CSCE 314 Programming Languages

Final Review Part I

Dr. Hyunyoung Lee

Programming Language Characteristics

- Different approaches to describe computations, to instruct computing devices
- E.g., Imperative, declarative, functional
- Different approaches to communicate ideas between humans
- E.g., Procedural, object-oriented, domain-specific languages
- Programming languages need to have a specification: meaning (semantics) of all sentences (programs) of the language should be unambiguously specified

Evolution of Programming Languages

- 1940's: connecting wires to represent 0's and 1 's
- 1950's: assemblers, FORTRAN, COBOL, LISP
- 1960's: ALGOL, BCPL (\rightarrow B \rightarrow C), SIMULA
- 1970's: Prolog, FP, ML, Miranda
- 1980's: Eiffel, C++
- 1990's: Haskell, Java, Python
- 2000's: D, C\#, Spec\#, F\#, X10, Fortress, Scala, Ruby, . . .
- 2010's: Agda, Coq

Evolution has been and is toward higher level of abstraction

Implementing a Programming Language How to Undo the Abstraction

Phases of Compilation/Execution Characterized by Errors Detected

- Lexical analysis:

5abc
$a===b$

- Syntactic analysis:
if + then;
int f(int a];
- Type checking:
void $f()$; int $a ; a+f()$;
- Execution time: int a[100]; a[101] =5;

What Is a Programming Language?

- Language $=$ syntax + semantics
- The syntax of a language is concerned with the form of a program: how expressions, commands, declarations etc. are put together to result in the final program.
- The semantics of a language is concerned with the meaning of a program: how the programs behave when executed on computers
- Syntax defines the set of valid programs, semantics how valid programs behave

Language Syntax

- Statement is a sequence of tokens
- Token is a sequence of characters
- Lexical analyzer
produces a sequence of tokens from a character sequence
- Parser produces a statement representation from the token sequence
- Statements are represented as parse trees (abstract syntax tree)

Backus-Naur Form (BNF)

- BNF is a common notation to define programming language grammars
- A BNF grammar $G=(N, T, P, S)$
- A set of non-terminal symbols N
- A set of terminal symbols T (tokens)
- A set of grammar rules P
- A start symbol S
- Grammar rule form (describe context-free grammars):
<non-terminal>
::= <sequence of terminals and non-terminals>

Ambiguity

- A grammar is ambiguous if there exists a string which gives rise to more than one parse tree
- E.g., infix binary operators '-'
<expr> ::= <num> | <expr> '-' <expr>
- Now parse 1-2-3

As (1-2)-3

Resolving Ambiguities

1. Between two calls to the same binary operator

- Associativity rules
- left-associative: a op b op c parsed as (a op b) op c
- right-associative: a op b op c parsed as a op (b op c)
- By disambiguating the grammar
<expr> ::= <num> | <expr> '-' <expr>
vs.
<expr> ::= <num> | <expr> '-' <num>

2. Between two calls to different binary operator

- Precedence rules
- if op1 has higher-precedence than op2 then a op1 b op2 c => (a op1 b) op2 c
- if op2 has higher-precedence than op1 then a op1 b op2 c \Rightarrow a op1 (b op2 c)

Resolving Ambiguities (Cont.)

- Rewriting the ambiguous grammar:

$$
\begin{aligned}
\text { <expr> ::= <num> } & \mid \text { <expr> }+ \text { <expr> } \\
& \mid \text { <expr> } \\
& \mid \text { <expr> } \text { <expr> }
\end{aligned}
$$

- Let us give * the highest precedence, + the next highest, and $==$ the lowest

```
<expr> ::= <sum> {== <sum>}
<sum> ::= <term> | <sum> + <term>
<term> ::= <num> | <term> * <num>
```


Chomsky Hierarchy

Four classes of grammars that define particular classes of languages

1. Regular grammars
2. Context free grammars
3. Context sensitive grammars
4. Phrase-structure (unrestricted) grammars

Ordered from less expressive
 to more expressive (but faster to slower to parse)

Regular grammars and CF grammars are of interest in theory of programming languages

Summary of the Productions

1. Phrase-structure (unrestricted) grammars $A \rightarrow B$ where A is string in V^{*} containing at least one nonterminal symbol, and B is a string in V^{*}.
2. Context sensitive grammars

IAr \rightarrow I $w r$ where A is a nonterminal symbol, and w a nonempty string in V^{*}. Can contain $\mathrm{S} \rightarrow \lambda$ if S does not occur on RHS of any production.
3. Context free grammars
$A \rightarrow B$ where A is a nonterminal symbol.
4. Regular grammars
$A \rightarrow a B$ or $A \rightarrow a$ where A, B are nonterminal symbols and a is a terminal symbol. Can contain $S \rightarrow \lambda$.

