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Motivation

The syntax of programming languages (such as Algol, C,
Java) are described by phrase structure grammars.
The grammars are also used in the specification of data
exchange formats.

A grammar specifies a formal language. The advantage
is that a fairly small grammar can describe a fairly
complex language.

Formal languages are also a convenient tool in
computational complexity theory, as we will see.



Notation
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Let V be a seft.
We denote by V™ the set of strings over V.

A language over the alphabet V is a subset of V.

The empty string is denoted by A.



Phrase-Structure Grammars
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A phrase-structure grammar G consists of
- a set V called the vocabulary,
- a subset T of V consisting of terminal symbols,
[N=V\T is called the set of nonterminal symbols]
- a distinguished nonterminal element S in N, called start symbol
- and a finite set of productions (or rules).

We denote this data by 6=(V,T,S,P).



Productions

The productions are term-rewriting rules that specify
how a part of string can be modified.

A production rule is of the form
A->B

where A is string in V" containing at least one
nonterminal symbol, and B is a string in V.

The production rule A -> B specifies that A can be
replaced by B within a string.
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Example Grammar Rules (Part of C++ Grammar)

A.5 Statements

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
1teration-statement
jump-statement
declaration-statement
try-block

labeled-statement:
1dentifier : statement
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Words such as
"statement”,
"labeled-statement”
or “condition” are all
non-terminal symbols

case constant-expression : statement

default : statement

expression-statement:
expression,,, ;

compound-statement:
{ statement-seq,,, |

statement-seq:

statement

statement-seq statement

selection-statement:
1T ( condition ) statement
1T ( condition ) statement e 1se statement
switch ( condition ) statement
condition:
expression
type-specifier-seq declarator = assignment-expression
iteration-statement:
wh1 Te ( condition ) statement
do statement whi 1e ( expression ) ;
for ( for-init-statement ; condition, ;
statement
for-init-statement:
expression-statement
simple-declaration
jump-statement:
break ;
continue;
return expression,, ;
goto identifier ;
declaration-statement:
block-declaration

6

expression,, )

Bold faced words
(keywords) and ;
(semicolon) are
terminal symbols




Mcun Idea

We begin with the start symbol S, and then repeatedly
apply the productions to transform the current string of
symbols into a new string of symbols.

Once we reach a string s that consists only of terminal
symbols, then this procedure terminates.

We say that s is derivable from S.



Derivable
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Consider a grammar that contains the productions
A->a and A ->dAaq

Given a string AAab, we can apply the first production
to obtain Aaab, and the second production to get
aAaaab. Applying the first production, we get aaaaab.

We write A => B iff the string B can be derived from A
by applying a single production rule.

We will write A =>" B if the string B can be derived
from A by a finite sequence of production rules.

Thus, we have shown that AAab =>" aaaaab
g



Example O

ROLELSRE A i Ly Tt GBS Prrmar Bt BT OAST S Tty SO0 LS A I b N i e b A e TR 0 0r 1 i i TP B i S I

Consider the grammar G = (V, T, S, P) with
V={S1() +

T={1() +

P={S5->(5+S5),5->1}

We have S => 1,
S=>(5+S)=>(5+1)=>(1+1)

S =>(5+5) => ((S+S) +S) =>" ((1+1)+1)



Derlvablll‘ry Relcmon
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Notice that => is a relation on V. It relates a string in
V* with a string that can be obtained from it by applying
a single production rule. Since many production rules
may apply, => is in general not a function.

The relation =>" is the so-called transitive closure of =»,
that is, the smallest transitive relation containing the
relation =>.
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Language

L e e iAo . PRSP =0 PR NeR et FE

Let 6=(V,T,S,P) be a phrase-structure grammar.

The set L(G) of strings that can be derived from the
start symbol S using production from P is called the
language of the grammar 6.

In other words,

L(G)={sinT | S=>"5s}

11



Example 1
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Let G be a grammar with vocabulary V = {S, A, q, b},
set of terminal symbols T = { a, b}

start symbol S

set of productionrules P={S ->aA,S->b, A ->aa}
S=>b

S =>aA =>aaa

Are b and aaa all ferminal strings in L(G)?
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Example 1: Derivation Tree

S v ¢ - ¥ W ey 'Q!‘..L---_."ivi' ~ & B - Bl » w_
J o M A Tt G KT e G AT DA T A A TS R gt s . Rl 220 0 A ahiraral

Recall that 6=({S5,A,a,b}, {a,b}, S, P)

where S

P={S->aA,S->b,A->aa} / \?
aA

Simply form the tree with all \

derivations starting from S.

add
Thus, L(6) = {aaaq, b}
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Example 2
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Let 6= (V,T,S,P) beagrammar with T = {a,b} and
P={S->ABa, A->BB,B->ab, AB -> b}.

