: Ord a ⇒ a → a → Bool

Lee CSCE 314 TAMU

29

Conditional Expressions

As in most programming languages, functions can
be defined using conditional expressions:

if cond then e1 else e2

•  e1 and e2 must be of the same type

•  else branch is always present

abs :: Int -> Int
abs n = if n >= 0 then n else –n

max :: Int -> Int -> Int
max x y = if x <= y then y else x

take :: Int -> [a] -> [a]
take n xs = if n <= 0 then []
 else if xs == [] then []
 else (head xs) : take (n-1) (tail xs)

Lee CSCE 314 TAMU

30

Guarded Equations

As an alternative to conditionals, functions can
also be defined using guarded equations.

abs n | n >= 0 = n
 | otherwise = -n

Prelude:

otherwise = True

Guarded equations can be used to make definitions
involving multiple conditions easier to read:

signum n | n < 0 = -1
 | n == 0 = 0
 | otherwise = 1

signum n = if n < 0 then -1 else
 if n == 0 then 0 else 1

compare with …

Lee CSCE 314 TAMU

31

List Patterns

Internally, every non-empty list is constructed
by repeated use of an operator (:) called “cons”
that adds an element to the start of a list.

[1,2,3,4] Means 1:(2:(3:(4:[]))).

Functions on lists can be defined using x:xs
patterns.

head :: [a] → a
head (x:_) = x

tail :: [a] → [a]
tail (_:xs) = xs

head and tail map any non-
empty list to its first and

remaining elements.

is this definition
complete?

Lee CSCE 314 TAMU

32

Lambda Expressions

Functions can be constructed without naming the
functions by using lambda expressions.

λx → x+x This nameless function takes a number
x and returns the result x+x.

❚  The symbol λ is the Greek letter lambda, and is typed
at the keyboard as a backslash \.

❚  In mathematics, nameless functions are usually
denoted using the ! symbol, as in x ! x+x.

❚  In Haskell, the use of the λ symbol for nameless
functions comes from the lambda calculus, the theory
of functions on which Haskell is based.

Lee CSCE 314 TAMU

33

❚  A convenient syntax for defining lists

❚  Set comprehension - In mathematics, the

comprehension notation can be used to construct
new sets from old sets. E.g.,

 {(x2,y2)|x ∈{1,2,...,10}, y ∈{1,2,...,10}, x2+y2 ≤101}

❚  Same in Haskell: new lists from old lists

[(x^2, y^2) | x <- [1..10], y <- [1..10], x^2 + y^2 <= 101]
generates:

[(1,1),(1,4),(1,9),(1,16),(1,25),(1,36),(1,49),(1,64),(1,81),(1,100),(4,1),(4,4),(4,9),(4,16),
(4,25),(4,36),(4,49),(4,64),(4,81),(9,1),(9,4),(9,9),(9,16),(9,25),(9,36),(9,49),(9,64),(9,81),
(16,1),(16,4),(16,9),(16,16),(16,25),(16,36),(16,49),(16,64),(16,81),(25,1),(25,4),(25,9),
(25,16),(25,25),(25,36),(25,49),(25,64),(36,1),(36,4),(36,9),(36,16),(36,25),(36,36),
(36,49),(36,64),(49,1),(49,4),(49,9),(49,16),(49,25),(49,36),(49,49),(64,1),(64,4),(64,9),
(64,16),(64,25),(64,36),(81,1),(81,4),(81,9),(81,16),(100,1)]

List Comprehensions

Lee CSCE 314 TAMU

34

Recursive Functions

Functions can also be defined in terms of
themselves. Such functions are called recursive.

factorial 0 = 1
factorial n = n * factorial (n-1)

factorial maps 0 to 1,
and any other

positive integer to
the product of itself
and the factorial of

its predecessor.

factorial 3 3 * factorial 2

=
 3 * (2 * factorial 1)

=

3 * (2 * (1 * factorial 0)) =

3 * (2 * (1 * 1)) =

3 * (2 * 1) =

=
 6

3 * 2 =

Lee CSCE 314 TAMU

35

Recursion on Lists

Lists have naturally a recursive structure. Consequently,
recursion is used to define functions on lists.

