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Motivation

The syntax of programming languages (such as Algol, C, 
Java) are described by phrase structure grammars. 
The grammars are also used in the specification of data 
exchange formats.  

A grammar specifies a formal language. The advantage 
is that a fairly small grammar can describe a fairly 
complex language.  

Formal languages are also a convenient tool in 
computational complexity theory, as we will see.
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Notation

Let V be a set.  

We denote by V* the set of strings over V.  

!

A language over the alphabet V is a subset of V*. 

!

The empty string is denoted by λ. 

�3



Phrase-Structure Grammars

A phrase-structure grammar G consists of  

- a set V called the vocabulary,  

- a subset T of V consisting of terminal symbols,  

  [N=V\T is called the set of nonterminal symbols] 

- a distinguished nonterminal element S in N, called start symbol 

- and a finite set of productions (or rules). 

We denote this data by G=(V,T,S,P). 

�4



Productions

The productions are term-rewriting rules that specify 
how a part of string can be modified. 

A production rule is of the form  

A -> B 

where A is string in V* containing at least one 
nonterminal symbol, and B is a string in V*.   

The production rule A -> B specifies that A can be 
replaced by B within a string. 
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Example Grammar Rules (Part of C++ Grammar)

A.5 Statements 
statement:  
     labeled-statement 
     expression-statement  
     compound-statement  
     selection-statement  
     iteration-statement 
     jump-statement   
     declaration-statement  
     try-block 
labeled-statement:  
     identifier : statement 
     case constant-expression : statement       
     default : statement 

expression-statement: 
     expressionopt ; 
compound-statement: 
    { statement-seqopt } 
statement-seq:  
    statement 
    statement-seq statement 

selection-statement:  
    if ( condition ) statement 
    if ( condition ) statement else statement 
    switch ( condition ) statement  
condition: 
    expression  
    type-specifier-seq declarator = assignment-expression 
iteration-statement:  
    while ( condition ) statement  
    do statement while ( expression ) ;  
    for ( for-init-statement ; conditionopt ; expressionopt )    
             statement 
for-init-statement:  
             expression-statement 
             simple-declaration  
jump-statement: 
    break ;  
    continue ; 
    return expressionopt ;  
    goto identifier ; 
declaration-statement:  
    block-declaration 

Words such as 
“statement”, 
“labeled-statement” 
or “condition” are all 
non-terminal symbols

Bold faced words  
(keywords) and ;  
(semicolon) are  
terminal symbols



Main Idea

We begin with the start symbol S, and then repeatedly 
apply the productions to transform the current string of 
symbols into a new string of symbols.   
!
Once we reach a string s that consists only of terminal 
symbols, then this procedure terminates.  
!
We say that s is derivable from S.  
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Derivable

Consider a grammar that contains the productions 

A -> a      and      A -> aAa 

Given a string AAab, we can apply the first production 
to obtain Aaab, and the second production to get 
aAaaab. Applying the first production, we get aaaaab. 

We write A => B iff the string B can be derived from A 
by applying a single production rule.  

We will write A =>* B if the string B can be derived 
from A by a finite sequence of production rules. 

Thus, we have shown that AAab =>* aaaaab 
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Example 0 

Consider the grammar G = (V, T, S, P) with 

V = {S, 1, (, ), +} 

T = {1, (, ), +}  

P = { S -> (S + S), S -> 1 }  

We have S => 1,  

S => (S+S) => (S + 1) => (1+1) 

S => (S+S) => ((S+S) +S) =>* ((1+1)+1)
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Derivability Relation

Notice that => is a relation on V*. It relates a string in 
V* with a string that can be obtained from it by applying 
a single production rule. Since many production rules 
may apply, => is in general not a function. 

!

The relation =>* is the so-called transitive closure of =>, 
that is, the smallest transitive relation containing the 
relation =>. 
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Language

Let G=(V,T,S,P) be a phrase-structure grammar.  

The set L(G) of strings that can be derived from the 
start symbol S using production from P is called the 
language of the grammar G.  

In other words, 

L(G) = { s in T* | S =>* s }  
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Example 1 

Let G be a grammar with vocabulary V = {S, A, a, b},  

set of terminal symbols T = { a, b}  

start symbol S 

set of production rules  P = { S -> aA, S -> b, A -> aa }  

S => b 

S => aA => aaa 

Are b and aaa all terminal strings in L(G)? 
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Example 1: Derivation Tree

Recall that G=({S,A,a,b}, {a,b}, S, P) 

where 

P = { S -> aA, S -> b, A -> aa }  

Simply form the tree with all 
derivations starting from S.  

Thus, L(G) = {aaa, b}

S

aA b

aaa
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Example 2

Let G = (V,T,S,P) be a grammar with T = {a,b} and  

P = {S -> ABa, A -> BB, B -> ab, AB -> b}.  