S => ABa => BBBa => abBBa => ababBa => abababa
S => ABa => Aaba => BBaba =>* abababa
S => ABa => ba

L(G) = { ba, abababa }
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Notation
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Instead of writing multiple productions such as
A -> Ab
A -> Aba

we can combine them into a single production,
separating alternatives with |, as follows:

A -> Ab | Aba
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Problem

In general, we would like to have an algorithm that can
decide whether a given string s belongs to the language
L(G) or not. This is not always possible, not even in
principle.

The problem is that the production rules are too
flexible. We will now consider more restricted forms
of grammars that allow one - at least in principle - to
write an algorithm to decide membership in L(G).
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Regular Grammars
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Regular Grammars
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In a reqular grammar, all productions are of the form

a) S -> empty string or

b) A ->aB or A ->a, where A and B are nonterminal
symbols (including the start symbol S) and a is a terminal
symbol
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Test Yourself...

Consider the grammar G = (V,T,5,P) where
vV={SA01}
T={0.1},
S is the start symbol, and
P has the rules
S->0S|1A | 1| empty-string
A->1A11

Determine L(6G).
L(G)={0™"| m>=0,n>=0}

19



Regular Languages
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A language generated by a regular grammar is called a
regular language.

Warning: A regular language might also be generated by
a different grammar that is not regular (and often it is
more convenient to do so).
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Example
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Consider the grammar

G = ({s,0,1},{0,1}, S, P) with
P={s->11S, 550}

Is G a reqular grammar?

No, but L(G) is a reqgular language,
since L(G)=L(G') where

G =({s,T,0,1} {01}, 5,P)
P={S->1T, T-515, 550}
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Applications of Regular Grammars

Applications of regular grammars include:

- algorithms to search text for certain patterns (using
regular expressions)

- part of a compiler that transforms an input stream into
a stream of tokens (the so-called tokenizer). The
purpose of the tokens is to group characters together
into entities that have more meaning, such as "variable"
or "signed integer".

22



Context Free Gmmmars
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Context Free Grammars
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A grammar G = (V,T,SP) is called context free if and
only if all productions in P are of the form

A->B

where A is a single nonterminal symbol and B is in V.

The reason this is called "context free" is that the
production A -> B can be applied whenever the symbol A
occurs in the string, no matter what else is in the
string.
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Example 1
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Consider the grammar G = ({S,a,b}, {a,b}, S, P)
where P={ S ->ab | aSb }.
Then L(G) = { a"b" | n>= 1}

The language L(G) is not regular.

Thus, the set of regular languages are a proper subset
of the set of context free languages.
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Test Yourself

X1 Find a context-free grammar G for the language
L(G) = { ww® | win{a,b} }

where wR is the string w reversed. For example, if
w=abb, then w® = bba.

G=({S,ab} {ab}, S,{S->a5a,S->bSb,S->A})

26



Context-Sensitive Gmmmars
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Context Sensitive Grammars
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In a context sensitive grammar, all productions are of
the form

a) lAr -> lwr where A is a nonterminal symbol, |, w, r are
strings in V'; | and r can be empty, but w must be a
honempty string.

b) Can contain S -> A if S does not occur on RHS of any
production.
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Example 1
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The language { 0"1"2" | n>= 0 } is a context-sensitive language.
Indeed, the grammar G = (V,T,S,P)
with V={0,1,2,5,A,B,C,D}, T={0,1,2}, and
P={S->C,C->0CAB, C->0AB, S > A,
BA -> BD, BD -> AD, AD -> AB,
0OA->01,1A->11,1B->12,2B -> 22}
generates this language.

S => OCAB => 00ABAB =>* O0OAABB => 001ABB => 0011BB =>
00112B => 001122.
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Types of Grammars
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Chomsky Hierarchy
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Type 0 — Phrase-structure Grammars

Type 1 — Context-Sensitive
Type 2 — Context-Free
Type 3 —

Regular

31
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Defining the PSG Types
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Type O: Any PSG
Type 1. Context-Sensitive PSG:

Productions are of the form |Ar -> lwr where A is a nonterminal symbol,
and w a honempty string in V'. Can contain S -> A if S does not occur on
RHS of any production.

Type 2: Context-Free PSG:

Productions are of the form A -> B where A is a nonterminal symbol.

Type 3: Regular PSGs:

Productions are of the form A -> aB or A -> a where A,B are nonterminal
symbols and a is a terminal symbol. Can contain S -> A.
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Modeling Compu’ra’non
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Transition Functions
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Let S be the state space of a computer (that is, a state
describes the contents of memory, cache, and registers).

Let I and O denote the set of input and output symbols. In
each time step, the computer receives an input symbol i in T
and produces an output symbol o in O.