product :: [Int] → Int
product [] = 1
product (n:ns) = n * product ns

product maps the
empty list to 1, and any
non-empty list to its

head multiplied by the
product of its tail.

product [2,3,4] 2 * product [3,4] =

2 * (3 * product [4]) =

2 * (3 * (4 * product [])) =

2 * (3 * (4 * 1)) =

24 =

Lee CSCE 314 TAMU

36

Using the same pattern of recursion as in product
we can define the length function on lists.

length :: [a] → Int
length [] = 0

length (_:xs) = 1 + length xs

length maps the empty list
to 0, and any non-empty list

to the successor of the
length of its tail.

length [1,2,3]

1 + length [2,3] =

1 + (1 + length [3]) =

1 + (1 + (1 + length [])) =

1 + (1 + (1 + 0)) =

3 =

Lee CSCE 314 TAMU

37

Higher-order Functions

A function is called higher-order if it takes a
function as an argument or returns a function as
a result.

twice :: (a → a) → a → a
twice f x = f (f x)

twice is higher-order
because it takes a
function as its first

argument.

Note:

•  Higher-order functions are very common in Haskell

(and in functional programming).

•  Writing higher-order functions is crucial practice for

effective programming in Haskell, and for
understanding others’ code.

Lee CSCE 314 TAMU

38

The map Function

The higher-order library function called map applies a
function to every element of a list.

map :: (a → b) → [a] → [b]

For example:
 > map (+1) [1,3,5,7]

[2,4,6,8]

The map function can be defined in a particularly simple
manner using a list comprehension:

map f xs = [f x | x ← xs]

map f [] = []

map f (x:xs) = f x : map f xs

Alternatively, it can also be defined using recursion:

Lee CSCE 314 TAMU

39

The filter Function

The higher-order library function filter selects every
element from a list that satisfies a predicate.

filter :: (a → Bool) → [a] → [a]

For example:
 > filter even [1..10]

[2,4,6,8,10]

Alternatively, it can be defined using recursion:

Filter can be defined using a list comprehension:

filter p xs = [x | x ← xs, p x]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

Lee CSCE 314 TAMU

40

The foldr Function

A number of functions on lists can be defined
using the following simple pattern of recursion:

f [] = v

f (x:xs) = x ⊕ f xs

f maps the empty list to some value v,
and any non-empty list to some function
⊕ applied to its head and f of its tail.

Lee CSCE 314 TAMU

41

filter, map and foldr

Typical use is to select certain elements, and then
perform a mapping, for example,

sumSquaresOfPos ls
 = foldr (+) 0 (map (^2) (filter (>= 0) ls))

> sumSquaresOfPos [-4,1,3,-8,10]
110

In pieces:

keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos ls = sum (mapSquare (keepPos ls))

sumSquaresOfPos = sum . mapSquare . keepPos

Alternative definition:

Lee CSCE 314 TAMU

42

Three constructs for defining types:

1. data - Define a new algebraic data type from

scratch, describing its constructors

2. type - Define a synonym for an existing type
(like typedef in C)

3. newtype - A restricted form of data that is
more efficient when it fits (if the type has
exactly one constructor with exactly one field
inside it). Uesd for defining “wrapper” types

Defining New Types

Lee CSCE 314 TAMU

43

Data Declarations

A completely new type can be defined by
specifying its values using a data declaration.

data Bool = False | True Bool is a new type, with two

new values False and True.

❚  The two values False and True are called the constructors
for the data type Bool.

❚  Type and constructor names must begin with an upper-case
letter.

❚  Data declarations are similar to context free grammars. The
former specifies the values of a type, the latter the
sentences of a language.

More examples from standard Prelude:

data () = () -- unit datatype
data Char = … | ‘a’ | ‘b’ | …

Lee CSCE 314 TAMU

44

The constructors in a data declaration can also
have parameters. For example, given

data Shape = Circle Float | Rect Float Float

square :: Float → Shape
square n = Rect n n

area :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:

Constructors with Arguments

❚  Shape has values of the form Circle r where r is a
float, and Rect x y where x and y are floats.

