
Randomized Sets and Multisets
A Literate C++ Program

Andreas Klappenecker and Hyunyoung Lee

October 26, 2004

1 Quorum

Suppose that we have n servers which we number from 0 to n− 1. A client
process selects a quorum of k servers uniformly at random. If the quorum
size k is larger than n/2, then any two quorums have a server in common;
this property allows us to design a protocol that ensures consistency even
if we have multiple writing processes that access data on the n servers. In
a more recent development, Malkhi et al. observed that one can choose
a significantly smaller quorum size k, say k = Ω(n1/2+ε), and still get a
nontrivial intersection with high probability when n is large.

Class Declaration. The class quorum implements a quorum of size k
among n servers with a k-subset Q of {0, . . . , n − 1}. The class provides a
method to construct such a quorum W by quorum W(n,k). The file quorum.h
contains the complete interface:

1 〈quorum.h 1〉≡
#ifndef QUORUM_H
#define QUORUM_H
#include <set>
typedef unsigned u_int;

class quorum {
u_int n;
u_int k;
std::set<u_int> Q;

public:
quorum() { n=0; k=0; };
quorum(u_int, u_int);
~quorum() { Q.clear(); }

1

2 rset.nw October 29, 2004

quorum(const quorum& rhs);
quorum& operator=(const quorum& rhs);
u_int num() const { return n; }
u_int size() const { return k; }
void num(u_int nn) { n = nn; }
void size(u_int kk) { k = kk; }
std::set<u_int> read() const { return Q; }
std::set<u_int> choose();

};

std::ostream& operator<<(std::ostream& os, quorum& qrm);
#endif

The accessor functions num and size allow us to read the number of servers
n and the quorum size k, respectively. You can use W.num(5) to change the
number n of servers in W to 5. Similarly, W.size(3) sets the quorum size k
to 3.
We can obtain the set constituting the current quorum by W.read(). An
important method is choose() that allows us to choose a new quorum with
k elements uniformly at random from the set {0, . . . , n − 1}. The output
stream operation << is overloaded to provide a convenient method to print
the current quorum.

Member Functions. The file quorum.cc contains the member functions
of the class quorum. The constructor quorum(n,k) with two parameters as-
signs the number of servers n and quorum size k, and then chooses uniformly
at random a quorum of k servers. The random number generator is seeded
with the current time so that the behavior of the quorum selection appears
to be random.

2 〈quorum.cc 2〉≡ 3a .

#include <cstdlib>
#include <ctime>
#include <iostream>
#include "quorum.h"
using namespace std;

quorum::quorum(u_int nn, u_int kk) {
n = nn; k = kk;
static int seen = 0;
if(!seen) { srand(static_cast<unsigned>(time(0))); seen = 1; }
choose();

}

October 29, 2004 rset.nw 3

The next member function is a copy constructor that allows us to define a
quorum A as a copy of another quorum, quorum A = Q(10,3).

3a 〈quorum.cc 2〉+≡ / 2 3b .

quorum::quorum(const quorum& rhs) {
static int seen = 0;
if(!seen) { srand(static_cast<unsigned>(time(0))); seen = 1; }
n = rhs.num();
k = rhs.size();
Q = rhs.read();

}

We can also assign the content of one quorum to another quorum; we take
care that a nonsensical Q=Q assignment does not free the data in the quorum.

3b 〈quorum.cc 2〉+≡ / 3a 3c .

quorum& quorum::operator=(const quorum& rhs) {
if(this != &rhs) {
n = rhs.num();
k = rhs.size();
Q.clear();
Q = rhs.read();

}
return *this;

}

The method choose() provides the function which selects a quorum of size
k uniformly at random. Suppose that W contains a quorum Q = {1, 2, 5}
of k = 3 servers from n = 10 servers. Then W.choose() could select, for
example, the new quorum Q = {2, 7, 9}.

3c 〈quorum.cc 2〉+≡ / 3b 4a .

set<u_int> quorum::choose() {
for(Q.clear() ; Q.size() != k; Q.insert(rand() % n));
return Q;

}

4 rset.nw October 29, 2004

The file also contains the definition of the overloaded operator <<. For
example, we can print the current state of the quorum W with cout << Q;.
In our example above, the result would be {2,7,9}.

4a 〈quorum.cc 2〉+≡ / 3c

ostream& operator<<(ostream& os, quorum& qrm) {
const set<u_int> W = qrm.read();
os << "{";
for(set<u_int>::const_iterator i=W.begin(); i!=W.end(); i++) {
if(i != W.begin()) { os << ","; }
os << *i;

}
os << "}";
return os;

}

The procedure simply iterates over the set Q and prints the value of the
elements separated by commas.

Example A. Let’s illustrate the usage of the quorum class with a simple
example.

