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Programming Language Characteristics

¢  Different approaches to describe computations, 

to instruct computing devices

§  E.g., Imperative, declarative, functional


¢  Different approaches to communicate ideas 
between humans

§  E.g., Procedural, object-oriented, domain-specific 

languages

¢  Programming languages need to have a 

specification: meaning (semantics) of all 
sentences (programs) of the language should 
be unambiguously specified
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Evolution of Programming Languages

¢  1940’s: connecting wires to represent 0’s and 1’s

¢  1950’s: assemblers, FORTRAN, COBOL, LISP

¢  1960’s: ALGOL, BCPL (→ B → C), SIMULA

¢  1970’s: Prolog, FP, ML, Miranda

¢  1980’s: Eiffel, C++

¢  1990’s: Haskell, Java, Python

¢  2000’s: D, C#, Spec#, F#, X10, Fortress, Scala, Ruby, . . .

¢  2010’s: Agda, Coq

¢  . . .


Evolution has been and is toward higher level of abstraction
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Implementing a Programming Language – 
How to Undo the Abstraction


Source	
program	

Lexer	 Parser	 Type	
checker	
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Code	
generator	

Machine	code	
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Machine	
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Phases of Compilation/Execution 
Characterized by Errors Detected


¢  Lexical analysis:

5abc

a === b


¢  Syntactic analysis:

if + then;

int f(int a];


¢  Type checking:

void f(); int a; a + f();


¢  Execution time:

int a[100]; a[101] = 5;
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•  Language = syntax + semantics


•  The syntax of a language is concerned with the 
form of a program: how expressions, commands, 
declarations etc. are put together to result in 
the final program.


•  The semantics of a language is concerned with 
the meaning of a program: how the programs 
behave when executed on computers


•  Syntax defines the set of valid programs, 
semantics how valid programs behave


What Is a Programming Language? 
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•  Statement is a sequence of tokens

•  Token is a sequence of characters


•  Lexical analyzer

produces a sequence of tokens from a 
character sequence


•  Parser

produces a statement representation 
from the token sequence


•  Statements are represented as 
parse trees (abstract syntax tree)


Language Syntax 

Syntax

Language Syntax

Statement is a sequence of tokens
Token is a sequence of characters
Lexical analyzer:

produces a token sequence from a
character sequence

Parser
produces a statement representation
from a token sequence

Statements are represented as parse
trees (abstract syntax trees)

Lexical Analyzer

Parser

characters

tokens

sentences

8 / 33
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•  BNF is a common notation to define programming 
language grammars


•  A BNF grammar G = (N, T, P, S) 

•  A set of non-terminal symbols N

•  A set of terminal symbols T (tokens)

•  A set of grammar rules P

•  A start symbol S


•  Grammar rule form (describe context-free 
grammars):


  <non-terminal>

  ::= <sequence of terminals and non-terminals>


Backus-Naur Form (BNF)
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•  A grammar is ambiguous if there exists a string which 
gives rise to more than one parse tree


•  E.g., infix binary operators ‘-’

       <expr> ::= <num> | <expr> ‘-’ <expr>

•  Now parse 1 – 2 - 3


Ambiguity


As (1-2)-3
 As 1-(2-3)


Parsing

Parse 1

As (1 - 2) - 3:

<expr>

'-'<expr> <expr>

'-'

<num>

<expr>

2

<expr> <num>

3

1

<num>

20 / 33

Parsing

Parse 2

As 1 - (2 - 3):

<expr>

'-' <expr><expr>

'-'

<num>

<expr>

3

<expr><num>

1

2

<num>

21 / 33



Lee CSCE 314 TAMU 

10 

1.  Between two calls to the same binary operator

•  Associativity rules

•  left-associative: a op b op c parsed as (a op b) op c

•  right-associative: a op b op c parsed as a op (b op c)


•  By disambiguating the grammar

   <expr> ::= <num> | <expr> ‘-’ <expr>

   vs.