Haskell

Lazy Pure
 Functional Language

The Standard Prelude

Haskell comes with a large number of standard library functions. In addition to the familiar numeric functions such as + and ${ }^{*}$, the library also provides many useful functions on lists.
-- Select the first element of a list:

```
> head [1,2,3,4,5]
1
```

-- Remove the first element from a list:

$$
\begin{aligned}
& >\operatorname{tai} 1[1,2,3,4,5] \\
& {[2,3,4,5]}
\end{aligned}
$$

-- Select the nth element of a list:

$$
\begin{aligned}
& > \\
& 3
\end{aligned}
$$

-- Select the first n elements of a list:

$$
\begin{aligned}
& >\text { take } 3[1,2,3,4,5] \\
& {[1,2,3]}
\end{aligned}
$$

-- Remove the first n elements from a list:

$$
\begin{aligned}
& \text { > drop } 3[1,2,3,4,5] \\
& {[4,5]}
\end{aligned}
$$

-- Append two lists:

$$
\begin{aligned}
& >[1,2,3]++[4,5] \\
& {[1,2,3,4,5]}
\end{aligned}
$$

-- Reverse a list:
> reverse $[1,2,3,4,5]$
$[5,4,3,2,1]$
-- Calculate the length of a list:
> length [1, 2, 3, 4, 5]
5
-- Calculate the sum of a list of numbers:
$>\operatorname{sum}[1,2,3,4,5]$
15
-- Calculate the product of a list of numbers:
> product [1,2,3,4,5]
120

Basic Types

Haskell has a number of basic types, including:
Boot - logical values
Char - single characters
String - lists of characters type String = [Char]
Int - fixed-precision integers
Integer - arbitrary-precision integers
Float

- single-precision floating-point numbers

Double - double-precision floating-point numbers

List Types

A list is sequence of values of the same type:

$$
\begin{aligned}
& \text { [False,True,Fa1se] :: [Bool] } \\
& \text { ['a',',',', c‘] :: [Char] } \\
& \text { "abc" :: [Char] } \\
& \text { [[True, True], []] :: [[Bool]] }
\end{aligned}
$$

Note:

- [t] has the type list with elements of type t
- The type of a list says nothing about its length
- The type of the elements is unrestricted
- Composite types are built from other types using type constructors
- Lists can be infinite: $I=[1 .$.

Tuple Types

A tuple is a sequence of values of different types:

```
(Fa1se,True) :: (Bool,Boo1)
(False,'a',True) :: (Bool,Char,Bool)
("Howdy",(True,2)) :: ([Char],(Boo1,Int))
```

Note:

- $(t 1, t 2, \ldots, t n)$ is the type of n-tuples whose $i-t h$ component has type ti for any i in $1 . . . n$
- The type of a tuple encodes its size
- The type of the components is unrestricted
- Tuples with arity one are not supported:
(t) is parsed as t, parentheses are ignored

Function Types

A function is a mapping from values of one type (T 1) to values of another type (T2), with the type
T1 -> T2

$$
\begin{array}{ll}
\text { not } & :: ~ B o o l ~->~ B o o l ~ \\
\text { isDigit }:: C h a r ~->~ B o o l ~ \\
\text { toUpper }:: \text { Char -> Char } \\
(\& \&):: ~ B o o l ~->~ B o o l ~->~ B o o l ~
\end{array}
$$

Note:

not	$:$	Bool $->$ Bool
isDigit	$:$	Char $->$ Bool
toUpper	$:$	Char $->$ Char
$(\& \&):: ~ B o o l ~$	Bool $->$ Bool	

- The argument and result types are unrestricted. Functions with multiple arguments or results are possible using lists or tuples:

$\begin{aligned} & \text { add }::(\text { Int, Int }) \rightarrow \text { Int } \\ & \text { add }(x, y)=x+y \\ & \text { zeroto }:: \text { Int } \rightarrow[\text { Int }] \end{aligned}$										

- Only single parameter functions!

