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Discrete Structures for Computing

Relations
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Rabbits
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Suppose we have three rabbits called
Albert, Bertram, and Chris that have
distinct heights.

Let us write (a,b) if a is taller than b.

Obviously, we cannot have both
(Albert, Bertram) and (Bertram,
Albert), so not all pairs of rabbit
names will occur.

Then the set of “taller than”
relation is:

Suppose: Albert is tfaller than

Bertram, and Bertram is taller than
Chris. { (Albert, Bertram), (Bertram,

Chris), (Albert, Chris) }



Rabbits
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Let
A = { Albert, Bertram, Chris }
be the set of rabbits.

Then the “taller than” relation is a subset of the cartesian
product AxA, namely { (Albert, Bertram), (Bertram, Chris),
(Albert, Chris) } € A x A.



Binary Relations

Let A and B be sets.

A binary relation from A to B is a subset of AxB.

A relation on a set A is a subset of AxA.



Examples
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Let us consider the following relations on the set of
Integers:

A={(ab)inZxZ|a<=b}
B={(a,b)inZxZ|a>b}

C={(a,b)inZxZ|a=bora=-b}



Notation

Let R be a relation from A to B. In other words, R
contains pairs (a,b) with a in A and b in B.

If (a,b) in R, then we say that a is related to b by R.

It is customary to use infix notation for relations.

Thus, we write a R b to express that a is related to b
by R. In other words, a R b if and only if (a,b) in R.



Example

Let A be the set of city names of the USA. Let B be the set
of states. Define the relation C

C=1{(ab)inAxB]|aisacity of b}
Then
(College Station, Texas)
(Austin, Texas)
(San Francisco, California)

all belong to the relation C.



Remark

The concept of a relation generalizes the concept of a
function. A function f relates the argument x with its

function value f(x). The difference is that a relation can
relate an element x with more than one value.

For example, consider the relation

A=%{(ab)inZxZ | a<=b}.



We are going to study relations as mathematical
objects. This allows us to abstract from well-known
relations such as <=, =, “is taller than”, “likes the same
sport as”.

We identify some basic properties of relations. Then we
study relations generalizing the equality relation (so-
called equivalence relations), and relations generalizing
<= (so-called partial order relations).



Basic Properhes of Relations
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Reflexivity

We call a relation R on a set A reflexive if and only if
(a,a) € R holds for all a in A.

Example: The equality relation = on the set of integers
is reflexive, since a=a holds for all integers a.

The less than relation < on the set of integers is not
reflexive, since 1«1 does not hold.
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Test Yourself...

X1 Let | denote the divides relation on the set of
positive integers, so 2 | 4 means that there exists an
integer x such that 2x=4. Is the relation | reflexive?

X2 Let S be the set of students in this class. Consider
the relation R = “wears the same color shirt as.” Is
the relation R reflexive?
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Symme’rry

We call a relation R on a set A symmetric if and only
if (a,b) € R implies that (b,a) € R holds.

Example: The equality relation = on the set of integers
IS symmetric, since a=b implies that b=a.

The less than relation < on the set of integers is not
symmetric, since 1<2 but 2<1 does not hold.
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Test Yourself...

X1 Let | denote the divides relation on the set of
positive integers, so 2 | 4 means that there exists an
integer x such that 2x=4. Is the relation | symmetric?

X2 Let S be the set of students in this class. Consider
the relation R = “wears the same color shirt as”. Is
the relation R symmeftric?
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Anhsymmefry

We call a relation R on a set A antisymmetric if and
only if (a,b) € R and (b,a) € R imply that a=b.

Formally: vavb ((a,b) € R A (b,a) € R) — a=b.

Example: The equality relation = on the set of integers
IS antisymmetric, since a=b and b=a implies that a=b.

The less than relation < on the set of integers is
antisymmetric. Why?
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Test Yourself...

X1 Let | denote the divides relation on the set of
positive integers, so 2 | 4 means that there exists an
integer x such that 2x=4. Is the relation |
antisymmeftric?

X2 Let S be the set of students in this class. Consider
the relation R = “wears the same color shirt as”. Is the
relation R antisymmeftric?
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Warnlng

The meaning of antisymmetry is not opposite to the
meaning of symmetry! In fact, we have already seen

that the equality relation = on the set of integers is
both symmeftric and antisymmetric.

You should very carefully study the meaning of these
terms.
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Transitive

We call a relation R on a set A transitive if and only if
(a,b) € R and (b,c) € R imply that (a,c) € R

Example: The equality relation = on the set of integers
IS transitive, since a=b and b=c implies that a=c.

The less than relation < on the set of integers is
transitive, since a<b and b<c imply that a<c.
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Test Yourself...

X1 Let | denote the divides relation on the set of
positive integers, so 2 | 4 means that there exists an
integer x such that 2x=4. Is the relation | transitive?

