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Abstract

We propose a generic algorithmic model called STAMP

(Synchronous, Transactional, and Asynchronous Multi-

Processing) as a universal performance and power com-

plexity model for multithreaded algorithms and systems. We

provide examples to illustrate how to design and analyze al-

gorithms using STAMP and how to apply the complexity es-

timates to better utilize CMP(Chip MultiProcessor)-based

machines within given constraints such as power.

1. Introduction

The past 20 years have seen the relentless improve-

ment in processor speed fueled by the exponential explosion

of the performance of CMOS technology (Moore’s law).

In the long term, as feature miniaturization continues un-

abated, we will reach hard physical limits such as those dic-

tated by quantum effects [16].

Well before this happens, parallel processing is bound

to dominate the field of computing across the spectrum of

systems because of limits on power. In high-end CMOS

microprocessors, power dissipation has reached the limits

dictated by their cooling technology and low-end processors

such as those used in embedded systems have strict energy

limitations, which means that they tend to be optimized for

power rather than performance.

It has become clear in the past few years that commer-

cial microprocessor manufacturers are abandoning the route

of ever more complex processor cores and higher clock fre-
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quencies. For example, Sun’s Niagara chip [25] features

8 simple processors with 4 threads each, for a total of 32

threads. The same trends are apparent in IBM’s and Intel’s

processors.

It is expected that, in the future, harnessing the comput-

ing power of large scale multithreaded systems will be a ma-

jor challenge. This challenge is much more complex than in

the past because power is now a critical factor in selecting

an algorithm for a particular problem and architecture.

To take advantage of multithreaded machines, a frame-

work for algorithms is needed so that researchers in algo-

rithms and systems can invent and create the best possi-

ble approaches [26]. Power must be a critical part of the

model. Moreover, the model must be general enough to em-

brace new emerging paradigms such as adaptive and hetero-

geneous computations and transactional systems and mem-

ory [15, 24, 14, 13, 12, 2, 6, 22].

In the past the PRAM model stimulated a lot of re-

search in parallel algorithm design, but performance of-

ten did not meet expectation because communication costs

were ignored. Recently, more realistic models have been

developed such as Queued Shared Memory (QSM) [10]

for shared-memory systems, and Bulk Synchronous Paral-

lel (BSP) [27] for message passing systems. However, these

models are overly synchronized and restrictive and do not

include power models.

The main contribution of this paper is to develop par-

allel algorithm models for next-generation multithreaded

systems and machines. Because we believe that existing

parallel algorithmic models are too restrictive, we propose

a generic algorithmic model called STAMP (Synchronous,

Transactional, and Asynchronous Multi-Processing) as a

universal performance and power complexity model for

multithreaded algorithms and systems.

The rest of this paper is structured as follows. We

overview the background knowledge and literature in archi-
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Figure 1. Niagara multiprocessor chip.

tecture and parallel algorithm models in Section 2. Section

3 describes the STAMP algorithm and complexity models.

Section 4 illustrates how to map algorithms to the STAMP

model through examples. Section 5 concludes the paper.

2. Background

2.1. Architectural Background

Target Architectures. Because of growing technological

problems, it will be impossible to maintain the speed im-

provements observed in the past 40 years in the computing

industry unless we unleash the power of parallel process-

ing over large scale multiprocessing systems based on Chip

Multiprocessors (CMP), with a large number – hundreds

and thousands – of threads. A CMP chip will have several

processors and each processor will run several threads (Chip

Multi-Threading (CMT)), for a certain maximum number

of threads per chip. Hundreds of such chips can then be

connected in shared memory or distributed memory config-

urations. Such CMP/CMT-based architectures and systems

are the target of this research. Figure 1 illustrates the overall

structure of Sun’s Niagara multiprocessor chip.

Controlling Power and Energy. For a given technol-

ogy and implementation, dynamic power is roughly pro-

portional to f3 or V 3 where f is the clock frequency and

V is the supply voltage and performance is simply propor-

tional to f or V . Thus the easy approach of squeezing more

performance by running up the clock frequency has hit a

“power wall”. Today, parallel processing is the most ef-

fective way to improve performance while keeping power

under control. To illustrate this consider that 1 processor

core clocked at frequency f consumes the same dynamic

power as 8 cores, each clocked at f/2. Thus if we can get a

speedup of more than 2 with the 8 cores, we will get a better

performance with the same power [21, 9].