Curried Functions

Functions with multiple arguments are also possible by returning functions as results:

$$
\begin{aligned}
& \text { add }::(\text { Int, Int }) \rightarrow \text { Int } \\
& \text { add }(x, y)=x+y \\
& \text { add' }:: \text { Int } \rightarrow(\text { Int } \rightarrow \text { Int }) . \\
& \text { add' } x y=x+y
\end{aligned}
$$

Note:

- add and add' produce the same final result, but add takes its two arguments at the same time, whereas add' takes them one at a time
- Functions that take their arguments one at a time are called curried functions, celebrating the work of Haskell Curry on such functions.

Why is Currying Useful?

Curried functions are more flexible than functions on tuples, because useful functions can often be made by partially applying a curried function.

For example: $\begin{array}{lllll}\text { add' } 1:: ~ I n t ~ & \text {-> } & \text { Int } \\ \text { take } 5 & :: & \text { [a] } & -> & \text { [a] } \\ \text { drop } 5 & :: & \text { [a] } & \text {-> } & \text { [a] }\end{array}$

```
map :: (a->b) -> [a] -> [b]
map f [] = []
map f(x:xs) = f x : map f xs
> map (add' 1) [1,2,3]
[2,3,4]
```


Polymorphic Functions

A function is called polymorphic ("of many forms") if its type contains one or more type variables. Thus, polymorphic functions work with many types of arguments.

1ength : : [a] \rightarrow Int
for any type a, length takes a list of values of type a and returns an integer

is a type variable

take :: Int \rightarrow [a] \rightarrow [a]

Polymorphic Types

Type variables can be instantiated to different types in different circumstances:

expression	polymorphic type	type variable bindings	resulting type
id	a $->$ a	$\mathrm{a}=$ Int	Int -> Int
id	$a->a$	$\mathrm{a}=$ Bool	Bool -> Bool
length	[a] $->$ Int	a=Char	[Char] -> Int
fst	(a, b) $->\mathrm{a}$	$\mathrm{a}=$ Char, $\mathrm{b}=$ Bool	Char
snd	(a, b) $->\mathrm{b}$	$\mathrm{a}=$ Char, $\mathrm{b}=$ Bool	Bool
([], [])	$([\mathrm{a}], \quad[\mathrm{b}])$	$\mathrm{a}=$ Char, $\mathrm{b}=$ Bool	([Char], [Bool])

Type variables must begin with a lower-case letter, and are usually named a, b, c, etc.

Overloaded Functions

A polymorphic function is called overloaded if its type contains one or more class constraints.
sum : : Num $\mathrm{a} \Rightarrow[\mathrm{a}] \rightarrow \mathrm{a}$
for any numeric type a, sum takes a list of values of type a and returns a
value of type a
Constrained type variables can be instantiated to any types that satisfy the constraints:

Class Constraints

Recall that polymorphic types can be instantiated with all types, e.g.,
id : : t -> t length : : [t] -> Int
This is when no operation is subjected to values of type t
What are the types of these functions?

$$
\begin{aligned}
& \text { min :: Ord a => a -> a -> a } \\
& \min x y=i f x<y \text { then } x \text { else } y \\
& \text { elem :: Eq a => a -> [a] -> Bool } \\
& \text { elem x (y:ys) | x == y = True } \\
& \text { elem } x \text { (y:ys) = elem x ys } \\
& \text { elem x [] = False } \\
& \text { Type variables } \\
& \text { can only be } \\
& \text { bound to types } \\
& \text { that satisfy } \\
& \text { the constraints } \\
& \text { Ord a and Eq a } \\
& \text { are class constraints }
\end{aligned}
$$

Type Classes

Constraints arise because values of the generic types are subjected to operations that are not defined for all types:

$$
\begin{aligned}
& \min : \text { Ord } a=>a->a->a \\
& m i n x y=\text { if } x<y \text { then } x \text { else } y \\
& \text { elem : Eq } a=>a->[a]->\text { Bool } \\
& \text { elem } x \text { (y:ys) | } x==y=\text { True } \\
& \text { elem } x(y: y s)=\text { elem } x \text { ys } \\
& \text { elem } x[]=\text { False }
\end{aligned}
$$

Ord and Eq are type classes:

Num (Numeric types)
Eq (Equality types)
Ord (Ordered types)

Conditional Expressions

As in most programming languages, functions can be defined using conditional expressions:
if cong then el else ez