X2 Let S be the set of students in this class. Consider
the relation R = “wears the same color shirt as”. Is the
relation R transitive?
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Equlvalence Relations
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Equivalence Relation
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A relation R on a set A is called an equivalence relation
if and only if R is reflexive, symmetric, and transitive.

- Reflexive: For all a in A, we have (a,a) € R
- Symmetric: (a,b) in R—> (b,a) € R

- Transitive: [ (a,b) € R and (b,c) € R ]—» (a,c) € R
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Example Equality

A3

The equality relation = on the set of integers is an
equivalence relation.

Indeed,

the relation = is reflexive, since a=a holds for all
Integers a.

the relation = is symmetric, since a=b implies that b=a.

the relation
that a=c.

IS fransitive, since a=b and b=c implies
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Example: Congruence mod m
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Let m be a positive integer. For integers a and b, we write
a =b (mod m)
if and only if m divides a-b.

For all a in Z, we have m | (a-a), since m 0 = 0 = a-a.
Thus, a = a (mod m) holds for all integers a. Thus, the

relation is reflexive.

For a, b in Z, if a = b (mod m), then this means that there

exists an integer k such that mk=a-b. Thus, m(-k) = b-gq,
which implies b = a (mod m). Thus, the relation is

symmeftric.
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Example: Congruence mod m
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If a =b (mod m) and b = ¢ (mod m) holds, then this
means that there exist intfegers k and | such that

mK = a-b and ml = b-c¢
Hence, m(k+l) = a-b + b-c = a-c
This shows that a = ¢ (mod m) holds.

Therefore, the relation is transitive.

We can conclude that a = b (mod m) is an equivalence
relation.
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Equivalence Classes
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Let R be an equivalence relation on a set A. For an
element a in A, the set of elements

[ak ={binA|aRDb}

is called the equivalence class of a.
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Example

Let us consider the equivalence relation a = b (mod 4) on the

set of integers. Thus, two integers a and b are related
whenever their difference is a multiple of 4. Thus, the
equivalence classes are:

0]l=1..,-8 -4,0, 4,8, ..}
1] =1..,-7-3,1,5,9, ..}
2] =¢ .. -6,-2,2,6,..}

[31=¢..,-5 -1,3,7 ..}

Now note that [4] = [0], [5] = [1]. In fact, [O], [1], [2] and [3]
are all equivalence classes.
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Theorem
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Let R be an equivalence relation on a set A. Then

the following statements are equivalent:

a)aRb

b) [a] = [b]
c)[al N [b] + &
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Proof
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Suppose that aRb holds. We are going to show that
a] C [b] holds. Let ¢ € |a]. This means that aRc
holds. Since R is symmetric, aRb implies that bRa.
By transitivity, bRa and aRc imply that bRc holds.
Hence, ¢ € |b]. Therefore, we have shown that |a] C

b]. The proof that [b] C |a] is similar. Hence, we
have shown that statement a) implies statement b).

We will show now that b) implies ¢). Since a € |al,
we know that the equivalence class of a is not empty:.

As la] = [b] # 0, we have [a] N [b] #£ 0.
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Proof (continued)
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We will show now that c¢) implies a).

Suppose that [a] N [b] # (). Thus, there exists an
element c such that aRc and bRc. By symmetry, we
oget cRb. It follows by transitivity that aRb holds.

29



Partial Order Relations
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Partial Orders
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A relation R on a set A is called a partial order if and
only if it is reflexive, antisymmetric, and transitive.

A set A with a partial order is called a partially
ordered set (poset).

31



Example 1
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The "less than or equal to” relation < on the set of
intfegers is a partial order relation.

Indeed, since a < a holds for all integers a, the
relation < is reflexive.

Since a ¢ b and b < a implies that a = b, the relation is
antisymmetric.

Since a ¢ b and b < ¢ implies that a < ¢, the relation is
transitive.
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Example 2
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The divides relation | on the set of positive integers is a partial
order relation.

Indeed, since ala for all positive integers a, the relation | is
reflexive.

If alb and bla, then there exist integers k and | such that a k
= b and b | = a. Therefore, a kl = a, so kl=1. This means that
either k=l=1 or k=|=-1. Since a and b are positive integers, we
cannot have a (-1) = b. Therefore, we must have k=l=1, which
means that a=b. Thus, | is an antisymmetric relation.

The relation | is transitive, since alb and blc means that there
exist integers k and | such that ak=b and bl=c, so a(kl)=c,
which implies that a | c.
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Test Yourself ...
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X1 Is the less than relation < on the set of integers a
partial order relation?

X2 Let S be a set. Is the subset relation € on the set
P(S) a partial order relation?
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Comparable Elements

A partial order on a set S is often denoted by
symbols resembling the notation commonly used for
"less than or equal to”, namely < or C or <

Let (S, <) be a partially ordered set. For two

elements a and b of S, we do not necessarily have
that one of the relations a < b or b < a holds. If one

of them holds, then we call a and b comparable
elements of S, otherwise a and b are incomparable.
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Total Orders

A partially ordered set (S, <) in which any two
elements are comparable is called a total order.