   <expr> ::= <num> | <expr> ‘-’ <num>


2.  Between two calls to different binary operator

•  Precedence rules

•  if op1 has higher-precedence than op2 then

   a op1 b op2 c => (a op1 b) op2 c

•  if op2 has higher-precedence than op1 then

   a op1 b op2 c => a op1 (b op2 c)


Resolving Ambiguities
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•  Rewriting the ambiguous grammar:

    <expr> ::= <num> | <expr> + <expr>

                         | <expr> * <expr>        

                         | <expr> == <expr>




•  Let us give * the highest precedence, + the next highest, 

and == the lowest


    <expr> ::= <sum>   { == <sum> }

    <sum>  ::= <term> | <sum> + <term>

    <term> ::= <num> | <term> * <num> 


Resolving Ambiguities (Cont.)
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Four classes of grammars that define particular classes of 
languages

 

1.  Regular grammars

2. Context free grammars

3. Context sensitive 

   grammars

4.  Phrase-structure

   (unrestricted) grammars



Ordered from less expressive 

to more expressive (but faster to slower to parse)



Regular grammars and CF grammars are of interest in theory of

programming languages


Chomsky Hierarchy


Type 0 – Phrase-structure Grammars

Type 1 – 
Context-Sensitive

Type 2 –
Context-Free

Type 3 –
Regular
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1. Phrase-structure (unrestricted) grammars

   A -> B where A is string in V* containing at least one

   nonterminal symbol, and B is a string in V*.




2. Context sensitive grammars

   lAr -> lwr where A is a nonterminal symbol, and w a

   nonempty string in V*. Can contain S ->λ if S does not

   occur on RHS of any production.




3. Context free grammars

   A -> B where A is a nonterminal symbol.




4. Regular grammars

   A -> aB or A -> a where A, B are nonterminal symbols

   and a is a terminal symbol. Can contain S -> λ.


Summary of the Productions
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Haskell

Lazy

Pure


Functional Language
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The Standard Prelude

Haskell comes with a large number of standard 
library functions.  In addition to the familiar 
numeric functions such as + and *, the library 
also provides many useful functions on lists.


-- Select the first element of a list:

> head [1,2,3,4,5] 
1 

-- Remove the first element from a list:

> tail [1,2,3,4,5] 
[2,3,4,5] 
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-- Select the nth element of a list:

> [1,2,3,4,5] !! 2 
3 

-- Select the first n elements of a list:

> take 3 [1,2,3,4,5] 
[1,2,3] 

-- Remove the first n elements from a list:

> drop 3 [1,2,3,4,5] 
[4,5] 

-- Append two lists:

> [1,2,3] ++ [4,5] 
[1,2,3,4,5] 
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-- Calculate the length of a list:

> length [1,2,3,4,5] 
5 

-- Calculate the sum of a list of numbers:

> sum [1,2,3,4,5] 
15 

-- Calculate the product of a list of numbers:

> product [1,2,3,4,5] 
120 

-- Reverse a list:

> reverse [1,2,3,4,5] 
[5,4,3,2,1] 
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Basic Types

Haskell has a number of basic types, including:


Bool -  logical values


Char -  single characters


Integer -  arbitrary-precision integers


Float -  single-precision floating-point numbers


String -  lists of characters  type String = [Char]


Int -  fixed-precision integers


Double -  double-precision floating-point numbers
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List Types


[False,True,False] :: [Bool] 
 

[’a’,’b’,’c‘]  :: [Char] 
 

“abc” :: [Char] 
 

[[True, True], []] :: [[Bool]] 

A list is sequence of values of the same type:


Note:

•  [t] has the type list with elements of type t

•  The type of a list says nothing about its length

•  The type of the elements is unrestricted

•  Composite types are built from other types 

using type constructors

•  Lists can be infinite:  l = [1..]
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Tuple Types

A tuple is a sequence of values of different types:


Note:

•  (t1,t2,…,tn) is the type of n-tuples whose i-th 

component has type ti for any i in 1…n

•  The type of a tuple encodes its size

•  The type of the components is unrestricted

•  Tuples with arity one are not supported:

    (t) is parsed as t, parentheses are ignored


(False,True)     :: (Bool,Bool) 
 

(False,’a’,True) :: (Bool,Char,Bool) 
 

(“Howdy”,(True,2)) :: ([Char],(Bool,Int)) 
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Function Types


not     :: Bool -> Bool 
 

isDigit :: Char -> Bool 
 

toUpper :: Char -> Char 
 

(&&) :: Bool -> Bool -> Bool 
Note: 

•  The argument and result types 

are unrestricted.  Functions 
with multiple arguments or 
results are possible using lists 
or tuples:


•  Only single parameter functions!