- el and ez must be of the same type
- else branch is always present

$$
\begin{aligned}
& \text { abs :: Int -> Int } \\
& \text { abs } \mathrm{n}=\text { if } \mathrm{n}>=0 \text { then } \mathrm{n} \text { else }-\mathrm{n} \\
& \text { max : : Int -> Int -> Int } \\
& \max x y=\text { if } x<=y \text { then } y \text { else } x \\
& \text { take :: Int -> [a] -> [a] } \\
& \text { take } n \text { xs }=\text { if } n<=0 \text { then [] } \\
& \text { else if xs == [] then [] } \\
& \text { else (head xs) : take (} n-1 \text {) (tail xs) }
\end{aligned}
$$

Guarded Equations

As an alternative to conditionals, functions can also be defined using guarded equations.

$$
\begin{array}{|l|ll}
\hline \text { abs } n & \mid n>=0=n \\
& & \text { otherwise }=-n \\
\hline
\end{array}
$$

Prelude:
otherwise = True
Guarded equations can be used to make definitions involving multiple conditions easier to read:

$$
\begin{array}{|l|ll|}
\hline \text { signum } n & \begin{array}{ll}
n<0 & =-1 \\
& \text { n == } \\
& \text { otherwise }=1
\end{array} \\
\hline
\end{array}
$$

compare with ...

$$
\begin{aligned}
& \text { signum } n=\text { if } n<0 \text { then }-1 \text { else } \\
& \text { if } n=0 \text { then } 0 \text { else } 1
\end{aligned}
$$

List Patterns

Internally, every non-empty list is constructed by repeated use of an operator (:) called "cons" that adds an element to the start of a list.

$$
[1,2,3,4] \curvearrowright \text { Means } 1:(2:(3:(4:[]))) .
$$

Functions on lists can be defined using $x: x s$ patterns.

$\begin{array}{ll} \text { head } & ::[a] \rightarrow a \\ \text { head }\left(x: _\right) & =x \end{array}$	head and tail map any nonempty list to its first and remaining elements.
$\begin{array}{ll} \operatorname{tai} 1 & :: \quad[a] \rightarrow[a] \\ \operatorname{tail}\left(_: x s\right) & =x s \end{array}$	is this definition complete?

Lambda Expressions

Functions can be constructed without naming the functions by using lambda expressions.
$\lambda x \rightarrow x+x$
This nameless function takes a number x and returns the result $x+x$.

- The symbol λ is the Greek letter lambda, and is typed at the keyboard as a backslash \backslash.
- In mathematics, nameless functions are usually denoted using the \mapsto symbol, as in $x \mapsto x+x$.
- In Haskell, the use of the λ symbol for nameless functions comes from the lambda calculus, the theory of functions on which Haskell is based.

List Comprehensions

\| A convenient syntax for defining lists
I Set comprehension - In mathematics, the comprehension notation can be used to construct new sets from old sets. E.g.,

$$
\left\{\left(x^{2}, y^{2}\right) \mid x \in\{1,2, \ldots, 10\}, y \in\{1,2, \ldots, 10\}, x^{2}+y^{2} \leq 101\right\}
$$

\| Same in Haskell: new lists from old lists
[($\left.\left.x^{\wedge} 2, y^{\wedge} 2\right) \mid x<-[1 . .10], y<-[1 . .10], x^{\wedge} 2+y^{\wedge} 2<=101\right]$
generates:
$[(1,1),(1,4),(1,9),(1,16),(1,25),(1,36),(1,49),(1,64),(1,81),(1,100),(4,1),(4,4),(4,9),(4,16)$, $(4,25),(4,36),(4,49),(4,64),(4,81),(9,1),(9,4),(9,9),(9,16),(9,25),(9,36),(9,49),(9,64),(9,81)$, $(16,1),(16,4),(16,9),(16,16),(16,25),(16,36),(16,49),(16,64),(16,81),(25,1),(25,4),(25,9)$, $(25,16),(25,25),(25,36),(25,49),(25,64),(36,1),(36,4),(36,9),(36,16),(36,25),(36,36)$, $(36,49),(36,64),(49,1),(49,4),(49,9),(49,16),(49,25),(49,36),(49,49),(64,1),(64,4),(64,9)$, $(64,16),(64,25),(64,36),(81,1),(81,4),(81,9),(81,16),(100,1)]$

Recursive Functions

Functions can also be defined in terms of themselves. Such functions are called recursive.