A totally ordered set is also called a chain.

For example, consider the set of positive intfegers N
with <=. Any two positive integers are comparable
with <=. It can form a chain such that 1 <= 2 <= 3
<= 4 <= ..

36



Lexicographic Ordermg
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Suppose that we have two partially ordered sets:
(A, <1) and (B, <»2).

We can construct a partial order on AxB by defining
(ai, b1) < (az, b2)

if and only if (a1 = a2 and b; <2 b2) or (a1 <1 az) holds.

We call the relation < the lexicographic order on the
cartesian product AxB.
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Example

Let Z be the set of integers, totfally ordered with the
"less than or equal to” relation <.

In the lexicographic order < on ZxZ, we have
(3.4) < (4,2)
(3.7) < (3,8)
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Hasse Diagram

Let (S, <=) be a finite partially ordered set.

Suppose that a and b are distinct elements of S such
that a <= b. We say that b covers a if and only if
there does not exist an element ¢ in S such that a < ¢
< b.

The Hasse diagram of (S, <=) is a diagram in which an
element b of S is written above a and connected by a
line if and only if b covers a.
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Examples

Consider {2,4,5,10,12,20,25} with divisibility condition.

The Hasse diagram is given by

I2e 20 The cover relation for this

Hasse diagram is

4 ./1 25
£(2,4), (2,10), (4,12), (4,20),
./:/. (5,10), (5,25), (10,20)}.
2 5

The Hasse diagram is more economical than representing the
partial order relation by a directed graph (with an edge from
a to b whenever a <= b). Self-loops and transitively implied
relations are omitted.

40



Maximal and Minimal Elements
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Let (S, <=) be a partially ordered set.

An element m in S is called maximal iff there does not
exist any element b in S such that m < b.

An element m in S is called minimal iff there does not
exist any element b in S such that b < m.
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Example
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Determine the maximal elements of the set Al

{2/415110112,20,25}, 4 .//JIO‘/IZS
partially ordered by the divisibility relation. :¢" s

The elements 12, 20, and 25 are the maximal elements.

Determine the minimal elements of the above partially
ordered set ( {2,4,5,10,12,20,25}, | ).

The elements 2 and 5 are the minimal elements.
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Least and Greatest Element
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Let (S, <=) be a partially ordered set.

An element a in S is called the least element iff a <= b
holds for all b in S.

[A least element does not need to exist. If it does, then
it is uniquely determined.]

An element z in S is called the greatest element iff
b <= z holds for all b in S.

12@ 20,@®
[A greatest element does not need to exist. 4,/] )5
If it does, then it is uniquely determined.] /
5

2
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Test Yourself...

X1 Determine the least and the greatest elements of
the set of positive integers partially ordered by

divisibility.

X2 Let S be a nonempty set. Partially order the power
set P(S) by inclusion. Determine the least and the
greatest elements of P(S).
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Lattices
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Upper and Lower Bounds
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Let (S, <=) be a partially ordered set.
Let A be a subset of S.

An element u of S is called an upper bound of A if and
only if a <= u holds for all a in A.

An element | of S is called a lower bound of A if and
only if | <= a holds for all a in A.
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Example
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Let 12,4,5,10,12,20,25} with divisibility condition.

The Hasse diagram is given by
170 20@

| %.25
2 5

The subset A = 14,10} has 20 as an upper bound, and 2 as a
lower bound.

The subset A = {12} has 12 as an upper bound, and 2, 4 and 12
as lower bounds.
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Least Upper Bounds
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Let (S, <=) be a partially ordered set, and A a subset of
S. An element u of S is called a least upper bound of A
if it is an upper bound that is less than any other
upper bound of A.

[Unlike upper bounds, the least upper bound is uniquely
determined if it exists]
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Greatest Lower Bounds

m’ . ." . i E! - '.Q‘I i ‘;'”Ma{”!‘u\--"‘,sélx. J"“q"' M"u ’.'.vﬁ i o © - " - - ., ) : - 1‘# ;

Let (S, <=) be a partially ordered set, and A a subset
of S. An element | of S is called a greatest lower
bound of A if it is a lower bound that is greater than
any other lower bound of A.

A greatest lower bound is uniquely determined if it
exists.
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Example
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Consider the poset (S={2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72}, | ).
72@

Draw the Hasse diagram:

What are the upper bounds of the subset A={2, 9} ?
What are the lower bounds of the subset B={60, 72} ?

50



Lattices
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A partially ordered set in which every pair has both a
least upper bound and a greatest lower bound is called
a lattice.
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Example
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Consider the set (N,I) of positive integers that is
partially ordered with respect to the divisibility
relation.

Let a and b be two distinct positive integers. Then the
least upper bound of {a,b} is the least common multiple
of a and b. The greatest lower bound is the greatest
common divisor of {a,b}. Therefore, (N,|) is a lattice.
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