4b 〈testA.cc 4b〉≡
#include <iostream>
#include "quorum.h"
using namespace std;

int main() {
quorum Q(10,5); // choose a quorum of 5 out of 10 servers
cout << Q << endl; // print this quorum
Q.choose(); // choose a new quorum
cout << Q << endl; // print again

}

The example chooses uniformly at random 5 out of 10 servers, prints this
quorum, chooses a new quorum, and prints again. The result is, say,

{1,6,7,8,9}
{2,3,5,8,9}

Please note that different runs may yield different results.

Example B. In some cases, you might want to increase the quorum size
to increase the accuracy of subsequent operations.

October 29, 2004 rset.nw 5

4c 〈testB.cc 4c〉≡
#include <iostream>
#include "quorum.h"
using namespace std;

int main() {
quorum Q(10,5); // choose a quorum of 5 out of 10 servers
cout << Q << endl; // print this quorum
Q.size(6); // increase quorum size to 6 servers
Q.choose(); // choose a new quorum
cout << Q << endl; // print again

}

A sample output is given by

{1,3,4,6,9}
{1,5,6,7,8,9}

Summary. It is helpful to keep the following properties of the quorum
class in mind:

• The read operation does not change the quorum, so Q.read() followed
by Q.read() yields the same result unless the quorum is explicitly
changed between the two read operations.

• You can choose a quorum uniformly at random by Q.choose().

• If A and B are two quorums of k out of n servers, then the probability
that the two quorums have trivial intersection is given by

Pr[A ∩B = ∅] =
(
n− k
k

)/(
n

k

)
≤ e−k2/n.

The main use of quorums will be in randomized set operations, which we
explain in the next section.

6 rset.nw October 29, 2004

2 Randomized Sets

A randomized set is a distributed shared data structure which approximates
the behavior of a set. Consider a set M that is represented on n servers by
replicas Mr with 0 ≤ r < n. The replicas Mr are subsets of M such that
their union

⋃
Mr = M . The main idea is that a client process accesses a

quorum of k replicas for any set operation.
The class rset allows you to experiment with this randomized data

structure. The class provides member functions for all operations that are
described in the companion paper. An object S of type rset<T> is deter-
mined by (i) a vector of size n that contains the replicas of the set S, and
(ii) a quorum object Q that contains the number of servers n, the quorum
size k, and the quorum chosen by the last operation.

Class Declaration. Let’s start with an overview of the rset class. We
declare and define all member functions of the class rset in the file rset.h
to avoid issues with the separate compilation of template classes. The file
rset.h is organized as follows:

6 〈rset.h 6〉≡
#ifndef RSET_H
#define RSET_H
#include <cmath>
#include <ctime>
#include <iostream>
#include <vector>
#include <set>
#include <iterator>
#include <algorithm>
#include <functional>
#include "quorum.h"
typedef unsigned int u_int;
typedef std::set<u_int> ui_set;
〈rset class declaration 7〉
〈rset definitions 8〉
#endif

October 29, 2004 rset.nw 7

The organization of this file is straightforward. We simply include all
standard library header files that we need and define an unsigned integer
type u int and a type ui set for sets of unsigned integers. The main
purpose is the definition of a class rset<T> that represents a randomized
set of type T. Let’s have a look at the class declaration first:

7 〈rset class declaration 7〉≡ (6)

template <class T>
class rset {
std::vector< std::set<T> > replica;
quorum Q;

public:
// Constructors, destructor, assignment
rset() { }
rset(u_int, u_int);
rset(const rset<T>&);
~rset();
const rset<T>& operator=(const rset<T>&);

// Accessors and mutators
u_int num() const { return Q.num(); }
u_int size() const { return Q.size(); }
void size(u_int k) { Q.size(k); }
quorum qrm() const;
std::set<T> read(u_int) const;

// Basic rset operations
std::set<T> read();
void insert(const T);
void insert(const std::vector<T>&);
rset<T> operator+(rset<T>&);
rset<T> operator*(rset<T>&);
rset<T> operator-(rset<T>&);

};

// Related procedures
template <class T>
std::ostream& operator<<(std::ostream&, std::set<T>&);
template <class T>
std::ostream& operator<<(std::ostream&, rset<T>&);

8 rset.nw October 29, 2004

An object of type rset<T> contains a vector replica of n sets of type set<T>
and a quorum Q of k out of n servers. The set replica[i] represents, as
the name suggests, the replica on server i.

The class provides member functions to create and destruct random-
ized sets. For example, if you want to create a randomized set S of dou-
ble precision floating point numbers on 10 servers and the default quo-
rum size is 4, then you can create this randomized set by rset<double>
S(10,4). You can create another randomized set with the same parameters
by rset<double> T = S.