A function is a mapping from values of one type 
(T1) to values of another type (T2), with the type 
T1 -> T2


add    :: (Int,Int) → Int 
add (x,y)  = x+y 
 

zeroto :: Int → [Int] 
zeroto n   = [0..n] 
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Curried Functions

Functions with multiple arguments are also 
possible by returning functions as results:

add :: (Int,Int) → Int 
add (x,y)  = x+y 
 

add’ :: Int → (Int → Int) 
add’ x y = x+y 

add’ takes an int x and 
returns a function add’ x. In 
turn, this function takes an int 
y and returns the result x+y.


Note:

•  add and add’ produce the same final result, but add 

takes its two arguments at the same time, whereas 
add’ takes them one at a time


•  Functions that take their arguments one at a time are 
called curried functions, celebrating the work of Haskell 
Curry on such functions.
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Why is Currying Useful?

Curried functions are more flexible than functions on 
tuples, because useful functions can often be made by 
partially applying a curried function.



For example:
 add’ 1 :: Int -> Int 

 

take 5 :: [a] -> [a] 
 

drop 5 :: [a] -> [a] 

map    :: (a->b) -> [a] -> [b] 
map f  []  =  [] 
map f (x:xs)  =  f x : map f xs 
 
> map (add’ 1) [1,2,3] 
[2,3,4] 
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Polymorphic Functions

A function is called polymorphic (“of many forms”) 
if its type contains one or more type variables.  
Thus, polymorphic functions work with many types 
of arguments.


id :: a → a 

for any type a, length takes 
a list of values of type a and 

returns an integer


length :: [a] → Int 

for any type a, id maps a 
value of type a to itself


a is a type variable


head :: [a] → a 
 

take :: Int→[a]→[a] 



Lee CSCE 314 TAMU 

25 

Type variables can be instantiated to different 
types in different circumstances: 


Type variables must begin with a lower-case letter, and 
are usually named a, b, c, etc.


> length [False,True] 
2 

> length [1,2,3,4] 
4 

a = Bool


a = Int


Polymorphic types and type variables

A polymorphic type is a type that contains one or more type variables
Think of it as a schema or template from which to instantiate other
types by binding values to the type variables

expression polymorphic type type variable bindings resulting type
id a -> a a=Int Int -> Int
id a -> a a=Bool Bool -> Bool
length [a] -> Int a=Char [Char] -> Int
fst (a, b) -> a a=Char, b=Bool Char
snd (a, b) -> b a=Char, b=Bool Bool
([], []) ([a], [b]) a=Char, b=Bool ([Char], [Bool])

Type variables must start with lowercase letters
Typical conventions: a, b, c, . . . , t, u, . . . , a1, a2, . . . , a’, a’’,
. . .

Jaakko Järvi (TAMU) Programming Languages CSCE-314 September 5, 2012 42 / 49

Polymorphic Types
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Overloaded Functions

A polymorphic function is called overloaded if its 
type contains one or more class constraints.


sum :: Num a ⇒ [a] → a 
for any numeric type a, 
sum takes a list of values 
of type a and returns a 

value of type a

Constrained type variables can be instantiated to 
any types that satisfy the constraints:


> sum [1,2,3] 
6 
> sum [1.1,2.2,3.3] 
6.6 
> sum [’a’,’b’,’c’] 
ERROR 

Char is not a numeric type


a = Int


a = Float
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Recall that polymorphic types can be instantiated 
with all types, e.g.,

   id :: t -> t   length :: [t] -> Int 
This is when no operation is subjected to values of type t 
 

What are the types of these functions?

  min :: Ord a => a -> a -> a 
  min x y = if x < y then x else y 
 

 elem :: Eq a => a -> [a] -> Bool 

 elem x (y:ys) | x == y = True 

 elem x (y:ys) = elem x ys 
 elem x [] = False 




Class Constraints


Ord a and Eq a 
are class constraints


Type variables 
can only be 
bound to types 
that satisfy 
the constraints
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Constraints arise because values of the generic 
types are subjected to operations that are not 
defined for all types:

     min :: Ord a => a -> a -> a 

     min x y = if x < y then x else y 
 

     elem :: Eq a => a -> [a] -> Bool 

     elem x (y:ys) | x == y = True 

     elem x (y:ys) = elem x ys 

     elem x [] = False 

Ord and Eq are type classes:

Num (Numeric types)

Eq (Equality types)

Ord (Ordered types)





Type Classes


(+)  :: Num a ⇒ a → a → a 
  
(==) :: Eq a  ⇒ a → a → Bool 
 
(<)  :: Ord a ⇒ a → a → Bool 
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Conditional Expressions

As in most programming languages, functions can 
be defined using conditional expressions:

if  cond  then  e1  else  e2

•  e1 and e2 must be of the same type

•  else branch is always present


abs  :: Int -> Int 
abs n = if n >= 0 then n else –n 
 

max  :: Int -> Int -> Int 
max x y = if x <= y then y else x 
 

take  :: Int -> [a] -> [a] 
take n xs = if n <= 0 then [] 
            else if xs == [] then [] 
                 else (head xs) : take (n-1) (tail xs) 
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Guarded Equations

As an alternative to conditionals, functions can 
also be defined using guarded equations. 


abs n | n >= 0    = n 
      | otherwise = -n 

Prelude:

otherwise = True


Guarded equations can be used to make definitions 
involving multiple conditions easier to read:


signum n | n < 0     = -1 
         | n == 0    = 0 
         | otherwise = 1 

signum n = if n < 0 then -1 else 
              if n == 0 then 0 else 1 

compare with … 
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List Patterns

Internally, every non-empty list is constructed 
by repeated use of an operator (:) called “cons” 
that adds an element to the start of a list.


[1,2,3,4] Means 1:(2:(3:(4:[]))).


Functions on lists can be defined using x:xs 
patterns.

head       :: [a] → a 
head (x:_)  = x 
 
tail       :: [a] → [a] 
tail (_:xs) = xs 

head and tail map any non-
empty list to its first and 

remaining elements.


is this definition 
complete?
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Lambda Expressions

Functions can be constructed without naming the 
functions by using lambda expressions.


λx → x+x This nameless function takes a number 
x and returns the result x+x.


❚  The symbol λ is the Greek letter lambda, and is typed 
at the keyboard as a backslash \.


❚  In mathematics, nameless functions are usually 
denoted using the ! symbol, as in x ! x+x.


❚  In Haskell, the use of the λ symbol for nameless 
functions comes from the lambda calculus, the theory 
of functions on which Haskell is based.
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❚  A convenient syntax for defining lists

❚  Set comprehension - In mathematics, the 

comprehension notation can be used to construct 
new sets from old sets.  E.g.,


    {(x2,y2)|x ∈{1,2,...,10}, y ∈{1,2,...,10}, x2+y2 ≤101}

❚  Same in Haskell: new lists from old lists

[(x^2, y^2) | x <- [1..10], y <- [1..10], x^2 + y^2 <= 101] 
generates:

[(1,1),(1,4),(1,9),(1,16),(1,25),(1,36),(1,49),(1,64),(1,81),(1,100),(4,1),(4,4),(4,9),(4,16),
(4,25),(4,36),(4,49),(4,64),(4,81),(9,1),(9,4),(9,9),(9,16),(9,25),(9,36),(9,49),(9,64),(9,81),
(16,1),(16,4),(16,9),(16,16),(16,25),(16,36),(16,49),(16,64),(16,81),(25,1),(25,4),(25,9),
(25,16),(25,25),(25,36),(25,49),(25,64),(36,1),(36,4),(36,9),(36,16),(36,25),(36,36),
(36,49),(36,64),(49,1),(49,4),(49,9),(49,16),(49,25),(49,36),(49,49),(64,1),(64,4),(64,9),
(64,16),(64,25),(64,36),(81,1),(81,4),(81,9),(81,16),(100,1)]


List Comprehensions
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Recursive Functions

Functions can also be defined in terms of 
themselves.  Such functions are called recursive.


factorial 0 = 1 
factorial n = n * factorial (n-1) 

factorial maps 0 to 1, 
and any other 

positive integer to 
the product of itself 
and the factorial of 

its predecessor.

factorial 3 3 * factorial 2 

=
 3 * (2 * factorial 1) 

=


3 * (2 * (1 * factorial 0)) =


3 * (2 * (1 * 1)) =


3 * (2 * 1) =


=
 6 

3 * 2 =
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Recursion on Lists

Lists have naturally a recursive structure.  Consequently, 
recursion is used to define functions on lists.


