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Rabbits

Suppose we have three rabbits called 
Albert, Bertram, and Chris that have 
distinct heights. 


Let us write (a,b) if a is taller than b. 


Obviously, we cannot have both 
(Albert, Bertram) and (Bertram, 
Albert), so not all pairs of rabbit 
names will occur. 


Suppose: Albert is taller than 
Bertram, and Bertram is taller than 
Chris.

Then the set of “taller than” 
relation is:  


{ (Albert, Bertram), (Bertram, 
Chris), (Albert, Chris) } 
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Rabbits

Let 


A = { Albert, Bertram, Chris } 


be the set of rabbits. 


Then the “taller than” relation is a subset of the cartesian 
product AxA, namely { (Albert, Bertram), (Bertram, Chris), 
(Albert, Chris) } ⊆ A x A. 
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Binary Relations

Let A and B be sets. 


A binary relation from A to B is a subset of AxB.


A relation on a set A is a subset of AxA. 
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Examples

Let us consider the following relations on the set of 
integers:  


A = { (a,b) in ZxZ | a <= b } 


B = { (a,b) in ZxZ | a > b }


C = { (a,b) in ZxZ | a = b or a = -b }
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Notation

Let R be a relation from A to B. In other words, R 
contains pairs (a,b) with a in A and b in B.


If (a,b) in R, then we say that a is related to b by R.


It is customary to use infix notation for relations. 


Thus, we write a R b to express that a is related to b 
by R. In other words, a R b if and only if (a,b) in R. 


6



Example

Let A be the set of city names of the USA. Let B be the set 
of states. Define the relation C 


C = { (a,b) in A x B | a is a city of b } 


Then 


(College Station, Texas)


(Austin, Texas)


(San Francisco, California)


all belong to the relation C. 
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Remark

The concept of a relation generalizes the concept of a 
function. A function f relates the argument x with its 
function value f(x). The difference is that a relation can 
relate an element x with more than one value. 


For example, consider the relation 


A = { (a,b) in ZxZ | a <= b }. 
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Plan

We are going to study relations as mathematical 
objects. This allows us to abstract from well-known 
relations such as <=, =, “is taller than”, “likes the same 
sport as”. 


We identify some basic properties of relations. Then we 
study relations generalizing the equality relation (so-
called equivalence relations), and relations generalizing 
<= (so-called partial order relations).  
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Basic Properties of Relations
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Reflexivity

We call a relation R on a set A reflexive if and only if 
(a,a) ∈ R holds for all a in A. 


Example: The equality relation = on the set of integers 
is reflexive, since a=a holds for all integers a. 


The less than relation < on the set of integers is not 
reflexive, since 1<1 does not hold. 
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Test Yourself...

X1 Let | denote the divides relation on the set of 
positive integers, so 2 | 4 means that there exists an 
integer x such that 2x=4.  Is the relation | reflexive? 


X2 Let S be the set of students in this class. Consider 
the relation R = “wears the same color shirt as.”  Is 
the relation R reflexive? 
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Symmetry

We call a relation R on a set A symmetric if and only 
if (a,b) ∈ R implies that (b,a) ∈ R holds.


Example: The equality relation = on the set of integers 
is symmetric, since a=b implies that b=a. 


The less than relation < on the set of integers is not 
symmetric, since 1<2 but 2<1 does not hold. 
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Test Yourself...

X1 Let | denote the divides relation on the set of 
positive integers, so 2 | 4 means that there exists an 
integer x such that 2x=4.  Is the relation | symmetric? 


X2 Let S be the set of students in this class. Consider 
the relation R = “wears the same color shirt as”.  Is 
the relation R symmetric? 
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Antisymmetry

We call a relation R on a set A antisymmetric if and 
only if (a,b) ∈ R and (b,a) ∈ R imply that a=b.


Formally: ∀a∀b ((a,b) ∈ R ⋀ (b,a) ∈ R)      a=b.


Example: The equality relation = on the set of integers 
is antisymmetric, since a=b and b=a implies that a=b. 


The less than relation < on the set of integers is 
antisymmetric. Why?
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Test Yourself...