❚  Circle and Rect can be viewed as functions that
construct values of type Shape:

Circle :: Float → Shape
Rect :: Float → Float → Shape

Lee CSCE 314 TAMU

45

Not surprisingly, data declarations themselves can
also have parameters. For example, given

x = Pair 1 2
y = Pair "Howdy" 42

first :: Pair a b -> a
first (Pair x _) = x

apply :: (a -> a’)->(b -> b') -> Pair a b -> Pair a' b'
apply f g (Pair x y) = Pair (f x) (g y)

we can define:

Parameterized Data Declarations

data Pair a b = Pair a b

Lee CSCE 314 TAMU

46

Another example:

Maybe type holds a value (of any type) or holds nothing

data Maybe a = Nothing | Just a

safediv :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:

a is a type parameter, can be bound to any type

Just True :: Maybe Bool
Just “x” :: Maybe [Char]
Nothing :: Maybe a

Lee CSCE 314 TAMU

47

Recursive Data Types

New types can be declared in terms of themselves. That
is, data types can be recursive.

data Nat = Zero | Succ Nat
Nat is a new type, with
constructors Zero :: Nat
and Succ :: Nat -> Nat.

A value of type Nat is either Zero, or of the form Succ n
where n :: Nat. That is, Nat contains the following infinite
sequence of values:

Example function:

Zero

Succ Zero

Succ (Succ Zero)

. . .

add :: Nat -> Nat -> Nat
add Zero n = n
add (Succ m) n = Succ (add m n)

Lee CSCE 314 TAMU

48

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

 deriving (Show, Read, Eq, Ord, Bounded, Enum)
*Main> show Wed

"Wed”

*Main> read "Fri" :: Weekday

Fri

*Main> Sat Prelude.== Sun
False

*Main> Sat Prelude.== Sat

True

*Main> Mon < Tue

True
*Main> Tue < Tue

False

*Main> Wed `compare` Thu

LT

Showable, Readable, and Comparable Weekdays

Lee CSCE 314 TAMU

49

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

 deriving (Show, Read, Eq, Ord, Bounded, Enum)

*Main> minBound :: Weekday

Mon

*Main> maxBound :: Weekday

Sun
*Main> succ Mon

Tue

*Main> pred Fri

Thu

*Main> [Fri .. Sun]
[Fri,Sat,Sun]

*Main> [minBound .. maxBound] :: [Weekday]

[Mon,Tue,Wed,Thu,Fri,Sat,Sun]

Bounded and Enumerable Weekdays

Lee CSCE 314 TAMU

50

•  A Haskell program consists of a collection of modules.
The purposes of using a module are:

1.  To control namespaces.

2.  To create abstract data types.

•  A module contains various declarations: First, import
declarations, and then, data and type declarations, class
and instance declarations, type signatures, function
definitions, and so on (in any order)

•  Module names must begin with an uppercase letter

•  One module per file

Modules

Lee CSCE 314 TAMU

51

Example of a Module

module Tree (Tree(Leaf,Branch), fringe) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right

❚  A module declaration begins with the keyword module
❚  The module name may be the same as that of the type

❚  Same indentation rules as with other declarations apply

❚  The type name and its constructors need be grouped together, as in

Tree(Leaf,Branch); short-hand possible, Tree(..)
❚  Now, the Tree module may be imported:

module Main (main) where
import Tree (Tree(Leaf,Branch), fringe)
main = print (fringe (Branch (Leaf 1) (Leaf 2)))

export list

import list:
omitting it will

cause all entities
exported from Tree

to be imported

Lee CSCE 314 TAMU

52

Class of types that support mapping of
function. For example, lists and trees.

Functors

class Functor f where

 fmap :: (a -> b) -> f a -> f b

fmap takes a function of type (a->b) and a structure of
type (f a), applies the function to each element of the
structure, and returns a structure of type (f b).