The replicas are initially empty. You can add an element, say 3.14, to
the randomized set S by S.insert(3.14); the member function will choose
4 servers uniformly at random and insert the element 3.14 into the replicas
of these servers. The operation S.read() simulates the read operation of
a client and returns the union of 4 replicas S.replica[i] that are chosen
uniformly at random. The union, intersection and set difference operation
on randomized sets are respectively given by S+T, S*T and S-T.

Member Functions. We describe now the member functions of the class
rset in more detail. We recommend that you briefly skim through this
paragraph to get familiar with the basic member functions and then exper-
iment with the examples given in the subsequent paragraphs. You can then
refer back to this paragraph to get more detailed explanations.

For easier navigation, we use the symbol ♠ for constructors and
destructors, ♦ for accessor and mutator functions, ♣ for ran-
domized set operations, and ♥ for related procedures.

♠ Constructor. The constructor of an rset initializes the number of servers
n and the quorum size k used by the operations on rset. The n replicas are
initialized to empty sets. If you want to define a randomized set S of integers
with 50 replicas and quorum size 16, then you can do that by rset<int>
S(50,16).

8 〈rset definitions 8〉≡ (6) 9a .

template <class T>
rset<T>::rset(u_int n, u_int k) {
static int seen = 0;
if(!seen) { srand(static_cast<unsigned>(time(0))); seen = 1; }
for(u_int i=0; i<n; i++) {
replica.push_back(std::set<T>()); // replica[i] = {}

}
Q.num(n);

October 29, 2004 rset.nw 9

Q.size(k);
Q.choose();

}

♠ Copy Constructor. A second method to construct a randomized set S2
starts with a given randomized set rset<T> S1(n,k) and is realized by
rset<T> S2 = S1. As you might have guessed, the quorum and the replicas
are copied.

9a 〈rset definitions 8〉+≡ (6) / 8 9b .

template <class T>
rset<T>::rset(const rset<T>& rhs) {
Q = rhs.qrm();
for(u_int i=0; i<Q.num(); i++) {
replica.push_back(rhs.read(i));

}
}

♠ Destructor. The destructor ~rset of a randomized set simply clears the
vector of replicas and the quorum.

9b 〈rset definitions 8〉+≡ (6) / 9a 9c .

template <class T>
rset<T>::~rset() {
replica.clear();
Q.read().clear();

}

♠ Assignment. Suppose that you have defined random sets A and B of type T.
The next member function allows you to perform the assignment A=B. A
typical usage is in expressions such as A=B*C.

9c 〈rset definitions 8〉+≡ (6) / 9b 10a .

template <class T>
const rset<T>& rset<T>::operator=(const rset<T>& rhs) {
if (this != &rhs) {
Q = rhs.qrm();
replica.clear();
for(u_int i=0; i<Q.num(); ++i) {
replica.push_back(rhs.read(i));

}
}
return *this;

}

10 rset.nw October 29, 2004

♦ Read Replica. Suppose that you have a randomized set S. If you want to
know what elements are contained in the replica of S on server x, then you
can access this set by S.read(x).

10a 〈rset definitions 8〉+≡ (6) / 9c 10b .

template <class T>
std::set<T> rset<T>::read(u_int x) const {
return replica[x];

}

♦ Quorum. If you are interested in the quorum that has been used by the
last insert or read operation of a randomized set S, then you can access this
quorum by S.qrm().

10b 〈rset definitions 8〉+≡ (6) / 10a 10c .

template <class T>
quorum rset<T>::qrm() const {
return Q;

}

♣ Insert. The next member function chooses a write quorum W, and inserts
the element to the k replicas indexed by W. For example, if we have a
randomized set of doubles, rset<double> S(50,16), then S.insert(3.14)
adds the value 3.14 to 16 replicas of S. You can access the write quorum
that has been chosen by this operation by S.qrm().

10c 〈rset definitions 8〉+≡ (6) / 10b 11a .

template <class T>
void rset<T>::insert(const T elem) {
Q.choose();
ui_set W = Q.read();
for(ui_set::const_iterator it = W.begin(); it != W.end(); ++it) {
replica[*it].insert(elem);

}
}

October 29, 2004 rset.nw 11

♣ Insert multiple elements. Suppose you want to simulate a client that
adds several elements to a randomized set S of type T. If the elements are
represented by a vector v of type vector<T>, then you can use S.insert(v)
as an abbreviated form for S.insert(v[0]), S.insert(v[1]),

11a 〈rset definitions 8〉+≡ (6) / 10c 11b .

template <class T>
void rset<T>::insert(const std::vector<T>& vec) {

typename std::vector<T>::const_iterator it;
for(it = vec.begin(); it != vec.end(); it++) {
insert(*it); // insert element by element

}

}

♣ Read. A read operation chooses a quorum R of k servers. It returns the
union of the k replica sets indexed by the read quorum R.