Different algorithms may be preferable in differ-

ent power/energy environments. Thus a measure of

power/energy must be included in the selection of an al-

gorithm for a particular machine. The four classical metrics

are D (Delay), PDP (Power-Delay Product), EDP (Energy-

Delay Product) and ED2P (Energy-Delay square Product).

(Note that Energy is equal to power times delay – E=PD.)

In general, algorithms should be selected according to

one of these four metrics (D, PDP, EDP or ED2P), accord-

ing to the environment where they are deployed.

Transactional Execution Model. Transactional memory

is currently the subject of intense research in architecture

and systems. Contrary to prior algorithmic models, our

STAMP model covers algorithms designed for transactional

systems.

The commonly-used method of sharing data via locks al-

lows multithreaded applications to read and write the same

data. A new approach, named transactional memory (TM),

has been suggested in the early 90’s [15, 24] that provides

the same capabilities while minimizing the dangers associ-

ated with lock-based schemes, such as deadlocks. Lock-

based shared memory architectures and TM architectures

are both designed to provide safe and error-free access, both

read and write, to shared memory data.

At a high level, TM treats data accesses in much the

same way as databases do. When accesses are made to crit-

ical sections, marked as transactions, each thread acts on

its own. When a thread attempts to commit its changes,

the TM infrastructure is responsible for determining first if

there was a conflict. If so, then it must arbitrate to determine

which data is committed and which is rolled back [23, 11].

2.2. Parallel Algorithm Models

A significant body of work exists in the literature to

propose and justify various parallel computational models.

Maggs et al. [19] promote the use of different models in par-

allel computation, by contrast with sequential computation.

Matias [20] addresses the issue of choosing a suitable model

for parallel algorithm design and provides a high level

overview of numerous models including the PRAM, the

Bulk Synchronous Parallel (BSP), and the Queued Shared

Memory (QSM).

The PRAM – the most influential theoretical parallel

computational model – allows algorithm designers to con-

centrate on the inherent parallelism of their algorithms

without having to take architectural details into account

(e.g. [17]). However, the PRAM model has been much ma-

ligned because the run time analysis in the PRAM model

is often not a good indicator of an algorithm’s run time on

any existing parallel machine. This fact has led to the inven-

tion of a large number of alternative models. Their aim is

to allow accurate performance predictions for existing par-

allel machines, while still offering a fairly abstract machine

view to algorithm designers. Major such models are the

BSP model, the LogP model, and the QSM model.

Message-Passing Based Models. The BSP model was

first introduced by Valiant [27]. It emphasizes the separa-

tion of communication from computation by incorporating



bulk-synchrony into a distributed memory model with mes-

sage passing. In bulk-synchronous computing models, pro-

cessors compute asynchronously between synchronization

barriers [4]. The BSP model has been extended in many di-

rections by introducing additional parameters; examples in-

clude the BSP* [3], the E-BSP [18], and the (d, x)-BSP [5]

models.

The LogP model was proposed by Culler et al. [8, 7].

The differences between the BSP model and the LogP

model are an overhead parameter in the LogP model (which

is often ignored) and the omission of required synchro-

nization steps in the LogP model, which allows fully

asynchronous behavior of the processors rather than bulk-

synchrony. Alexandrov et al. [1] proposed the LogGP

model as an extension to the LogP model, by introducing

an additional parameter G that represents the bandwidth for

long messages.

Shared-Memory Based Models. An example of exist-

ing shared-memory based algorithmic models is the QSM

model [10]. A QSM algorithm consists of a sequence of

phases. Two important restrictions distinguish the QSM

shared memory from that of a PRAM. The results of shared-

memory reads are available only after the end of the current

phase (i.e., after the end of the phase in which the read oper-

ation is performed). Furthermore, there cannot be both read

and write operations to the same shared-memory location

within a single phase. Multiple read or multiple write op-

erations within one phase are allowed. These read or write

requests are queued and executed sequentially.

3. The STAMP Model

Our goal is to derive a realistic, yet simple, model for

parallel algorithms. Our model not only provides a frame-

work for the design and implementation of algorithms, but

also provides simple means to estimate execution time and

power/energy consumption so that algorithmic approaches

can be quickly compared in the context of a multithreaded

platform.