X1 Let | denote the divides relation on the set of 
positive integers, so 2 | 4 means that there exists an 
integer x such that 2x=4. Is the relation | 
antisymmetric? 


X2 Let S be the set of students in this class. Consider 
the relation R = “wears the same color shirt as”. Is the 
relation R antisymmetric? 
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Warning

The meaning of antisymmetry is not opposite to the 
meaning of symmetry! In fact, we have already seen 
that the equality relation = on the set of integers is 
both symmetric and antisymmetric. 


You should very carefully study the meaning of these 
terms. 
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Transitive

We call a relation R on a set A transitive if and only if 
(a,b) ∈ R and (b,c) ∈ R imply that (a,c) ∈ R


Example: The equality relation = on the set of integers 
is transitive, since a=b and b=c implies that a=c. 


The less than relation < on the set of integers is 
transitive, since a<b and b<c imply that a<c. 
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Test Yourself...

X1 Let | denote the divides relation on the set of 
positive integers, so 2 | 4 means that there exists an 
integer x such that 2x=4. Is the relation | transitive? 


X2 Let S be the set of students in this class. Consider 
the relation R = “wears the same color shirt as”. Is the 
relation R transitive? 
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Equivalence Relations
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Equivalence Relation

A relation R on a set A is called an equivalence relation 
if and only if R is reflexive, symmetric, and transitive. 


- Reflexive: For all a in A, we have (a,a)  R


- Symmetric: (a,b) in R      (b,a)  R 


- Transitive: [ (a,b)  R and (b,c)  R ]      (a,c)  R 

∈

∈

∈ ∈ ∈
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Example: Equality

The equality relation = on the set of integers is an 
equivalence relation. 


Indeed, 


the relation = is reflexive, since a=a holds for all 
integers a.


the relation = is symmetric, since a=b implies that b=a. 


the relation = is transitive, since a=b and b=c implies 
that a=c. 
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Example: Congruence mod m

Let m be a positive integer. For integers a and b, we write 


a ≡ b (mod m)


if and only if m divides a-b. 


For all a in Z, we have m | (a-a), since m 0 = 0 = a-a. 
Thus, a ≡ a (mod m) holds for all integers a. Thus, the 
relation is reflexive. 


For a, b in Z, if a ≡ b (mod m), then this means that there 
exists an integer k such that  mk=a-b. Thus, m(-k) = b-a,  
which implies b ≡ a (mod m). Thus, the relation is 
symmetric. 

23



Example: Congruence mod m

If a ≡ b (mod m) and b ≡ c (mod m) holds, then this 
means that there exist integers k and l such that 


mk = a-b and ml = b-c


Hence, m(k+l) = a-b + b-c = a-c


This shows that a ≡ c (mod m) holds. 


Therefore, the relation is transitive. 


We can conclude that a ≡ b (mod m) is an equivalence 
relation.
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Equivalence Classes

Let R be an equivalence relation on a set A. For an 
element a in A, the set of elements 


[a]R = { b in A | a R b } 


is called the equivalence class of a. 
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Example

Let us consider the equivalence relation a ≡ b (mod 4) on the 
set of integers. Thus, two integers a and b are related 
whenever their difference is a multiple of 4. Thus, the 
equivalence classes are: 


[0] = { ..., -8, -4, 0, 4, 8, ... } 


[1] = { ..., -7,-3, 1, 5, 9, ... } 


[2] = { ..., -6, -2, 2, 6,... } 


[3] = { ..., -5, -1, 3, 7, ... } 


Now note that [4] = [0], [5] = [1]. In fact, [0], [1], [2] and [3] 
are all equivalence classes. 
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Theorem

Let R be an equivalence relation on a set A. Then 


the following statements are equivalent:


a) a R b


b) [a] = [b] 


c) [a] ∩ [b] ≠ ∅
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Proof

Suppose that aRb holds. We are going to show that

[a] ✓ [b] holds. Let c 2 [a]. This means that aRc
holds. Since R is symmetric, aRb implies that bRa.
By transitivity, bRa and aRc imply that bRc holds.

Hence, c 2 [b]. Therefore, we have shown that [a] ✓
[b]. The proof that [b] ✓ [a] is similar. Hence, we

have shown that statement a) implies statement b).
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For all n � 1, we have

Pn
k=1 k = n(n+ 1)/2

We prove this by induction.