product       :: [Int] → Int 
product []     = 1 
product (n:ns) = n * product ns 

product maps the 
empty list to 1, and any 
non-empty list to its 

head multiplied by the 
product of its tail.


product [2,3,4] 2 * product [3,4] =


2 * (3 * product [4]) =


2 * (3 * (4 * product [])) =


2 * (3 * (4 * 1)) =


24 =
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Using the same pattern of recursion as in product 
we can define the length function on lists.


length       :: [a] → Int 
length []     = 0 

length (_:xs) = 1 + length xs 

length maps the empty list 
to 0, and any non-empty list 

to the successor of the 
length of its tail.


length [1,2,3] 

1 + length [2,3] =


1 + (1 + length [3]) =


1 + (1 + (1 + length [])) =


1 + (1 + (1 + 0)) =


3 =
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Higher-order Functions

A function is called higher-order if it takes a 
function as an argument or returns a function as 
a result.

twice    :: (a → a) → a → a 
twice f x = f (f x) 

twice is higher-order 
because it takes a 
function as its first 

argument.


Note:

•  Higher-order functions are very common in Haskell 

(and in functional programming).

•  Writing higher-order functions is crucial practice for 

effective programming in Haskell, and for 
understanding others’ code.
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The map Function

The higher-order library function called map applies a 
function to every element of a list.


map :: (a → b) → [a] → [b] 

For example:
 > map (+1) [1,3,5,7] 
 

[2,4,6,8] 

The map function can be defined in a particularly simple 
manner using a list comprehension:


map f xs = [f x | x ← xs] 

map f []     = [] 

map f (x:xs) = f x : map f xs 

Alternatively, it can also be defined using recursion: 
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The filter Function

The higher-order library function filter selects every 
element from a list that satisfies a predicate.


filter :: (a → Bool) → [a] → [a] 

For example:
 > filter even [1..10] 
 

[2,4,6,8,10] 

Alternatively, it can be defined using recursion:


Filter can be defined using a list comprehension:

filter p xs = [x | x ← xs, p x] 

filter p []     = [] 

filter p (x:xs) 

   | p x        = x : filter p xs 

   | otherwise  = filter p xs 
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The foldr Function

A number of functions on lists can be defined 
using the following simple pattern of recursion:


f []     = v 

f (x:xs) = x ⊕ f xs 

f maps the empty list to some value v, 
and any non-empty list to some function 
⊕ applied to its head and f of its tail.
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filter, map and foldr

Typical use is to select certain elements, and then 
perform a mapping, for example,

sumSquaresOfPos ls 
  = foldr (+) 0 (map (^2) (filter (>= 0) ls))  
 
> sumSquaresOfPos [-4,1,3,-8,10] 
110 

In pieces:

keepPos = filter (>= 0) 
mapSquare = map (^2) 
sum = foldr (+) 0 
sumSquaresOfPos ls = sum (mapSquare (keepPos ls)) 

sumSquaresOfPos = sum . mapSquare . keepPos 

Alternative definition: 
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Three constructs for defining types:

1. data - Define a new algebraic data type from 

scratch, describing its constructors


2. type - Define a synonym for an existing type 
(like typedef in C)


3. newtype - A restricted form of data that is 
more efficient when it fits (if the type has 
exactly one constructor with exactly one field 
inside it).  Uesd for defining “wrapper” types 


Defining New Types 
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Data Declarations

A completely new type can be defined by 
specifying its values using a data declaration.

data Bool = False | True Bool is a new type, with two 

new values False and True.


❚  The two values False and True are called the constructors 
for the data type Bool.


❚  Type and constructor names must begin with an upper-case 
letter.


❚  Data declarations are similar to context free grammars.  The 
former specifies the values of a type, the latter the 
sentences of a language.


More examples from standard Prelude:

data () = ()  -- unit datatype 
data Char = … | ‘a’ | ‘b’ | … 
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The constructors in a data declaration can also 
have parameters.  For example, given

data Shape = Circle Float | Rect Float Float 

square         :: Float → Shape 
square n        = Rect n n 
 

area           :: Shape → Float 
area (Circle r) = pi * r^2 
area (Rect x y) = x * y 

we can define:


Constructors with Arguments 


❚  Shape has values of the form Circle r where r is a 
float, and Rect x y where x and y are floats.