In this section, we specify a generic algorithmic model

for multithreaded architectures, which we call STAMP

(Synchronous, Transactional, and Asynchronous Multi-

Processing) and which is equipped with power and perfor-

mance complexity models. Our STAMP model will be in

the general form of parallel, distributed, or nested processes

that cooperate with each other.

Local Computation, Communication, and Execution in a

STAMP Process. A STAMP process is a direct abstraction

of a hardware thread. An execution of a STAMP process is

a sequence of local computations and communication op-

erations. A local computation is any operation that can be

performed in a single processing unit. A communication

operation between two or more processes exchanges infor-

mation between the processes by message passing or shared

memory access.

Distribution of STAMP Processes. STAMP processes

can be distributed over different threads within a proces-

sor (intra-processor) or over several different processors

(inter-processor). We call this attribute of the STAMP

model “distribution attribute.” The distribution attribute ex-

presses the trade-offs between execution time complexity

and power/energy complexity: intra-processor communi-

cation is faster than inter-processor communication, how-

ever, intra-processor distribution may cause the STAMP

processes to exceed the power limit of the processor, so

one may be forced to distribute the STAMP processes over

different processors. The algorithm designer can designate

her STAMP processes in either way by use of the keywords

intra proc or inter proc based on the desired syn-

chrony attribute (explained below) and some rough esti-

mates of performance and power/energy.

Structure of STAMP. The smallest unit process in the

STAMP model is called an S-unit, which is a minimal se-

quential process, i.e., an S-unit may not be nested or spawn

another process. An S-unit consists of a collection of S-

rounds and any number of local computations. During each

S-round, the S-units perform arbitrary local computations.

At the end of each S-round, the S-units communicate by

sending messages or by writing to the shared memory. At

the beginning of each S-round, an S-unit receives messages

(by reading from its incoming message queue) or reads the

shared memory. Therefore, based on the level of synchrony

specified for the algorithm (by the algorithm designer), syn-

chronization can occur either at the end of each S-round or

at the beginning of it, or both. A STAMP algorithm can

consist of any combinations of S-units, nested STAMPs (by

invoking other STAMP processes), or distributed STAMP

processes.

Synchrony in STAMP. The synchrony attribute of the

STAMP model provides a generic framework for concur-

rency control in communication and execution of STAMP

processes. An execution of a STAMP process can be either

transactional or asynchronous, and the communication be-

tween STAMP processes can be either synchronous or asyn-

chronous.

Transactional execution, denoted by the keyword

trans exec, encompasses the meaning of a traditional

transaction such as atomicity, with the additional flexibility

of allowing processes to proceed with their executions “op-

timistically” or “speculatively” and to determine dynami-

cally whether to commit or abort based on the execution

results. The trans exec attribute can be associated with

the entire process code, any part of the code, or any instruc-

tion in the code, which is then executed atomically.

Asynchronous execution, denoted by the keyword

async exec, allows each process to proceed with its ex-



ecution without any restrictions, such as process speed.

The async exec attribute can be associated with the en-

tire code or any part of the code. The async exec

could be used for asynchronous distributed applications

or server applications. For instance, asynchronous dis-

tributed applications in which replicated servers access a

common consistency-critical database (with multiple writ-

ers) will be good candidates for async exec with the

synchronous communication mode (explained below). Dis-

tributed server applications with single-writer multiple-

reader shared memory or database access could use

async execwith the asynchronous communication mode

(explained below).

Synchronous communication, denoted by the keyword

synch comm, results in a serialized access to a shared

memory or in blocked processes in message passing. This

attribute can be associated with the entire code or any partic-

ular communication operation in the code. If it is associated

with the entire code, every communication operation in the

code is assumed to be synchronous.

Asynchronous communication, denoted by the keyword

async comm, allows the communication operation to pro-

ceed without any restriction, such as blocking or serializa-

tion. However, the algorithm designer should specify some

synchronization mechanism explicitly (e.g., a barrier or an

acknowledgment) to ensure the consistency of the shared

memory or the safe delivery of the messages, whenever nec-

essary. The association rule is similar to the synchronous

communication. Table 1 presents all possible combinations

of execution and communication modes.

3.1. Complexity Models

The purpose of our model is to use CMP/CMT machines

as efficiently as possible. We employ the following set of

parameters.

The global parameters are:

Pa : the number of intra-processor STAMP processes.

Pe : the number of inter-processor STAMP processes.

n : the size of input.