Let A(n) be the claimed equality.

Basis Step: We need to show that A(1) holds.

For n = 1, we have

P1
k=1 k = 1 = 1(1 + 1)/2.

Induction Step: We need to show that 8n � 1 : [A(n) ! A(n+ 1)]

As induction hypothesis, suppose that A(n) holds. Then,

n+1X

k=1

k = (n+ 1) +

nX

k=1

k

=
2(n+ 1)

2
+

n(n+ 1)

2
by Induction Hypothesis

=
2n+ 2 + n2

+ n

2
=

n2
+ 3n+ 2

2

=
(n+ 1)(n+ 2)

2

Therefore, the claim follows by induction on n.
Let A(n) be the claimed equality.

Induction Step: We need to show that 8n � 1 : [A(n) ! A(n+ 1)]

As induction hypothesis, suppose that A(n) holds. Then,

n+1X

k=1

fk = fn+1 +

nX

k=1

fk

= fn+1 + fn+2 � 1 by Induction Hypothesis

= fn+3 � 1 by definition

Therefore, the claim follows by induction on n.

We will show now that b) implies c). Since a 2 [a],
we know that the equivalence class of a is not empty.
As [a] = [b] 6= ;, we have [a] \ [b] 6= ;.
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Proof (continued)

We will show now that c) implies a).
Suppose that [a] \ [b] 6= ;. Thus, there exists an

element c such that aRc and bRc. By symmetry, we
get cRb. It follows by transitivity that aRb holds. ⇤
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Partial Order Relations
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Partial Orders

A relation R on a set A is called a partial order if and 
only if it is reflexive, antisymmetric, and transitive. 


A set A with a partial order is called a partially 
ordered set (poset). 
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Example 1 

The “less than or equal to” relation ≤ on the set of 
integers is a partial order relation. 


Indeed, since a ≤ a holds for all integers a, the 
relation ≤ is reflexive. 


Since a ≤ b and b ≤ a implies that a = b, the relation is 
antisymmetric. 


Since a ≤ b and b ≤ c implies that a ≤ c, the relation is 
transitive. 
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Example 2

The divides relation | on the set of positive integers is a partial 
order relation.


Indeed, since a|a for all positive integers a, the relation | is 
reflexive. 


If a|b and b|a, then there exist integers k and l such that a k 
= b and b l = a. Therefore, a kl = a, so kl=1. This means that 
either k=l=1 or k=l=-1. Since a and b are positive integers, we 
cannot have a (-1) = b. Therefore, we must have k=l=1, which 
means that a=b. Thus, | is an antisymmetric relation.


The relation | is transitive, since a|b and b|c means that there 
exist integers k and l such that ak=b and bl=c, so a(kl)=c, 
which implies that a | c. 
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Test Yourself ...

X1 Is the less than relation < on the set of integers a 
partial order relation? 


X2 Let S be a  set. Is the subset relation ⊆ on the set 
P(S) a partial order relation? 

34



Comparable Elements

A partial order on a set S is often denoted by 
symbols resembling the notation commonly used for 
“less than or equal to”, namely ≤ or ⊑  or ≼ 


Let (S, ≼) be a partially ordered set. For two 
elements a and b of S, we do not necessarily have 
that one of the relations a ≼ b or b ≼ a holds. If one 
of them holds, then we call a and b comparable 
elements of S, otherwise a and b are incomparable.
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Total Orders

A partially ordered set (S, ≼) in which any two 
elements are comparable is called a total order. 

  

A totally ordered set is also called a chain.

  

For example, consider the set of positive integers N 
with <=.  Any two positive integers are comparable 
with <=.  It can form a chain such that  1 <= 2 <= 3 
<= 4 <= … 
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Lexicographic Ordering

Suppose that we have two partially ordered sets: 


(A, ≼1 ) and (B, ≼2). 


We can construct a partial order on AxB by defining


(a1, b1) ≼ (a2, b2)


if and only if (a1 = a2 and b1 ≼2 b2) or (a1 ≺1 a2) holds.