Recursion on Lists

Lists have naturally a recursive structure. Consequently, recursion is used to define functions on lists.

```
product :: [Int] -> Int
product [] = 1
product (n:ns) = n * product ns
```

product maps the empty list to 1 , and any non-empty list to its head multiplied by the product of its tail.

$$
\begin{aligned}
\text { product }[2,3,4] & =2 * \text { product }[3,4] \\
& =2 *(3 * \text { product }[4]) \\
& =2 *(3 *(4 * \text { product }[])) \\
& =2 *(3 *(4 * 1)) \\
& =24
\end{aligned}
$$

Using the same pattern of recursion as in product we can define the length function on lists.

length $\quad:: ~[a] ~$	Int
length []	$=0$
length (_:xs)	$=1+1$ ength xs

length maps the empty list to 0 , and any non-empty list to the successor of the length of its tail.

$$
\begin{aligned}
& \text { length }[1,2,3] \\
= & 1+\text { length }[2,3] \\
= & 1+(1+\text { length [3] }) \\
= & 1+(1+(1+\text { length [] })) \\
= & 1+(1+(1+0)) \\
= & 3
\end{aligned}
$$

Higher-order Functions

A function is called higher-order if it takes a function as an argument or returns a function as
a result.

$$
\begin{aligned}
& \text { twice }::(a \rightarrow a) \rightarrow a \rightarrow a \\
& \text { twice } f x=f(f x)
\end{aligned}
$$

twice is higher-order because it takes a function as its first argument.

Note:

- Higher-order functions are very common in Haskell (and in functional programming).
- Writing higher-order functions is crucial practice for effective programming in Haskell, and for understanding others' code.

The map Function

The higher-order library function called map applies a function to every element of a list.

$$
\operatorname{map}::(a \rightarrow b) \rightarrow[a] \rightarrow[b]
$$

For example: $\quad>\operatorname{map}(+1)[1,3,5,7]$

$$
[2,4,6,8]
$$

The map function can be defined in a particularly simple manner using a list comprehension:

$$
\operatorname{map} f x s=[f x \mid x \leftarrow x s]
$$

Alternatively, it can also be defined using recursion:

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

The filter Function

The higher-order library function filter selects every element from a list that satisfies a predicate.

$$
\text { filter }::(a \rightarrow B o o 1) \rightarrow[a] \rightarrow[a]
$$

For example: > filter even [1..10]
[2,4,6,8,10]
Filter can be defined using a list comprehension:

$$
\text { filter } p \text { xs }=[x \mid x \leftarrow x s, p x]
$$

Alternatively, it can be defined using recursion:

$$
\begin{aligned}
\text { filter } p[] & =[] \\
\text { filter } p \text { (x:xs) } & \\
\mid \mathrm{p} \mathrm{x} & =\mathrm{x}: \text { filter } \mathrm{p} \text { xs } \\
\mid \text { otherwise } & =\text { filter } \mathrm{p} \text { xs }
\end{aligned}
$$

The foldr Function

A number of functions on lists can be defined using the following simple pattern of recursion:

$$
\begin{array}{ll}
f[] & =v \\
f(x: x s) & =x \oplus f x s
\end{array}
$$

f maps the empty list to some value v, and any non-empty list to some function \oplus applied to its head and f of its tail.

filter, map and foldr

Typical use is to select certain elements, and then perform a mapping, for example,

```
sumSquaresOfPos 1s
    = foldr (+) 0 (map (^2) (filter (>= 0) 1s))
> sumSquaresOfPos [-4,1,3,-8,10]
110
```


In pieces:

```
keepPos = filter (>= 0)
mapSquare = map (^2)
sum = foldr (+) 0
sumSquaresOfPos 1s = sum (mapSquare (keepPos 1s))
```

Alternative definition:
sumSquaresOfPos = sum . mapSquare . keepPos

Defining New Types

Three constructs for defining types:

1. data - Define a new algebraic data type from scratch, describing its constructors
2. type - Define a synonym for an existing type (like typedef in C)
3. newtype - A restricted form of data that is more efficient when it fits (if the type has exactly one constructor with exactly one field inside it). Uesd for defining "wrapper" types

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.
data Bool = False | True

Bool is a new type, with two new values False and True.