The parameters for local execution are:

cfp, cint : the numbers of floating point operations and in-

teger operations.

wfp, wint : the energy dissipated per floating point opera-

tion and integer operation.

c : the time cost for local computation, including floating

point and integer operations.

The parameters for communication are of two categories,

for message passing and for shared memory access. For

shared memory access:

ℓa : an upper bound on the delay in accessing a shared mem-

ory module for intra-processor communication due to the

memory hierarchy.

ℓe : an upper bound on the delay in accessing a shared mem-

ory module for inter-processor communication due to the

memory hierarchy.

κ : the maximum number of accesses to any shared memory

location. In the worst case, it is expressed as the length of

serialization or the number of possible rollbacks.

gsh a : the bandwidth for intra-processor shared memory

communication, defined as the ratio of the number of local

operations performed by the thread in one time unit to the

total number of memory accesses within the processor in

the same time unit. This parameter is impacted by, for ex-

ample, the size of the L1 cache that is used as the shared

memory for intra-processor thread communication.

gsh e : the bandwidth for inter-processor shared memory

communication, defined as the ratio of the number of lo-

cal operations performed by the thread in one time unit to

the total number of memory accesses by the processors in

the same time unit. This parameter is impacted by, for ex-

ample, the size of the L2 cache that is used as the shared

memory for inter-processor thread communication.

dr a, dw a, dr e, dw e : the numbers of shared memory read

and write operations for intra- and inter-processor commu-

nications.

wdr
, wdw

: the energy dissipated per shared memory read

and write operation, where dr (dw, resp.) denotes any of

intra- and inter-processor shared memory read (write, resp.)

operation. We assume that the difference of energy dissi-

pation between intra-processor and inter-processor shared

memory operations is negligible.

For message passing:

La : an upper bound on the message delay for intra-

processor thread communication, that is, the time between

sending and receiving of a message between two threads

within a processor.

Le : an upper bound on the message delay for inter-

processor thread communication, that is, the time between

sending and receiving of a message between two threads of

two different processors.

gmp a : the bandwidth for intra-processor thread communi-

cation, defined as the ratio of the number of local operations

performed by the thread in one time unit to the total num-

ber of messages delivered by the processor in the same time

unit.

gmp e : the bandwidth for inter-processor thread communi-

cation, defined as the ratio of the number of local operations

performed by the thread in one time unit to the total number

of messages delivered by the router in the same time unit.

ms a,mr a,ms e,mr e : the numbers of message send and

receive operations for intra- and inter-processor communi-

cations.



Table 1. Possible combinations of modes of execution and communication based on synchrony.

P
P

P
P

P
P

PP
Comm

Exec
Transactional Asynchronous

Synchronous transactional exec [trans exec] asynchronous exec [async exec]

synchronous comm [synch comm] synchronous comm [synch comm]

Asynchronous transactional exec [trans exec] asynchronous exec [async exec]

asynchronous comm [async comm] asynchronous comm [async comm]

wms
, wmr

: the energy dissipated per message send and re-

ceive operation, where ms (mr, resp.) denotes any of intra-

processor and inter-processor message send (receive, resp.)

operation. We assume that the difference of energy dissi-

pation between intra- and inter-processor message sending

and receiving operations is negligible.

The STAMP complexity model has two facets: execution

time (performance) complexity and power/energy complex-

ity. To analyze the execution time complexity, we assume

that in one time unit a local operation can be computed by

a processing component on data available in memory local

to it. Then, for the S-round and S-unit, we add the time

needed for local operations, shared memory accesses and

message exchanges; for parallel and/or distributed STAMP

processes, we take the maximum among the execution times

of those STAMP processes.
In the power/energy complexity models we add the en-

ergy of each computation, shared memory access and mes-
sage exchange. We lump local memory accesses with the
computation step. This first-order model assumes an ar-
chitecture, in which functional units are gated off in every
cycle if they are not used so that they do not consume dy-
namic power. While this selective gating may be difficult to
achieve in a practical implementation, it is clear that current
and future architectures tend to reach that goal to fight the
power wall. Moreover this measure gives an algorithmic-
based bound on the power dissipated. We summarize the
measures of execution times and power/energy:

1. The execution time of an S-round is:

TS-round
= c + [shared memory comm](κ + [Pe ≥ 1]ℓe + [Pa ≥ 1]ℓa

+ gsh a(dr a + dw a) + gsh e(dr e + dw e))

