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Sequences
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Sequences

A sequence is a function from a subset of the set of 
integers (such as {0,1,2,...} or {1,2,3,...}) to some 
set S. 
We use the notation an to denote the image of the 
integer n. We call an a term of the sequence. 

We use the notations {an} or (an) to denote 
sequences. 
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Example

Let us consider the sequence {an}, where
an = 1/n.
Thus, the sequence starts with
{a1, a2, a3, a4, ... } = {1, 1/2, 1/3, 1/4, ... }

Sequences find ubiquitous use in computer science. 
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Geometric Progression

A geometric progression is a sequence of the form:
a, ar, ar2, ar3,...

where the initial term a and the common ratio r are 
real numbers.

The geometric progression is a discrete analogue of 
an exponential function.
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Arithmetic Progression

An arithmetic progression is a sequence of the form
a, a+d, a+2d, a+3d, ...

where the initial term a and the common difference 
d are real numbers.

An arithmetic function is a discrete analogue of a 
linear function dx+a.

�6



Strings

The data type of a string is nothing but a sequence 
of finite length.
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Recurrence Relations
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Recurrence Relation

A recurrence relation for a sequence {an} expresses 
the term an in terms of previous terms of the 
sequence. 
The initial conditions for a recursively defined 
sequence specify the terms before the recurrence 
relation takes effect. 
A sequence is called a solution of a recurrence 
relation if its terms satisfy the recurrence relation.
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Example

Let {an} be the sequence defined by the initial 
condition 

a0=2 
and the recurrence relation

an = an-1 + 3  for n >= 1
Then a1 =2+3=5, a2=5+3=8, a3=8+3=11,...
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Fibonacci Sequence

Recall that the Fibonacci sequence is defined by 
the initial conditions: f0=0 and f1=1
and the recurrence relation

fn = fn-1+fn-2

for n >= 2.
Hence, {fn} = {0,1,1,2,3,5,8,13,...}
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Solving Recurrence Relations

We say that we have solved a recurrence relation if 
we can find an explicit formula, called a closed 
formula, for the terms of the sequence.

Example:  For the sequence given by the initial 
condition a0=2 and the recurrence an = an-1 + 3, we 
get the closed formula an=3n+2. 
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Fibonacci Sequence

Recall that the Fibonacci sequence is given by the 
initial conditions f0=0 and f1=1 and the recurrence 
relation fn = fn-1+fn-2. A closed formula is given by 
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Remark

There are many techniques available to solve 
recurrence relations. We will study some of them in 
depth later, including methods that allow us to 
derive the closed form solution to the Fibonacci 
sequence. 
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Summations

�15



Sums

We use the notations

The letter k is called the index of summation.

nX

k=m

ak = am + am+1 + · · ·+ an
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Example

5X

k=1

k2 = 12 + 22 + 33 + 42 + 52

= 1 + 4 + 9 + 16 + 25

= 55
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Remark

When counting the number of operations in the 
analysis of an algorithm, we get sums when 
counting the number of operations within a for loop.
The notation becomes particularly useful when 
counting operations in nested loops. The 
enumeration of terms with ellipses becomes 
tedious. 
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Geometric Series

If a and r 6= 0 are real numbers, then
nX

j=0

arj =

(
arn+1�a

r�1 if r 6= 1

(n+ 1)a if r = 1

Proof:
The case r = 1 holds, since arj = a for each of the
n+ 1 terms of the sum.

The case r 6= 1 holds, since

(r � 1)
Pn

j=0 ar
j =

nX

j=0

arj+1 �
nX

j=0

arj

=
n+1X

j=1

arj �
nX

j=0

arj

= arn+1 � a
and dividing by (r � 1) yields the claim.
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Sum of the First n Positive Integers (1/2)
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For all n � 1, we have
Pn

k=1 k = n(n+ 1)/2

We prove this by induction.
Let A(n) be the claimed equality.

Basis Step: We need to show that A(1) holds.
For n = 1, we have

P1
k=1 k = 1 = 1(1 + 1)/2.



Sum of the First n Positive Integers (2/2)
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Induction Step: We need to show that 8n � 1 : [A(n) ! A(n+ 1)]

As induction hypothesis, suppose that A(n) holds. Then,

n+1X

k=1

k = (n+ 1) +

nX

k=1

k

=
2(n+ 1)

2
+

n(n+ 1)

2
by Induction Hypothesis

=
2n+ 2 + n2

+ n

2
=

n2
+ 3n+ 2

2

=
(n+ 1)(n+ 2)

2

Therefore, the claim follows by induction on n.



Sum of Fibonacci Numbers

Let f0 = 0 and f1 = 1 and fn = fn�1 + fn�2 for
n � 2. Then

nX

k=1

fk = fn+2 � 1.

Induction basis: For n = 1, we have

1X

k=1

fk = 1 = (1 + 1)� 1 = f1 + f2 � 1 = f3 � 1
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Sum of Fibonacci Numbers
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Let A(n) be the claimed equality.

Induction Step: We need to show that 8n � 1 : [A(n) ! A(n+ 1)]

As induction hypothesis, suppose that A(n) holds. Then,

n+1X

k=1

fk = fn+1 +

nX

k=1

fk

= fn+1 + fn+2 � 1 by Induction Hypothesis

= fn+3 � 1 by definition

Therefore, the claim follows by induction on n.



Other Useful Sums

nX

k=1

k2 =
n(n+ 1)(2n+ 1)

6
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nX

k=1

k3 =
n2(n+ 1)2
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Infinite Geometric Series

Let x be a real number such that |x| < 1. Then

1X

k=0

xk =
1

1� x
.
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Infinite Geometric Series

Since the sum of a geometric series satisfies

nX

k=0

xk =
xn+1 � 1

x� 1
,

we have

1X

k=0

xk = lim
n!1

nX

k=0

xk = lim
n!1

xn+1 � 1

x� 1

As limn!1 xn+1 = 0, we get

1X

k=0

xk =
�1

x� 1
=

1

1� x
.
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Another Useful Sum

1X

k=1

kxk�1 =
1

(1� x)2

Di↵erentiating both sides of

1X

k=0

xk =
1

1� x

yields the claim.
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