- The two values False and True are called the constructors for the data type Bool.
- Type and constructor names must begin with an upper-case letter.
- Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.
More examples from standard Prelude:

$$
\begin{aligned}
& \text { data }()=() \text {-- unit datatype } \\
& \text { data Char = ... | 'a' | 'b' | ... }
\end{aligned}
$$

Constructors with Arguments

The constructors in a data declaration can also have parameters. For example, given data Shape = Circle Float | Rect Float Float we can define:

square n $=$ Rect $n \mathrm{n}$ area $:$ Shape \rightarrow area (Circle r) $=$ pi $* r^{\wedge 2}$ area (Rect $x y)$ $=x * y$	

- Shape has values of the form Circle r where r is a float, and Rect $x y$ where x and y are floats.
- Circle and Rect can be viewed as functions that construct values of type Shape:

$$
\begin{aligned}
& \text { Circle }:: \text { Float } \rightarrow \text { Shape } \\
& \text { Rect }:: \text { Float } \rightarrow \text { Float } \rightarrow \text { Shape }
\end{aligned}
$$

Parameterized Data Declarations

Not surprisingly, data declarations themselves can also have parameters. For example, given

> data Pair a b = Pair a b
we can define:
$x=$ Pair 12
y = Pair "Howdy" 42
first : : Pair a b -> a
first (Pair x _) = x
apply :: (a -> a’)->(b -> b') -> Pair a b -> Pair a' b' apply f g (Pair x y) $=\operatorname{Pair}(f x)(g y)$

Another example:
Maybe type holds a value (of any type) or holds nothing data Maybe $\mathrm{a}=$ Nothing | Just a
a is a type parameter, can be bound to any type
Just True : : Maybe Bool
Just "x" : : Maybe [Char]
Nothing :: Maybe a
we can define:

Recursive Data Types

New types can be declared in terms of themselves. That is, data types can be recursive.
data Nat $=$ Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat and Succ :: Nat -> Nat.

A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values: Zero

Succ Zero
Succ (Succ Zero)

Example function: add :: Nat -> Nat -> Nat add Zero $\mathrm{n}=\mathrm{n}$ add (Succ m) $n=$ Succ (add $m n$)

Showable, Readable, and Comparable Weekdays data Weekday $=$ Mon | Tue | Wed | Thu | Fri | Sat | Sun deriving (Show, Read, Eq, Ord, Bounded, Enum)
*Main> show Wed
"Wed"
"Main> read "Fri" : : Weekday
Fri
*Main> Sat Prelude.== Sun
False
*Main> Sat Prelude.== Sat
True
*Main> Mon < Tue
True
*Main> Tue < Tue
False
*Main> Wed `compare` Thu
LT

Bounded and Enumerable Weekdays

data Weekday $=$ Mon | Tue | Wed | Thu | Fri | Sat | Sun deriving (Show, Read, Eq, Ord, Bounded, Enum)
*Main> minBound :: Weekday
Mon
*Main> maxBound :: Weekday
Sun
*Main> succ Mon
Tue
*Main> pred Fri
Thu
*Main> [Fri .. Sun]
[Fri,Sat,Sun]
*Main> [minBound .. maxBound] :: [Weekday]
[Mon, Tue, Wed, Thu, Fri, Sat, Sun]

Modules

- A Haskell program consists of a collection of modules. The purposes of using a module are:

1. To control namespaces.
2. To create abstract data types.

- A module contains various declarations: First, import declarations, and then, data and type declarations, class and instance declarations, type signatures, function definitions, and so on (in any order)
- Module names must begin with an uppercase letter
- One module per file

Example of a Module

```
module Tree ( Tree(Leaf,Branch), fringe ) where
data Tree a = Leaf a | Branch (Tree a) (Tree a)
fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right
```

- A module declaration begins with the keyword module

The module name may be the same as that of the type
Same indentation rules as with other declarations apply
The type name and its constructors need be grouped together, as in Tree(Leaf, Branch) ; short-hand possible, Tree(..) import list:

- Now, the Tree module may be imported:

module Main (main) where
import Tree (Tree(Leaf, Branch), fringe) exported from Tree
main $=$ print (fringe (Branch (Leaf 1) (Leaf 2)))

Functors

Class of types that support mapping of function. For example, lists and trees.
class Functor f where fmap : : (a -> b) -> f a $->$ f b
(f a) is a data structure that contains elements
fmap takes a function of type ($a->b$) and a structure of type (f a), applies the function to each element of the structure, and returns a structure of type (f b).