+ [message passing comm]([Pe ≥ 1]Le + [Pa ≥ 1]La

+ gmp a(ms a + mr a) + gmp e(ms e + mr e)),

where the value of the Knuth-Iverson bracket [cond] is 1 if
the cond is true and 0 otherwise. Those terms with the num-
bers of shared memory read/write (dr a, dr e, dw a, dw e)
and message send/receive (ms a,ms e,mr a,mr e) do not
need the conditions on Pe or Pa since, for example, if
there is no intra-processor communication, the values of
dr a, dw a,ms a, and mr a are all zero. The same represen-
tation scheme applies to the expression of the total energy

needed for an S-round:

ES-round
= cfpwfp + cintwint + wdr

(dr a + dr e) + wdw
(dw a

+dw e) + wmr
(mr a + mr e) + wms

(ms a + ms e).

Then the expected power consumption can be obtained by
dividing the energy complexity by the execution time com-

plexity: PS-round = ES-round

/

TS-round .

2. The execution time of an S-unit is the sum of the execu-
tion times of all S-rounds and all local computations outside
S-rounds, and the energy consumed by an S-unit is the sum
of the energy of all S-rounds and all local computations out-
side S-rounds:

TS-unit =
∑

all S-rounds TS-round + Tc ;

ES-unit =
∑

all S-rounds ES-round + Ec ,

where Tc denotes the execution time of all local com-

putations outside S-rounds and Ec(= cfp · wfp + cint ·
wint) the energy consumed by local computations out-

side S-rounds. Then the power dissipated in an S-unit is:

PS-unit = ES-unit

/

TS-unit .

3. The execution time of a STAMP process that consists of

more than one S-unit (e.g., has iterations) is the sum of the

execution times of all S-units, and the energy consumed by

such a STAMP process is the sum of the energy of all S-

units. The power dissipated in a STAMP process is the en-

ergy divided by the execution time of the STAMP process.

4. In general, it is not possible to determine the execu-

tion time and the energy/power consumptions of nested

STAMPs, however, once given a specific type of problem

and a specific class of algorithms, it can be estimated.

5. The execution time of parallel or distributed STAMPs

will be the maximum (worst-case) among all the execution

times of the parallel or distributed STAMP processes. The

energy and the power consumed by parallel or distributed

STAMPs will be the total energy and power dissipated by

all the parallel or distributed STAMP processes.

With execution time, energy, and power estimates

one can check whether the algorithm will meet the



power/energy envelope of the target machine. Other met-

rics related to performance and power as defined in Section

2.1 (D, PDP, EDP, and ED2P) and their complexity can be

derived in a straightforward way. This allows a designer to

understand the context in which a particular parallel algo-

rithm is well suited (energy limited, workstation/desktop,

or server/supercomputer).

4. Examples

Here we illustrate how to map algorithms to the STAMP

model through three simple examples: An algorithm

for solving a system of linear equations with attributes

intra proc, async exec and synch comm, algo-

rithms for banking and airline reservation systems with the

trans exec attribute, and an all-pairs shortest-path algo-

rithm with attributes inter proc and async comm.

Solving a system of linear equations. We take the Jacobi

algorithm for solving the system Ax = b, where x is an un-

known vector to be determined, A is an n × n matrix, and

b is a vector in Rn. The Jacobi algorithm starts with some

initial vector x(0) ∈ Rn, and evaluates x(t), t = 1, 2, . . . ,

using the iteration xi(t+1) = − 1
aii

[

∑

j 6=i aijxj(t) − bi

]

.

A sequential Jacobi algorithm is as follows:

Jacobi(A[], b[], x) [intra proc, async exec, synch comm]

bool terminated = false; int t = 0

while not terminated

forall i: xi(t + 1) = − 1
aii

[

∑

j 6=i aijxj(t) − bi

]

if (termination condition is met) terminated = true

Because of the async exec keyword, this algorithm is in

the framework of distributed STAMP and will be executed

by n threads. However, due to the intra proc keyword,

the n threads should be allocated as intra-processor threads

as much as possible. The algorithm is translated into a dis-

tributed STAMP algorithm in which each process i com-

putes the i-th component of vector x of size n:

distributed Jacobi algorithm for process i
bool terminated = false; int t = 0

while not terminated

receive x(t) from all other processes

xi(t + 1) = − 1
aii

[

∑

j 6=i aijxj(t) − bi

]