!

S => ABa => BBBa => abBBa => ababBa => abababa 

S => ABa => Aaba => BBaba =>* abababa 

S => ABa => ba 

!

L(G) = { ba, abababa } 
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Notation

Instead of writing multiple productions such as 

A -> Ab 

A -> Aba 

we can combine them into a single production, 
separating alternatives with |, as follows:  

A -> Ab | Aba 
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Problem

In general, we would like to have an algorithm that can 
decide whether a given string s belongs to the language 
L(G) or not. This is not always possible, not even in 
principle.  

The problem is that the production rules are too 
flexible.  We will now consider more restricted forms 
of grammars that allow one - at least in principle - to 
write an algorithm to decide membership in L(G). 
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Regular Grammars
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Regular Grammars

In a regular grammar, all productions are of the form 
a) S -> empty string or 
b) A -> aB or A -> a, where A and B are nonterminal 
symbols (including the start symbol S) and a is a terminal 
symbol 
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Test Yourself...

Consider the grammar G = (V,T,S,P) where 
V = {S,A,0,1}, 
T = {0,1}, 
S is the start symbol, and  
P has the rules  
   S -> 0S | 1A | 1 | empty-string 
   A -> 1A | 1 
!
Determine L(G). 
L(G) = { 0m1n | m >= 0, n >=0 } 
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Regular Languages

A language generated by a regular grammar is called a 
regular language.  

Warning: A regular language might also be generated by 
a different grammar that is not regular (and often it is 
more convenient to do so). 
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Example

Consider the grammar  

G = ({S,0,1}, {0,1}, S, P) with  

P = {S -> 11S, S->0 }  

Is G a regular grammar?  

No, but L(G) is a regular language, 

since L(G)=L(G’) where  

G’ = ({S,T,0,1}, {0,1}, S, P’) 

P’ = { S -> 1T, T->1S, S->0 } 
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Applications of Regular Grammars

Applications of regular grammars include: 
!
- algorithms to search text for certain patterns (using 
regular expressions) 
!
- part of a compiler that transforms an input stream into 
a stream of tokens (the so-called tokenizer). The 
purpose of the tokens is to group characters together 
into entities that have more meaning, such as "variable" 
or "signed integer".  
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Context Free Grammars
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Context Free Grammars

A grammar G = (V,T,S,P) is called context free if and 
only if all productions in P are of the form 

A -> B 

where A is a single nonterminal symbol and B is in V*. 

!

The reason this is called “context free” is that the 
production A -> B can be applied whenever the symbol A 
occurs in the string, no matter what else is in the 
string. 
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Example 1

Consider the grammar G = ( {S,a,b}, {a,b}, S, P ) 

where P = { S -> ab | aSb }. 

Then L(G) = { anbn | n >= 1}  

!

The language L(G) is not regular.  

!

Thus, the set of regular languages are a proper subset 
of the set of context free languages. 
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Test Yourself

X1 Find a context-free grammar G for the language 

L(G) = { wwR | w in {a,b}* } 

where wR is the string w reversed. For example, if 
w=abb, then wR = bba. 

!

G = ({S,a,b}, {a,b}, S, { S -> aSa, S -> bSb, S -> λ })
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Context-Sensitive Grammars
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Context Sensitive Grammars

In a context sensitive grammar, all productions are of 
the form  

a) lAr -> lwr where A is a nonterminal symbol, l, w, r are 
strings in V*; l and r can be empty, but w must be a 
nonempty string. 

b) Can contain S -> λ if S does not occur on RHS of any 
production. 
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Example 1

The language { 0n1n2n | n >= 0 } is a context-sensitive language.  

Indeed, the grammar G = (V,T,S,P)  

with V = {0,1,2,S,A,B,C,D}, T={0,1,2}, and  

P = { S -> C, C -> 0CAB, C -> 0AB, S -> λ, 

       BA -> BD, BD -> AD, AD -> AB, 

       0A -> 01, 1A -> 11, 1B -> 12, 2B -> 22 } 

generates this language. 

S =>* 0CAB => 00ABAB =>* 00AABB => 001ABB => 0011BB => 
00112B => 001122.
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Types of Grammars
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Chomsky Hierarchy

Type 0 – Phrase-structure Grammars

Type 1 – Context-Sensitive

Type 2 – Context-Free

Type 3 – 
Regular

�31



Defining the PSG Types

Type 0: Any PSG 

Type 1: Context-Sensitive PSG: 

Productions are of the form lAr -> lwr where A is a nonterminal symbol, 
and w a nonempty string in V*. Can contain S -> λ if S does not occur on 
RHS of any production.  

Type 2: Context-Free PSG: 

Productions are of the form A -> B where A is a nonterminal symbol.  