Functor instance example 1: the list structure [] instance Functor [] where
-- fmap :: (a -> b) -> [a] -> [b] fmap $=$ map

Functor instance example 2: the Maybe type data Maybe $\mathrm{a}=$ Nothing | Just a
instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b
fmap _ Nothing = Nothing
fmap g (Just x) = Just (g x)
Now, you can do
> fmap (+1) Nothing
Nothing
> fmap not (Just True)
Just False

Applicative

class (Functor f) => Applicative f where pure :: a -> fa
(<*>) :: f (a -> b) -> f a -> f b
The function pure takes a value of any type as its argument and returns a structure of type f a, that is, an applicative functor that contains the value.

The operator $\langle *\rangle$ is a generalization of function application for which the argument function, the argument value, and the result value are all contained in f structure.
<*> associates to the left: ((g <*> x) <*> y) <*> z
fmap $\mathrm{g} x=$ pure g <*> $\mathrm{x}=\mathrm{g}<\$>\mathrm{x}$

Applicative functor instance example 1: Maybe data Maybe $\mathrm{a}=$ Nothing | Just a
instance Applicative Maybe where
-- pure :: a -> Maybe a
pure = Just
-- (<*>) :: Maybe (a->b) -> Maybe a -> Maybe b Nothing <*> _ = Nothing (Just g) <*> max = frap g tx
> pure (+1) <"> Nothing
Nothing
> pure (+) <*> Just 2 <*> Just 3
Just 5
> multi x y z = x*y*z
> pure mult3 <*> Just 1 <*> Just 2 <*> Just 4 Just 8

Applicative functor instance example 2: list type []
instance Applicative [] where
-- pure :: a -> [a]
pure x = [x]
-- (<*>) :: [a -> b] -> [a] -> [b]
gs <*> xs = [g x | g <- gs, x <- xs]
pure transforms a value into a singleton list.
<*> takes a list of functions and a list of arguments, and applies each function to each argument in turn, returning all the results in a list.

$$
\begin{aligned}
& \text { > pure }(+1) \text { <*> }[1,2,3] \\
& {[2,3,4]} \\
& >\text { pure (+) <*> }[1,3] \text { <"> }[2,5] \\
& {[3,6,5,8]} \\
& >\text { pure (:) <"> "ab" <*> ["cd","ef"] } \\
& \text { ["acd", "aef","bcd", "bef"] }
\end{aligned}
$$

Monads

class (Applicative m) => Monad m where return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b return = pure

- Roughly, a monad is a strategy for combining computations into more complex computations.
- Another pattern of effectful programming (applying pure functions to (side-)effectful arguments)
- (>>=) is called "bind" operator.
- Note: return may be removed from the Monad class in the future, and become a library function instead.

Monad instance example 1: Maybe

data Maybe a = Nothing | Just a
instance Monad Maybe where
-- (>>=): : Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= _ = Nothing
(Just x) >>= $f=f x$
div2 x = if even x then Just (x `div` 2) else Nothing
> (Just 10) >>= div2
Just 5
> (Just 10) >>= div2 >>= div2
Nothing
> (Just 10) >>= div2 >>= div2 >>= div2
Nothing

Monad instance example 2: list type []
instance Monad [] where

$$
\begin{aligned}
& --(\gg=)::[a]->(a->[b])->[b] \\
& x s ~ \gg=f=[y \mid x<-x s, y<-~ f x]
\end{aligned}
$$

$$
\begin{aligned}
\text { pairs : : }[a] \text {-> } & {[b]->[(a, b)] } \\
\text { pairs xs gs }=\text { do } x & <-x s \\
& y<-y s \\
& r e t u r n(x, y)
\end{aligned}
$$

> pairs [1,2] [3,4]
$[(1,3),(1,4),(2,3),(2,4)]$

$$
\begin{aligned}
\text { pairs xs xs }= & x s \gg=\backslash x-> \\
& \text { gs >>= } \backslash y-> \\
& \text { return }(x, y)
\end{aligned}
$$

What is a Parser?

A parser is a program that takes a string of characters (or a set of tokens) as input and determines its syntactic structure.

The Parser Type

In a functional language such as Haskell, parsers can naturally be viewed as functions.
type Parser $=$ String \rightarrow Tree
A parser is a function that takes a string and returns some form of tree.