send xi(t + 1) to all other processes

/* implicit barrier synchronization is placed here */

if (termination condition is met) terminated = true

Here, each iteration of the while loop is an S-unit, which

consists of a local computation of checking the condition

of the while loop, an S-round that consists of receive, local

computation, and send, and a local computation of testing

for the termination condition and setting the variable ter-

minated if it is true. The send operations in the S-round are

followed by a barrier synchronization due to synch comm.
At each round t, a process can proceed to its local com-

putation only after it receives from all other processes, the
vector x computed in the previous round. After the lo-
cal computation is finished, the process sends the resulted
vector xi to all other processes. Assuming that the algo-
rithm uses distributed shared memories (by message pass-
ing communication), we compute the following complexity
measures. For simplicity, here we do not distinguish be-
tween the inter- and intra-processor communications. First
we compute the execution time for the S-round:

TS-round = c + L + g(ms + mr)

= 2n + L + g(2(n − 1)) = 2n + L + 2gn − 2g

The formula for TS-round (the first equality) is a simplified
form of that from Section 3.1 based on the above assump-
tions. We get the second equality by substituting values for
c, ms, and mr: there are n − 1 multiplications, n − 2 ad-
ditions and 1 subtraction, and 1 multiplication (outside the
brackets), which yield 2n − 1 (floating point) operations.
Together with the assignment operation, we get 2n local
operations. A process receives one message from each of
n − 1 processes and sends one to each of n − 1 processes,
which yields 2(n − 1) message operations.
The energy for the S-round is calculated in a similar way:

ES-round = wfpcfp + wintcint + wmr
mr + wms

ms

= wfp(2n − 1) + wint + wmr
(n − 1) + wms

(n − 1)

= (2wfp + wmr
+ wms

)n − wfp + wint − wmr
− wms

.

For the local computations outside the S-round:

Tc ≥ 2 and Ec ≤ wfp + 2wint ,

where the inequalities are due to the result of the condition
checking in the if statement; here we take a lower bound of
the execution time and an upper bound of the energy con-
sumption. This is because we want to have an upper bound
of power estimates when we divide the energy consumption
by the execution time. Now we have the two measures for
an S-unit:

TS-unit ≥ 2n + L + 2gn − 2g + 2 and

ES-unit ≤ (2wfp + wmr
+ wms

)n + 3wint − wmr
− wms

.

The above algorithm does not specify the termination condi-
tion. A common way of running the Jacobi algorithm would
be to execute sufficiently many iterations for the solution
vector x to converge close enough to the true solution val-
ues. Since we do not have the precise information on how
many times the S-unit should iterate, we consider the power
consumption of one S-unit, which can be calculated by:

PS-unit ≤ ES-unit/TS-unit

=
(2wfp + wmr

+ wms
)n + 3wint − wmr

− wms

2n + L + 2gn − 2g + 2
.



We elaborate on the complexity measures by considering
lower bounds for the parameters L and g. By closely look-
ing at the above algorithm for each process, one can see that
the smallest latency value results from having all processes
execute in lock steps and the barrier synchronization take no
more than unit time. In this case, a message sent by process
i to j will be received by process j in the following iteration
of j, which requires at least five units of time. The small-
est value of the bandwidth factor g can be estimated as the
ratio of the smallest number of local computations to the to-
tal number of messages delivered by the network within the
same amount of units of time, which yields 3

n(n−1) . Thus,

we get a lower bound of

TS-unit ≥ 2n + 5 + 2n
3

n(n − 1)
− 2

3

n(n − 1)
+ 2

= 2n + 6/n + 7 ≥ 2n.

Now, for example, let us assume the following: wfp =
xwint, wmr

= wms
= ywint for some x, y ≥ 2. Then

we get an upper bound of ES-unit ≤ (2(x + y)wint)n.
Consequently, the power consumption is bounded by

PS-unit ≤
(2(x + y)wint)n

2n
= (x + y)wint.

Also, for example, assume that one processor core has the

power limit of 3(x + y)wint when it is specified in term

of wint. Furthermore, assume the same power limit for ev-

ery processor. Then, the Jacobi algorithm should not be

assigned to more than three intra-processor threads per pro-

cessor, i.e., it can not run on all four threads in one proces-

sor, in order to meet the power envelope.