We call the relation ≼ the lexicographic order on the 
cartesian product AxB. 
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Example

Let Z be the set of integers, totally ordered with the 
“less than or equal to” relation ≤.


In the lexicographic order ≼ on ZxZ, we have


(3,4) ≼ (4,2)


(3,7) ≼ (3,8)
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Hasse Diagram

Let (S, <=) be a finite partially ordered set. 


Suppose that a and b are distinct elements of S such 
that a <= b. We say that b covers a if and only if 
there does not exist an element c in S such that a < c 
< b. 


The Hasse diagram of (S, <=) is a diagram in which an 
element b of S is written above a and connected by a 
line if and only if b covers a. 
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Examples

Consider {2,4,5,10,12,20,25} with divisibility condition. 


The Hasse diagram is given by 


The Hasse diagram is more economical than representing the 
partial order relation by a directed graph (with an edge from 
a to b whenever a <= b). Self-loops and transitively implied 
relations are omitted. 

2

12

10

20

4 25

5
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The cover relation for this 
Hasse diagram is


{(2,4), (2,10), (4,12), (4,20), 
(5,10), (5,25), (10,20)}. 



Maximal and Minimal Elements

Let (S, <=) be a partially ordered set. 


An element m in S is called maximal iff there does not 
exist any element b in S such that m < b. 


An element m in S is called minimal iff there does not 
exist any element b in S such that b < m. 
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Example

Determine the maximal elements of the set 


{2,4,5,10,12,20,25}, 


partially ordered by the divisibility relation.


The elements 12, 20, and 25 are the maximal elements. 


Determine the minimal elements of the above partially 
ordered set ( {2,4,5,10,12,20,25}, | ).


The elements 2 and 5 are the minimal elements. 
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Least and Greatest Element

Let (S, <=) be a partially ordered set. 


An element a in S is called the least element iff a <= b 
holds for all b in S. 


[A least element does not need to exist. If it does, then 
it is uniquely determined.] 


An element z in S is called the greatest element iff      
b <= z holds for all b in S. 


[A greatest element does not need to exist.                
If it does, then it is uniquely determined.] 
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Test Yourself...

X1 Determine the least and the greatest elements of 
the set of positive integers partially ordered by 
divisibility. 


X2 Let S be a nonempty set. Partially order the power 
set P(S) by inclusion. Determine the least and the 
greatest elements of P(S). 
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Lattices
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Upper and Lower Bounds

Let (S, <=) be a partially ordered set. 


Let A be a subset of S. 


An element u of S is called an upper bound of A if and 
only if a <= u holds for all a in A. 


An element l of S is called a lower bound of A if and 
only if l <= a holds for all a in A. 
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Example

Let {2,4,5,10,12,20,25} with divisibility condition. 


The Hasse diagram is given by 


The subset A = {4,10} has 20 as an upper bound, and 2 as a 
lower bound. 


The subset A = {12} has 12 as an upper bound, and 2, 4 and 12 
as lower bounds.
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12

10

20

4 25
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Least Upper Bounds

Let (S, <=) be a partially ordered set, and A a subset of 
S. An element u of S is called a least upper bound of A 
if it is an upper bound that is less than any other 
upper bound of A. 


[Unlike upper bounds, the least upper bound is uniquely 
determined if it exists]
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Greatest Lower Bounds

Let (S, <=) be a partially ordered set, and A a subset 
of S.  An element l of S is called a greatest lower 
bound of A if it is a lower bound that is greater than 
any other lower bound of A. 


A greatest lower bound is uniquely determined if it 
exists. 

49



Example

Consider the poset (S={2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72}, | ).


Draw the Hasse diagram: 


What are the upper bounds of the subset A={2, 9} ?


What are the lower bounds of the subset B={60, 72} ?
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Lattices 

A partially ordered set in which every pair has both a 
least upper bound and a greatest lower bound is called 
a lattice. 
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Example

Consider the set (N,|) of positive integers that is 
partially ordered with respect to the divisibility 
relation. 


Let a and b be two distinct positive integers. Then the 
least upper bound of {a,b} is the least common multiple 
of a and b. The greatest lower bound is the greatest 
common divisor of {a,b}. Therefore, (N,|) is a lattice.
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