Type 3: Regular PSGs: 

Productions are of the form A -> aB or A -> a where A,B are nonterminal 
symbols and a is a terminal symbol. Can contain S -> λ. 
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Modeling Computation
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Transition Functions

!!
Let S be the state space of a computer (that is, a state 
describes the contents of memory, cache, and registers). 
!
Let I and O denote the set of input and output symbols. In 
each time step, the computer receives an input symbol i in I 
and produces an output symbol o in O.  
!
The computer can be modeled by a transition function  
T: S x I -> S x O 
Given the old state and the input, the computer processes this 
information, creates a new state, and produces an output.

�34



Language Recognition Problem

Language Recognition Problem:  

Let G = (V,T,S,P) be a grammar. Given a string s in T*,   
is the string s contained in L(G)?
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Computation vs. Language Recognition

Let T be the transition function of a computer. We may 
assume that the input, output, and state of the 
computer are given by bit strings. Let B = {0,1}. Then  

T: B* -> B*. 

For a given input a, the output is b=T(a). The i-th 
output bit has value 0 or 1. Let Li be the language 

 Li = { x in I | T(x)i = 1 } 

Thus, the language recognition problem a in Li simply 
gives the value of the i-th output bit. 
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Conclusion

The language recognition problem is as general as 
our notion of computation!
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Finite State Machines            
with Output
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Vending Machine

A vending machine accepts nickels, dimes, and quarters. 
A drink will cost 30 cents. Change will be immediately 
given for any excess funds. When at least 30 cents 
have been deposited and any excess has been refunded, 
the customer can 

a) push an orange button to receive orange juice. 

b) push a red button to receive apple juice. 
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Vending Machine

We can model our vending machine as follows:  

We have seven different states s0, ... , s6. 

The state si means that 5i cents have been deposited for all i 
the range 0 <= i <= 6. 

The vending machine will dispense a drink only in the state s6. 

We can model the behavior of the vending machine by 
specifying the transition function. The inputs are: 

5 (nickel), 10 (dime), 25 (quarter), O (orange button),                
R (red button).
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Vending Machine

Example: Machine is initially in state s0. If a dime is inserted, then it 
moves to the state s2 and outputs nothing. If a quarter is then 
inserted, then it will move to s6 and output a nickel of change. If you 
then press O, then machine will move to state s0 and output some OJ.

Figure courtesy of McGrawHill



Vending Machine

Figure courtesy of McGrawHill
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Finite State Machine 

A finite state machine M is given by M=(S, I, O, f, g, s0), where:  
S is the set of states 

I is input alphabet 

O is output alphabet 

f is the transition function that assigns each (state, input) pair a 
new state 

g is output function that assigns each (state, input) pair an 
output.  

s0 is the initial state
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Adder

When adding two binary numbers, we can process the numbers 
from the least significant bit to the most significant bit. For 
each bit, we carry out the addition. We keep the information 
about the carry in the state of the machine.  

s0     when the carry in is 0, 

s1     when the carry in is 1. 

!

!

Curr. State Input Output Next State

s0 0 0 0 s0
s0 0 1 1 s0
s0 1 0 1 s0
s0 1 1 0 s1

Curr. State Input Output Next State

s1 0 0 1 s0
s1 0 1 0 s1
s1 1 0 0 s1
s1 1 1 1 s1
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Adder

�45



Language Recognition with FSMs

Let M be a finite state machine with input alphabet I. 

Let L be a formal language with L ⊆ I*. 

We say that M accepts the language L if and only if       

[x belongs to L if and only if the last output bit 
produced by M when given x as an input is 1]. 

In other words, a) an input string that belongs to L 
will get accepted by M, and b) an input string that 
does not belong to L does not get accepted by M. 
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Remarks

A finite state machine can be a good tool to model 
simple applications such as the vending machine.  

We now know how to accept a language with finite state 
machines. However, for this application, we can simplify 
matters a little bit (=> finite state automata).  

We need a more descriptive way to describe the 
languages that are accepted by a finite state machine 
(=> regular expressions).
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Finite State Machines with      
No Output
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Motivation

Suppose that we want to use a finite state machine simply for 
the purpose of language recognition. Recall that all output 
bits were ignored with the exception of the last output bit. 
The value of the last bit decides whether or not the input 
read belongs to the language that is accepted by the FSM.  

Last output bit is 1 if and only if the input string is accepted 
(i.e., belongs to the language).  

We might as well do away with any output and decide whether 
or not an input string belongs to the language depending on 
the value of the last state. We will have accepting (and 
rejecting) states.
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Finite State Automata

A finite state automaton M=(S, I, f, s0, F) consists of a 
finite set S of states, a finite input alphabet I, a 
transition function f: SxI -> S that assigns to a given 
current state and input the next state of the 
automaton, an initial state s0, and a subset F of S 
consisting of accepting (or final) states. 
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 Finite State Machines vs Automata

A finite state machine M is given by M=(S, I, O, f, g, s0), where:  
S is the set of states 

I is input alphabet 

O is output alphabet 

f is the transition function that assigns each (state, input) pair a 
new state 

g is output function that assigns each (state, input) pair an 
output.  

s0 is the initial state

Missing in case of finite 
state automata
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Notation

In state diagrams, the accepting states are denoted by 
double circles.  