Banking and airline reservation systems. A transfer op-

eration in banking moves a given amount m from one ac-

count a to another account b, which is expressed as follows.

transfer(a, b, m) [intra proc, trans exec]

bool cmit1 = false, cmit2 = false

cmit1 = a.withdraw(m) [trans exec, synch comm]

cmit2 = b.deposit(m) [trans exec, synch comm]

if (cmit1 ∧ cmit2) then return(true) else return(false)

The algorithm transfer is specified as trans exec and has

two subtransactions withdraw and deposit, each of which

executes atomically. Due to the intra proc attribute to-

gether with the synch comm keyword, the two subtrans-

actions should be executed in parallel in intra-processor

threads, which can help guarantee the atomic nature of the

transfer operation. The transfer transaction can commit

only when both subtransactions commit. On the other hand,

the airline reservation operation can be specified as follows.

reserve(from, to, sect1, sect2) [inter proc, trans exec]

bool cmit1 = false, cmit2 = false, cmit3 = false

cmit1 = rsrv(from, sect1) [trans exec, async comm]

cmit2 = rsrv(sect1, sect2) [trans exec, async comm]

cmit3 = rsrv(sect2, to) [trans exec, async comm]

if (all three committed) then return(true)

elseif (none of three committed) then return(false)

else (the committed leg is not full) then return(true)

The inter proc keyword, together with async comm,

infers that the subtransactions of reserve can be executed

as inter-processor threads. The if statement is an exam-

ple of a procedure to decide whether the entire transaction

should commit or abort when only some of subtransactions

commit. This demonstrates the flexibility provided by the

optimistic transactional execution together with the use of

async comm.

Finding all pairs shortest paths. Finally, we take an

all-pairs-shortest-paths (APSP) algorithm to be mapped to

the async exec category of the STAMP model with

async comm shared memory access and inter proc

distribution. The shared vector x to be computed is two-

dimensional, n by n, where n is the number of vertices in

the graph. Initially each xij contains the weight of the edge

from vertex i to vertex j (if it exists), is 0 if i = j, and

is infinity otherwise. The algorithm applied to x computes

a new vector whose (i, j) entry is min1≤k≤n{xik + xkj}.
Each process i is responsible for updating the i-th row vec-

tor of x, 1 ≤ i ≤ n. The distributed STAMP algorithm for

APSP can be expressed as follows:

distributed APSP algorithm for process i
bool terminated = false; int t = 0

while not terminated

read x
forall j: xij = min1≤k≤n{xik + xkj}
write xi /* update the i-th row vector of x */

if (termination condition is met) terminated = true

Each iteration of while loop is an S-unit, which consists of

a local computation of checking the condition of the while

loop, an S-round that consists of shared-memory read, local

computation, and shared-memory write, and a local compu-

tation of testing for the termination. This asynchronous al-

gorithm does not require any synchronization. This causes

no problem for the algorithm because the shared vector x
is single-writer and multiple-reader, i.e., each process has

its own portion to update in the shared vector. Such algo-

rithms can even take advantage of a faster convergence be-

cause faster processors can compute more rounds than slow

processors and possibly help the slow processors to be able

to terminate after a smaller number of rounds than in a se-

quential case. Thus, this kind of algorithm can be mapped

to a large number of inter-processor threads, even when the

processors’ available power and processing speeds vary.



5. Conclusions

We proposed a generic algorithmic model called

STAMP. Our STAMP model encompasses synchronous,

transactional, and asynchronous computation and commu-

nication models for multithreaded algorithms and systems

and is equipped with a universal performance and power

complexity model. By using simple examples, we illus-

trated how to design and analyze algorithms using STAMP,

and furthermore how to apply the complexity estimates to

better utilize the CMP/CMT-based machine within given

constraints such as the power limit.

By looking at the complexity measures of given algo-

rithms, one can determine if the overall performance can

be optimized. For example, reducing inter-processor com-

munication (i.e., assigning the required processes to the

threads within one processor) would maximize the perfor-

mance (i.e., gain higher throughput) within the given power

envelope of a single processor or increasing the number of

distributed/parallel processes (and assigning them to inter-

processor threads) would be needed in order to reduce the

local computation and meet the power limit. Our future

work includes finding a systematic way of optimizing the

overall performance of the multi-threaded machine based

on the complexity estimates provided by our STAMP com-

plexity model.
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