The computer can be modeled by a transition function
T:SxI->5x0

Given the old state and the input, the computer processes this
information, creates a new state, and produces an output.
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Language Recognmon Problem

Language Recognition Problem:

Let 6 = (V,T,5,P) be agrammar. Given a strings in T,
is the string s contained in L(G)?
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Computation vs. Language Recognition
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Let T be the transition function of a computer. We may
assume that the input, output, and state of the
computer are given by bit strings. Let B = {0,1}. Then

T: B ->B".

For a given input a, the output is b=T(a). The i-th
output bit has value O or 1. Let Li be the language

Li={xinI| T(x)=1}

Thus, the language recognition problem a in L; simply
gives the value of the i-th output bit.

36



Conclusion
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The language recognition problem is as general as
our notion of computation!
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Finite State Machines
with Output
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Vendmg Machme

A vending machine accepts nickels, dimes, and quarters.
A drink will cost 30 cents. Change will be immediately
given for any excess funds. When at least 30 cents
have been deposited and any excess has been refunded,

the customer can

a) push an orange button to receive orange juice.

b) push a red button to receive apple juice.

39



Vendmg Machme

We can model our vending machine as follows:
We have seven different states so, ... , sc.

The state si means that 5i cents have been deposited for all i
the range 0 <= i <= 6.

The vending machine will dispense a drink only in the state ss.

We can model the behavior of the vending machine by
specifying the transition function. The inputs are:

5 (nickel), 10 (dime), 25 (quarter), O (orange button),
R (red button).

40



Vending Machine
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TABLE 1 State Table for a Vending Machine.
Next State Output
Input Input
State 5 10 25 0 R 5 10 25 0 R
50 5 §5 §5 50 S0 n n n n n
Ay A\l 53 56 S AY| n n n n n
§5 § S4 S6 55 8§ n n 5 n n
§3 §4 Ss S6 53 53 n n 10 n n
S4 S5 S6 S6 54 S4 n n 15 n n
S S6 S6 S6 S5 S5 n 5 20 n n
S6 S6 S6 S6 50 50 5 10 25 0l Al

Example: Machine is initially in state so. If a dime is inserted, then it
moves to the state s> and outputs nothing. If a quarter is then
inserted, then it will move to s¢ and output a nickel of change. If you
then press O, then machine will move to state so and output some OJ.



Vending Machine
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© The McGraw-Hill Companies, Inc. all rights reserved. Figure courtesy of McGrawHill
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Finite State Machine
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A finite state machine M is given by M=(S, I, O, f, g, o), where:
S is the set of states

I is input alphabet
O is output alphabet

f is the transition function that assigns each (state, input) pair a
hew state

g is output function that assigns each (state, input) pair an
output.

so is the initial state

43



Adder
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When adding two binary numbers, we can process the numbers
from the least significant bit to the most significant bit. For
each bit, we carry out the addition. We keep the information
about the carry in the state of the machine.

sO when the carry inis O,

sl  when the carry inis 1.

Curr. State| Input Output | Next State
sO 00 0 sO
sO 01 1 sO
sO 10 1 sO
sO 11 0 sl

44

Curr. State| Input Output | Next State
sl 00 1 sO
sl 01 o) sl
sl 10 0 sl
sl 11 1 sl




Adder

i T e i b it - PRSP So S-S ST

© The McGraw-Hill Companies, Inc. all rights reserved.

01,0

11,0

5

00, 1

10, 1 10, 0
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Language Recognmon with FSMS
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Let M be a finite state machine with input alphabet T.
Let L be a formal language with L € T".

We say that M accepts the language L if and only if

[x belongs to L if and only if the last output bit
produced by M when given x as an input is 1].

In other words, a) an input string that belongs to L
will get accepted by M, and b) an input string that
does not belong to L does not get accepted by M.

46



Remarks

A finite state machine can be a good tool o model
simple applications such as the vending machine.

We now know how to accept a language with finite state
machines. However, for this application, we can simplify
matters a little bit (=> finite state automata).

We need a more descriptive way to describe the
languages that are accepted by a finite state machine
(=> reqular expressions).

47



Finite State Machines with
No Output
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Motivation

Suppose that we want to use a finite state machine simply for
the purpose of language recognition. Recall that all output
bits were ignored with the exception of the last output bit.
The value of the last bit decides whether or not the input
read belongs to the language that is accepted by the FSM.

Last output bit is 1 if and only if the input string is accepted
(i.e., belongs to the language).

We might as well do away with any output and decide whether
or not an input string belongs to the language depending on
the value of the last state. We will have accepting (and
rejecting) states.

49



F inite State AuTomaTa
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A finite state automaton M=(S, I, f, so, F) consists of a
finite set S of states, a finite input alphabet I, a
transition function f: SxI -> S that assigns to a given
current state and input the next state of the
automaton, an initial state sg, and a subset F of S
consisting of accepting (or final) states.