However, a parser might not require all of its input string, so we also return any unused input:
type Parser $=$ String \rightarrow (Tree,String)
A string might be parsable in many ways, including none, so we generalize to a list of results:
type Parser $=$ String \rightarrow [(Tree,String)]

Furthermore, a parser might not always produce a tree, so we generalize to a value of any type:

```
type Parser a = String }->\mathrm{ [(a,String)]
```

Finally, a parser might take token streams instead of character streams:

```
type TokenParser b a = [b] }->\mathrm{ [(a,[b])]
```

Note:
For simplicity, we will only consider parsers that either fail and return the empty list as results, or succeed and return a singleton list.

Basic Parsers (Building Blocks)

The parser item fails if the input is empty, and consumes the first character otherwise:

$$
\begin{aligned}
& \text { item : : Parser Char } \\
& \text {-- String -> [(Char, String)] } \\
& \text {-- [Char] -> [(Char, [Char])] } \\
& \text { item }=\text { \inp -> case inp of } \\
& \begin{array}{lll}
{[]} & -> & {[]} \\
(x: x s) & \rightarrow & {[(x, x s)]}
\end{array}
\end{aligned}
$$

Example:

```
> item "Howdy a11"
[('H',"owdy a11")]
> item ""
[]
```

We can make it more explicit by letting the function parse apply a parser to a string:
parse :: Parser a -> String -> [(a,String)] parse p inp = p inp -- essentially id function

Example:

> > parse item "Howdy a11"
> $\left[\left({ }^{\prime} \mathrm{H}^{\prime}, ’\right.\right.$ "owdy a11")]

Sequencing Parser

Often, we need to combine parsers in sequence, e.g., the following grammar:
<if-stmt> :: if (<expr>) then <stmt>
First parse if, then (, then <expr>, then), ...
To combine parsers in sequence, we make the Parser type into a monad:
instance Monad Parser where
-- (>>=) :: Parser a -> (a -> Parser b) -> Parser b
$\mathrm{p} \gg=\mathrm{f}=$ \ing $->$ case parse p inf of

$$
\left.\begin{array}{l}
{[] \quad->} \\
{[(\mathrm{v}, \text { out })]} \\
\hline
\end{array}\right] \text { parse (f v) out }
$$

Sequencing Parser (do)

Now a sequence of parsers can be combined as a single composite parser using the keyword do. Example: three :: Parser (Char,Char) three $=$ do $x \leftarrow$ item "The value
of x is generated by the item parser."
Meaning:

The parser return v always succeeds, returning the value v without consuming any input:

$$
\begin{aligned}
& \text { return :: a -> Parser a } \\
& \text { return v = \inp -> [(v,inp)] }
\end{aligned}
$$

Making Choices

What if we have to backtrack? First try to parse p, then q ? The parser $p<1>q$ behaves as the parser p if it succeeds, and as the parser q otherwise.

$$
\begin{aligned}
& \text { empty : : Parser a } \\
& \text { empty = \in -> [] -- always fails } \\
& \text { (<|>) :: Parser a -> Parser a -> Parser a } \\
& \text { p <|> q = \in -> case parse p in of } \\
& \text { [] -> parse q in } \\
& \text { [(v,out)] -> [(v,out)] }
\end{aligned}
$$

Example: > parse empty "abc"

$$
\begin{aligned}
& \text { [] } \\
& \text { > parse (item <l> return 'd') "abc" } \\
& {[(' a ', " b c ")]}
\end{aligned}
$$

The "Monadic" Way

Parser sequencing operator

(>>=) : : Parser a -> (a -> Parser b) -> Parser b
$p \gg=f=$ inn $->$ case parse p inf of

$$
[] \text {-> [] }
$$

$$
[(v, \text { out })] \text {-> parse (f v) out }
$$

$p \gg=f$

- fails if p fails
- otherwise applies f to the result of p
- this results in a new parser, which is then applied Example

$$
\begin{aligned}
& \text { > parse ((empty <|> item) >>= (_ -> item)) "abc" } \\
& \text { [('b',"c")] }
\end{aligned}
$$

Examples

> parse item ""
[]
> parse item "abc"
[('a',"bc")]
> parse empty "abc"
[]
> parse (return 1) "abc"
[(1,"abc")]
> parse (item <l> return 'd') "abc"
[('a',"bc")]
> parse (empty <l> return 'd') "abc"
[('d',"abc")]

Key benefit: The result of first parse is available for the subsequent parsers

$$
\begin{aligned}
& \text { parse (item >>= (\x -> } \\
& \text { item >>= (\y -> } \\
& \text { return (y:[x])))) "ab" } \\
& \text { [("ba","")] }
\end{aligned}
$$