❚  Circle and Rect can be viewed as functions that 
construct values of type Shape:


Circle :: Float → Shape 
Rect   :: Float → Float → Shape 
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Not surprisingly, data declarations themselves can 
also have parameters.  For example, given


x = Pair 1 2 
y = Pair "Howdy" 42 
 
first :: Pair a b -> a 
first (Pair x _) = x 
 
apply :: (a -> a’)->(b -> b') -> Pair a b -> Pair a' b' 
apply f g (Pair x y) = Pair (f x) (g y) 

we can define:


Parameterized Data Declarations 


data Pair a b = Pair a b 
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Another example:

Maybe type holds a value (of any type) or holds nothing


data Maybe a = Nothing | Just a 

safediv    :: Int → Int → Maybe Int 
safediv _ 0 = Nothing 
safediv m n = Just (m `div` n) 
 
safehead   :: [a] → Maybe a 
safehead [] = Nothing 
safehead xs = Just (head xs) 

we can define:


a is a type parameter, can be bound to any type

Just True :: Maybe Bool 
Just “x”  :: Maybe [Char] 
Nothing   :: Maybe a 
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Recursive Data Types

New types can be declared in terms of themselves.  That 
is, data types can be recursive.


data Nat = Zero | Succ Nat 
Nat is a new type, with 
constructors Zero :: Nat 
and Succ :: Nat -> Nat.


A value of type Nat is either Zero, or of the form Succ n 
where n :: Nat.  That is, Nat contains the following infinite 
sequence of values:









Example function:


Zero 

Succ Zero 

Succ (Succ Zero) 

. . .


add :: Nat -> Nat -> Nat 
add Zero n = n 
add (Succ m) n = Succ (add m n) 
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data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun 

     deriving (Show, Read, Eq, Ord, Bounded, Enum) 
*Main> show Wed 

"Wed” 

*Main> read "Fri" :: Weekday 

Fri 

*Main> Sat Prelude.== Sun 
False 

*Main> Sat Prelude.== Sat 

True 

*Main> Mon < Tue 

True 
*Main> Tue < Tue 

False 

*Main> Wed `compare` Thu 

LT 
 

 

Showable, Readable, and Comparable Weekdays
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data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun 

     deriving (Show, Read, Eq, Ord, Bounded, Enum) 
 

*Main> minBound :: Weekday 

Mon 

*Main> maxBound :: Weekday 

Sun 
*Main> succ Mon 

Tue 

*Main> pred Fri 

Thu 

*Main> [Fri .. Sun] 
[Fri,Sat,Sun] 

*Main> [minBound .. maxBound] :: [Weekday] 

[Mon,Tue,Wed,Thu,Fri,Sat,Sun] 

 
 

Bounded and Enumerable Weekdays
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•  A Haskell program consists of a collection of modules.  
The purposes of using a module are:

1.  To control namespaces.

2.  To create abstract data types.


•  A module contains various declarations: First, import 
declarations, and then, data and type declarations, class 
and instance declarations, type signatures, function 
definitions, and so on (in any order)


•  Module names must begin with an uppercase letter


•  One module per file


Modules 
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Example of a Module

module Tree ( Tree(Leaf,Branch), fringe ) where 
 

data Tree a = Leaf a | Branch (Tree a) (Tree a)  
 

fringe :: Tree a -> [a] 
fringe (Leaf x)            = [x] 
fringe (Branch left right) = fringe left ++ fringe right 

❚  A module declaration begins with the keyword  module 
❚  The module name may be the same as that of the type

❚  Same indentation rules as with other declarations apply

❚  The type name and its constructors need be grouped together, as in 

Tree(Leaf,Branch); short-hand possible, Tree(..) 
❚  Now, the Tree module may be imported:


module Main (main) where 
import Tree ( Tree(Leaf,Branch), fringe ) 
main = print (fringe (Branch (Leaf 1) (Leaf 2))) 

export list


import list: 
omitting it will 

cause all entities 
exported from Tree 

to be imported
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Class of types that support mapping of 
function. For example, lists and trees.


Functors


class Functor f where 

  fmap :: (a -> b) -> f a -> f b 

fmap takes a function of type (a->b) and a structure of 
type (f a), applies the function to each element of the 
structure, and returns a structure of type (f b). 