Functor instance example 1: the list structure []

instance Functor [] where

 -- fmap :: (a -> b) -> [a] -> [b]

 fmap = map

(f a)	is	a	data	
structure	that	
contains	elements	
of	type	a

Lee CSCE 314 TAMU

53

Functor instance example 2: the Maybe type

Now, you can do

> fmap (+1) Nothing

Nothing

> fmap not (Just True)

Just False

data Maybe a = Nothing | Just a

instance Functor Maybe where

 -- fmap :: (a -> b) -> Maybe a -> Maybe b

 fmap _ Nothing = Nothing

 fmap g (Just x) = Just (g x)

Lee CSCE 314 TAMU

54

Applicative

The function pure takes a value of any type as its
argument and returns a structure of type f a, that is, an
applicative functor that contains the value.

The operator <*> is a generalization of function application
for which the argument function, the argument value, and
the result value are all contained in f structure.

<*> associates to the left: ((g <*> x) <*> y) <*> z

fmap g x = pure g <*> x = g <$> x

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

Lee CSCE 314 TAMU

55

Applicative functor instance example 1: Maybe

> pure (+1) <*> Nothing
Nothing
> pure (+) <*> Just 2 <*> Just 3
Just 5
> mult3 x y z = x*y*z
> pure mult3 <*> Just 1 <*> Just 2 <*> Just 4
Just 8

data Maybe a = Nothing | Just a

instance Applicative Maybe where
 -- pure :: a -> Maybe a

 pure = Just
 -- (<*>) :: Maybe (a->b) -> Maybe a -> Maybe b

 Nothing <*> _ = Nothing

 (Just g) <*> mx = fmap g mx

Lee CSCE 314 TAMU

56

Applicative functor instance example 2: list type []

> pure (+1) <*> [1,2,3]
[2,3,4]
> pure (+) <*> [1,3] <*> [2,5]
[3,6,5,8]
> pure (:) <*> "ab" <*> ["cd","ef"]
["acd","aef","bcd","bef"]

instance Applicative [] where
 -- pure :: a -> [a]

 pure x = [x]
 -- (<*>) :: [a -> b] -> [a] -> [b]

 gs <*> xs = [g x | g <- gs, x <- xs]
pure transforms a value into a singleton list.

<*> takes a list of functions and a list of arguments, and
applies each function to each argument in turn, returning
all the results in a list.

Lee CSCE 314 TAMU

57

Monads

§  Roughly, a monad is a strategy for combining
computations into more complex computations.

§  Another pattern of effectful programming (applying
pure functions to (side-)effectful arguments)

§  (>>=) is called “bind” operator.

§  Note: return may be removed from the Monad class in the future,
and become a library function instead.

class (Applicative m) => Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 return = pure

Lee CSCE 314 TAMU

58

Monad instance example 1: Maybe

data Maybe a = Nothing | Just a

instance Monad Maybe where
 -- (>>=):: Maybe a -> (a -> Maybe b) -> Maybe b

 Nothing >>= _ = Nothing

 (Just x) >>= f = f x

> (Just 10) >>= div2

Just 5
> (Just 10) >>= div2 >>= div2
Nothing
> (Just 10) >>= div2 >>= div2 >>= div2
Nothing

div2 x = if even x then Just (x `div` 2) else Nothing

Lee CSCE 314 TAMU

59

Monad instance example 2: list type []

instance Monad [] where

 -- (>>=):: [a] -> (a -> [b]) -> [b]

 xs >>= f = [y | x <- xs, y <- f x]

> pairs [1,2] [3,4]
[(1,3),(1,4),(2,3),(2,4)]

pairs :: [a] -> [b] -> [(a,b)]

pairs xs ys = do x <- xs

 y <- ys

 return (x,y)

pairs xs ys = xs >>= \x ->

 ys >>= \y ->

 return (x,y)

Lee CSCE 314 TAMU

60

What is a Parser?

A parser is a program that takes a string of
characters (or a set of tokens) as input and
determines its syntactic structure.

2*3+4 means
 4

+

*

3 2

String or
[Token] Parser syntactic

structure

Lee CSCE 314 TAMU

61

The Parser Type

In a functional language such as Haskell, parsers
can naturally be viewed as functions.

type Parser = String → Tree
A parser is a

function that takes
a string and returns
some form of tree.