!

rejecting state                      accepting state 
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Example 1

s s0

1

1

11

0 or1

r
0

0

What language does this automaton accept?

Start
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Example 2

The set of bit strings that begin with 00 

What is the language accepted by the FSA 
depicted in Figure (a)? 
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Example 3

The set of bit strings that contain 00 

What is the language accepted by the FSA 
depicted in Figure (b)? 
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Example 4

The set of bit strings that do not contain 00 

What is the language accepted by the FSA 
depicted in Figure (c)? 
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Fundamental Theorem

Theorem: A formal language L is regular if and only if 
there exists a finite state automaton M accepting L.  

Proof: Given in CSCE 433, but we will at least 
illustrate the main idea with the help of an example. 
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Proof Idea

Suppose that a regular grammar has the production 
rules: P = {S -> aA, S -> a, A -> bA, A -> b}.  

Define the automaton 

!

!

!

!

S A

F

a

a b

b A node for each non-
terminal symbol, and an 
additional node for an 
accepting state F.	
!
Each production A -> aB 
yields an edge labeled with 
a from A to B. 	
!
A production A -> a yields 
an edge from A to F 
labeled by a. 
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Regular Expressions

We will now introduce an algebraic description of 
formal languages with the help of regular expressions.  

!

This will lead to yet another characterization of 
regular languages. 
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Operations on Languages: Concatenation 

Suppose that V is an alphabet.  

Let A and B be subsets of V*. 

Denote by AB the set { xy | x in A, y in B}. 

Example: A = {0,11} and B = {1, 10, 110}  

Then AB = { 01, 010, 0110, 111, 1110, 11110 }
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Operations on Languages: Exponent Notation 

Suppose that V is an alphabet.  

Let A be a subset of V*. 

Define A0 = { λ } and An+1 = AnA 

Example: A = {1, 00}  

A2  = { 11, 100, 001, 0000 }  
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Operations on Languages: Kleene Closure

Let V be an alphabet, and A a subset of V*. 

The Kleene closure A* of A is defined as  

!

!
A⇤ =

1[

k=0

Ak
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Operations on Languages: Union

The union of two formal languages L1 and L2 is 
the formal language { x | x in L1  or x in L2 }. 
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Closure Properties

Theorem: The class of regular languages is closed under  
the operations: concatenation, Kleene closure, union, 
intersection, complement.  

Corollary: All finite languages are regular.  

Corollary: The complement of a finite language is regular. 
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Grammar of Regular Expressions

Let V be a finite alphabet.  

Terminals: T = V ∪ { ∅, λ, ∪, *, (, ) }  

Nonterminals: N = {S}  with start symbol S 

P = { S -> b for all b in V ∪ { ∅, λ }, S -> (S ∪ S),               
S -> (SS), S -> S* } 

The grammar G = (N ∪ T, T, S, P) is called the grammar 
of regular expressions. The elements in L(G) are called 
regular expressions over the alphabet V. 
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Regular Expressions

The semantic of the language L(G) of regular expressions is given 
by associating a formal language with each regular expression as 
follows:  

E(∅) = ∅, 

E(λ) = {λ}  

E(a) = {a} for all a in V 

E((X ∪ Y)) = E(X) ∪ E(Y) 

E((XY)) = E(X) E(Y) 

E(X*) = E(X)*
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Fundamental Theorem

Theorem (Kleene-Myhill): The class of regular 
languages coincides with the languages that can 
be described by regular expressions. 

�67



Example

E(a*b*) = { akbl | k >=0, l>=0 }  
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A Nonregular Language

Theorem: The language L = { 0n1n | n >=0 } is not regular.  

Proof: Seeking a contradiction, suppose that M is a finite 
state automaton accepting L. Let m denote the number of 
states of M. On input of 0m1m, the finite state automaton 
makes 2m transitions, say 

s0 -> s1 -> ... -> s2m.  

until ending up in the accepting state s2m. Since there are just 
m different states, by the pigeonhole principle at least two of 
the states s0, s1, ..., sm must be the same. 
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A Nonregular Language (Cont.)

Therefore, there is a loop from one of these states back to 
itself of, say, length k. Since all of these transitions occur 
in input of 0, this means that the automaton also accepts 
the input string 0m+k1m. Since this string does not belong to 
the language L, we get a contradiction. Therefore, we can 
conclude that there does not exist an automaton accepting 
the language L = { 0n1n | n >=0 }.
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