Functor instance example 1: the list structure []   

instance Functor [] where 

  -- fmap :: (a -> b) -> [a] -> [b] 

  fmap = map 

(f a)	is	a	data	
structure	that	
contains	elements	
of	type	a 
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Functor instance example 2: the Maybe type


Now, you can do


> fmap (+1) Nothing 

Nothing 

> fmap not (Just True) 

Just False 

data Maybe a = Nothing | Just a 

instance Functor Maybe where 

  -- fmap :: (a -> b) -> Maybe a -> Maybe b 

  fmap _ Nothing  = Nothing 

  fmap g (Just x) = Just (g x)  
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Applicative


The function pure takes a value of any type as its 
argument and returns a structure of type f a, that is, an 
applicative functor that contains the value.



The operator <*> is a generalization of function application 
for which the argument function, the argument value, and 
the result value are all contained in f structure.



<*> associates to the left: ( (g <*> x) <*> y) <*> z 
 
fmap g x = pure g <*> x = g <$> x


class (Functor f) => Applicative f where 

   pure  :: a -> f a 

   (<*>) :: f (a -> b) -> f a -> f b 
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Applicative functor instance example 1: Maybe


> pure (+1) <*> Nothing 
Nothing 
> pure (+) <*> Just 2 <*> Just 3 
Just 5 
> mult3 x y z = x*y*z 
> pure mult3 <*> Just 1 <*> Just 2 <*> Just 4 
Just 8 

data Maybe a = Nothing | Just a 

instance Applicative Maybe where 
  -- pure :: a -> Maybe a 

  pure = Just 
  -- (<*>) :: Maybe (a->b) -> Maybe a -> Maybe b 

  Nothing  <*> _  = Nothing 

  (Just g) <*> mx = fmap g mx 
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Applicative functor instance example 2: list type []


> pure (+1) <*> [1,2,3] 
[2,3,4] 
> pure (+) <*> [1,3] <*> [2,5] 
[3,6,5,8] 
> pure (:) <*> "ab" <*> ["cd","ef"] 
["acd","aef","bcd","bef"] 

instance Applicative [] where 
  -- pure :: a -> [a] 

  pure x = [x] 
  -- (<*>) :: [a -> b] -> [a] -> [b] 

  gs <*> xs  = [ g x | g <- gs, x <- xs ] 
pure transforms a value into a singleton list.

<*> takes a list of functions and a list of arguments, and 
applies each function to each argument in turn, returning 
all the results in a list.
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Monads


§  Roughly, a monad is a strategy for combining 
computations into more complex computations.


§  Another pattern of effectful programming (applying 
pure functions to (side-)effectful arguments)


§  (>>=) is called “bind” operator.


§   Note: return may be removed from the Monad class in the future, 
and become a library function instead.


class (Applicative m) => Monad m where 

   return  :: a -> m a 

   (>>=) :: m a -> (a -> m b) -> m b 

   return = pure 
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Monad instance example 1: Maybe

data Maybe a = Nothing | Just a 

instance Monad Maybe where 
 -- (>>=):: Maybe a -> (a -> Maybe b) -> Maybe b 

 Nothing  >>= _ = Nothing 

 (Just x) >>= f = f x 

> (Just 10) >>= div2 

Just 5 
> (Just 10) >>= div2 >>= div2 
Nothing 
> (Just 10) >>= div2 >>= div2 >>= div2 
Nothing 

div2 x = if even x then Just (x `div` 2) else Nothing 
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Monad instance example 2: list type []


instance Monad [] where 

  -- (>>=):: [a] -> (a -> [b]) -> [b] 

  xs >>= f = [y | x <- xs, y <- f x] 

> pairs [1,2] [3,4] 
[(1,3),(1,4),(2,3),(2,4)] 

pairs :: [a] -> [b] -> [(a,b)] 

pairs xs ys = do x <- xs 

                 y <- ys 

                 return (x,y) 

pairs xs ys = xs >>= \x -> 

              ys >>= \y -> 

              return (x,y) 
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What is a Parser?

A parser is a program that takes a string of 
characters (or a set of tokens) as input and 
determines its syntactic structure.