However, a parser might not require all of its
input string, so we also return any unused input:

type Parser = String → (Tree,String)

A string might be parsable in many ways, including
none, so we generalize to a list of results:

type Parser = String → [(Tree,String)]

Lee CSCE 314 TAMU

62

Furthermore, a parser might not always produce
a tree, so we generalize to a value of any type:

type Parser a = String → [(a,String)]

Note:

For simplicity, we will only consider parsers that
either fail and return the empty list as results,
or succeed and return a singleton list.

Finally, a parser might take token streams instead
of character streams:

type TokenParser b a = [b] → [(a,[b])]

Lee CSCE 314 TAMU

63

Basic Parsers (Building Blocks)

The parser item fails if the input is empty, and
consumes the first character otherwise:

item :: Parser Char

 -- String -> [(Char, String)]

 -- [Char] -> [(Char, [Char])]

item = \inp -> case inp of

 [] -> []

 (x:xs) -> [(x,xs)]

> item ”Howdy all"
[(‘H',”owdy all")]

> item “”
[]

Example:

Lee CSCE 314 TAMU

64

We can make it more explicit by letting the
function parse apply a parser to a string:

parse :: Parser a -> String -> [(a,String)]

parse p inp = p inp –- essentially id function

> parse item ”Howdy all"

[(‘H',”owdy all")]

Example:

Lee CSCE 314 TAMU

65

Sequencing Parser

Often, we need to combine parsers in sequence,
e.g., the following grammar:

 <if-stmt> :: if (<expr>) then <stmt>

First parse if, then (, then <expr>, then), …

To combine parsers in sequence, we make the
Parser type into a monad:

instance Monad Parser where

 -- (>>=) :: Parser a -> (a -> Parser b) -> Parser b

 p >>= f = \inp -> case parse p inp of

 [] -> []

 [(v,out)] -> parse (f v) out

Lee CSCE 314 TAMU

66

Now a sequence of parsers can be combined as a
single composite parser using the keyword do.

Example:

Sequencing Parser (do)

three :: Parser (Char,Char)

three = do x ← item

 item

 z ← item

 return (x,z)

Meaning:
“The value
of x is
generated by
the item
parser.”

> parse three ”abcd"

[((‘a',’c’),”d")]

The parser return v always succeeds, returning
the value v without consuming any input:

return :: a -> Parser a

return v = \inp -> [(v,inp)]

Lee CSCE 314 TAMU

67

What if we have to backtrack? First try to parse p, then
q? The parser p <|> q behaves as the parser p if it
succeeds, and as the parser q otherwise.

empty :: Parser a
empty = \inp -> [] –- always fails

(<|>) :: Parser a -> Parser a -> Parser a
p <|> q = \inp -> case parse p inp of
 [] -> parse q inp
 [(v,out)] -> [(v,out)]

Making Choices

> parse empty "abc"

[]

> parse (item <|> return ‘d’) "abc"

[('a',"bc")]

Example:

Lee CSCE 314 TAMU

68

The “Monadic” Way

(>>=) :: Parser a -> (a -> Parser b) -> Parser b
p >>= f = \inp -> case parse p inp of

 [] -> []

 [(v, out)] -> parse (f v) out

Parser sequencing operator

p >>= f

❚  fails if p fails

❚  otherwise applies f to the result of p

❚  this results in a new parser, which is then applied

Example

> parse ((empty <|> item) >>= (_ -> item)) "abc"

[('b',"c")]

Lee CSCE 314 TAMU

69

> parse item ""
[]

> parse item "abc"
[('a',"bc")]

> parse empty "abc"

[]

> parse (return 1) "abc"

[(1,"abc")]

> parse (item <|> return 'd') "abc"

[('a',"bc")]

> parse (empty <|> return 'd') "abc"

[('d',"abc")]

Examples

Lee CSCE 314 TAMU

70

Key benefit: The result of first parse
is available for the subsequent parsers

parse (item >>= (\x ->

 item >>= (\y ->

 return (y:[x])))) “ab”

[(“ba”,””)]