50



Finite State Machines vs Automata
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A finite state machine M is given by M=(S, I, O, f, g, so), where:
S is the set of states

I is input alphabet

Missing in case of finite

O is output alphabet state automata

f is the transition function that assigns each (state, input) pair a
hew state

g is output function that assigns each (state, input) pair an
output.

so is the initial state

51



Notation
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In state diagrams, the accepting states are denoted by
double circles.

rejecting state accepting state

O O
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Example 1
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What language does this automaton accept?
0 orl

0
0
1
— \
Start
1
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Example 2
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(b) - : )
.| What is the language accepted by the FSA |
\ depicted in Figure (a)? _ . °. &
4 A |
| The set of bit strings that begin with 00

I
0, |
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Example 3
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(b)

]
. 0 (©)
Start 0
. 0,1 Start
o1

WhaT IS the

(d

A

depicted in Figure (b)? Q

language accepted by the FSA

L=\ e

W —

The set of bit strings that contain 00
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Example 4
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© The McGraw-Hill Companies, Inc. all rights reserved.

(b)

]
. 0 (©) '
Start 0 .
. ‘ 0,1 Start . . 0
() an
~

WhaT is the language accepted by the FSA
depicted in Figure (c)?

1 l
. i} () ()
Start f() ; )
5
5 5 5 |
T

he set of bit strings that do not contain 00

- J
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Fundamental Theorem
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Theorem: A formal language L is regular if and only if
there exists a finite state automaton M accepting L.

Proof: Given in CSCE 433, but we will at least
illustrate the main idea with the help of an example.
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Proof Idea
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Suppose that a regular grammar has the production
rules:P={S ->aA,S ->a, A ->bA, A ->b}.

4 )

Define the automaton p  |Anode for each non-
terminal symbol, and an
‘ additional node for an

accepting state F.

Each production A -> aB

a b vields an edge labeled with
afromAtoB.

A production A -> a yields
an edge from Ato F
labeled by a.

N
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Regular Expressions
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We will now introduce an algebraic description of
formal languages with the help of regular expressions.

This will lead to yet another characterization of
regular languages.
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Operations on Languages: Concatenation

Suppose that V is an alphabet.

Let A and B be subsets of V.

Denote by AB the set { xy | xin A,y in B}.
Example: A = {0,11} and B = {1, 10, 110}
Then AB = { 01, 010, 0110, 111, 1110, 11110 }

60



Operations on Languages: Exponent Notation
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Suppose that V is an alphabet.
Let A be a subset of V.
Define A° = { A} and A™! = ANA
Example: A = {1, 00}

A¢ = {11,100, 001, 0000 }
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Operations on Languages: Kleene Closure
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Let V be an alphabet, and A a subset of V.

The Kleene closure A™ of A is defined as

k=0
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Operations on Languages: Union
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The union of two formal languages L1 and L is
the formal language { x | x inL1 or x in L2 }.
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Closure Properties
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Theorem: The class of regular languages is closed under
the operations: concatenation, Kleene closure, union,
intersection, complement.

Corollary: All finite languages are regular.

Corollary: The complement of a finite language is regular.
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Grammar of Regular Expressions
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Let V be a finite alphabet.
Terminals: T=Vu{a,A u,* ()}
Nonterminals: N = {S} with start symbol S

P={S->bfordlbinVu{a,A},S->(SuS),
S->(S8S),S->S7}

The grammar 6= (Nu T, T, S, P) is called the grammar

of regular expressions. The elements in L(G) are called
regular expressions over the alphabet V.
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Regular Expressions
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The semantic of the language L(G) of regular expressions is given
by associating a formal language with each regular expression as
follows:

E(o) = o,

E(A) = {A}

E(a) = {a} forallainV
E((X uY)) = E(X) v E(Y)
E((XY)) = E(X) E(Y)
E(X") = E(X)
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Fundamental Theorem
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Theorem (Kleene-Myhill): The class of regular
languages coincides with the languages that can
be described by regular expressions.
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E(a’b™) = { a*b' | k >=0, I>=0}
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A Nonr'egular Language

Theorem: The language L = { O"1" | n >=0 } is not regular.

Proof: Seeking a contradiction, suppose that M is a finite
state automaton accepting L. Let m denote the number of
states of M. On input of O™1™, the finite state automaton
makes 2m transitions, say

S0->S1->...->S2nm.

until ending up in the accepting state sam. Since there are just
m different states, by the pigeonhole principle at least two of
the states so, s1 ..., smmust be the same.
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A Nonregular' Language (Con’r )

Therefore, there is a loop from one of these states back to
itself of, say, length k. Since all of these transitions occur
in input of O, this means that the automaton also accepts
the input string 0™*1M Since this string does not belong to
the language L, we get a contradiction. Therefore, we can
conclude that there does not exist an automaton accepting
the language L = { 0"1" | n >=0 }.

70