2*3+4 means
 4 

+ 

* 

3 2 

String or 
[Token]     Parser syntactic 

structure   
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The Parser Type

In a functional language such as Haskell, parsers 
can naturally be viewed as functions.


type Parser = String → Tree 
A parser is a 

function that takes 
a string and returns 
some form of tree.


However, a parser might not require all of its 
input string, so we also return any unused input:


type Parser = String → (Tree,String) 

A string might be parsable in many ways, including 
none, so we generalize to a list of results:


type Parser = String → [(Tree,String)] 



Lee CSCE 314 TAMU 

62 

Furthermore, a parser might not always produce 
a tree, so we generalize to a value of any type:


type Parser a = String → [(a,String)] 

Note:

For simplicity, we will only consider parsers that 
either fail and return the empty list as results, 
or succeed and return a singleton list.


Finally, a parser might take token streams instead 
of character streams:


type TokenParser b a = [b] → [(a,[b])] 
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Basic Parsers (Building Blocks)

The parser item fails if the input is empty, and 
consumes the first character otherwise:


item :: Parser Char 

     -- String -> [(Char, String)] 

     -- [Char] -> [(Char, [Char])] 

item  = \inp -> case inp of 

                  []     -> [] 

                  (x:xs) -> [(x,xs)]  

> item ”Howdy all" 
[(‘H',”owdy all")] 
 
> item “” 
[] 

Example:
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We can make it more explicit by letting the 
function parse apply a parser to a string:


parse :: Parser a -> String -> [(a,String)] 

parse p inp = p inp –- essentially id function 

> parse item ”Howdy all" 

[(‘H',”owdy all")] 

Example:
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Sequencing Parser

Often, we need to combine parsers in sequence, 
e.g., the following grammar:

   <if-stmt> :: if (<expr>) then <stmt>

First parse if, then (, then <expr>, then ), …




To combine parsers in sequence, we make the 
Parser type into a monad:



instance Monad Parser where 

 -- (>>=) :: Parser a -> (a -> Parser b) -> Parser b 

 p >>= f = \inp -> case parse p inp of 

                     []     -> [] 

                     [(v,out)] -> parse (f v) out  
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Now a sequence of parsers can be combined as a 
single composite parser using the keyword do.

Example:


Sequencing Parser (do)


three :: Parser (Char,Char) 

three  = do x ← item 

            item 

            z ← item 

            return (x,z) 

Meaning: 
“The value 
of x is 
generated by 
the item 
parser.”  


> parse three ”abcd" 

[((‘a',’c’),”d")] 

The parser return v always succeeds, returning 
the value v without consuming any input:


return  :: a -> Parser a 

return v = \inp -> [(v,inp)] 
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What if we have to backtrack? First try to parse p, then 
q?  The parser p <|> q behaves as the parser p if it 
succeeds, and as the parser q otherwise.


empty :: Parser a 
empty = \inp -> [] –- always fails 
 

(<|>)  :: Parser a -> Parser a -> Parser a 
p <|> q = \inp -> case parse p inp of 
                   []        -> parse q inp 
                   [(v,out)] -> [(v,out)] 

Making Choices


> parse empty "abc" 

[] 

> parse (item <|> return ‘d’) "abc" 

[('a',"bc")] 

Example:
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The “Monadic” Way


(>>=) :: Parser a -> (a -> Parser b) -> Parser b 
p >>= f = \inp -> case parse p inp of 

                       [] -> [] 

                       [(v, out)] -> parse (f v) out 

Parser sequencing operator


p >>= f

❚  fails if p fails

❚  otherwise applies f to the result of p

❚  this results in a new parser, which is then applied


Example

> parse ((empty <|> item) >>= (\_ -> item)) "abc" 

[('b',"c")] 
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> parse item "" 
[]  

> parse item "abc" 
[('a',"bc")] 

> parse empty "abc" 

[] 

> parse (return 1) "abc" 

[(1,"abc")] 

> parse (item <|> return 'd') "abc" 

[('a',"bc")] 

> parse (empty <|> return 'd') "abc" 

[('d',"abc")] 

Examples




Lee CSCE 314 TAMU 

70 

Key benefit: The result of first parse 
is available for the subsequent parsers


parse (item >>= (\x ->  

       item >>= (\y ->  

       return (y:[x])))) “ab” 

 

[(“ba”,””)] 