11b 〈rset definitions 8〉+≡ (6) / 11a 11c .

template <class T>
std::set<T> rset<T>::read() {
Q.choose();
ui_set R = Q.read(); // get a read quorum
std::set<T> S;
ui_set::const_iterator it;
for(it = R.begin(); it != R.end(); ++it) {
S.insert(replica[*it].begin(), replica[*it].end());

}
return S;

}

♣ Union. Suppose you have three randomized sets A, B, and C of type T.
The operation C=A+B provides a randomized union operation. This operation
simulates a client that performs A.read() and B.read(), takes the union
of these two sets, clears the replicas of C, and then inserts the elements
A.read()∪B.read() into C.

11c 〈rset definitions 8〉+≡ (6) / 11b 12a .

template <class T>
rset<T> rset<T>::operator+(rset<T>& B) {
std::set<T> Ar = read(), Br = B.read();
std::vector<T> C;
set_union(Ar.begin(),Ar.end(),

Br.begin(),Br.end(),back_inserter(C));
rset<T> R(num(),size());
R.insert(C);
return R;

}

12 rset.nw October 29, 2004

♣ Intersection. Suppose you have three randomized sets A, B, and C of type
T. The operation C=A*B provides a randomized intersection operation. This
operation simulates a client that performs A.read() and B.read(), takes
the intersection of these two sets, clears the replicas of C, and then inserts
the elements A.read()∩B.read() into C.

12a 〈rset definitions 8〉+≡ (6) / 11c 12b .

template <class T>
rset<T> rset<T>::operator*(rset<T>& B) {
std::set<T> Ar = read(), Br = B.read();
std::vector<T> C;
set_intersection(Ar.begin(),Ar.end(),

Br.begin(),Br.end(),back_inserter(C));
rset<T> R(num(),size());
R.insert(C);

return R;
}

♣ Set Difference. Suppose you have three randomized sets A, B, and C of
type T. The operation C=A-B realizes A.read()\ B.read() and assigns the
result to C. Warning: The probabilistic nature of the read operations can
lead to elements in this set that do not belong to A\B. The operation should
be used with care.

12b 〈rset definitions 8〉+≡ (6) / 12a 13a .

template <class T>
rset<T> rset<T>::operator-(rset<T>& B) {
std::set<T> Ar = read(), Br = B.read();
std::vector<T> C;
set_difference(Ar.begin(),Ar.end(),

Br.begin(),Br.end(),back_inserter(C));
rset<T> R(num(),size());
R.insert(C);
return R;

}

October 29, 2004 rset.nw 13

♥ Print sets. We overload the operator << so that we can print a set with
elements of type T in the usual form, e.g., {1,2,3}.

13a 〈rset definitions 8〉+≡ (6) / 12b 13b .

template <class T>
std::ostream& operator<<(std::ostream& os, std::set<T>& S) {
typename std::set<T>::const_iterator it;
os << "{";
for(it=S.begin(); it != S.end(); it++) {
if(it != S.begin()) { os <<","; }
os << *it;

}
os << "}";
return os;

}

♥ Print randomized sets. Finally, we provide a procedure to print the repli-
cas of a randomized set.

13b 〈rset definitions 8〉+≡ (6) / 13a

template <class T>
std::ostream& operator<<(std::ostream& os, rset<T>& S) {
for(u_int r=0; r<S.num(); r++) { // iterate through replicas

os << "Server " << r << ": ";
std::set<T> Rep = S.read(r);
os << Rep << endl;

}
return os;

}

14 rset.nw October 29, 2004

Example C. Let’s illustrate the randomized set class with some simple
examples. In the first example, we construct a randomized set of integers
that is replicated over 4 servers. We insert the elements 1, 2, 3, 4, and 5 using
quorum size 2, and print the state of the replicas so that one can appreciate
the construction of this randomized set.

14 〈testC.cc 14〉≡
#include <iostream>
#include "quorum.h"
#include "rset.h"
using namespace std;

int main() {
rset<int> S(4,2);
for(int i=1; i<6; i++) {
cout << "Adding element " << i << " yields:" << endl;
S.insert(i);
cout << S;

}
}

October 29, 2004 rset.nw 15

Example D. The size of a quorum influences the results significantly. For
example, the following program illustrates the effect of the quorum size in
terms of the read operations. We first construct a set of cardinality 300
using quorums of size 16 and 50 replica servers. We read 15 times and note
the cardinalities of the sets. We then repeat the same experiment with a
reduced quorum size of 12 servers (which is too small).

15 〈testD.cc 15〉≡
#include <cstdlib>
#include <ctime>
#include <iostream>
#include "quorum.h"
#include "rset.h"
using namespace std;

void print_sizes(int k) {
rset<int> S(50,k);
for(int i=0; i<300; S.insert(i++));

for(int i=0; i<14; i++) {
cout << S.read().size() << ", ";

}
cout << S.read().size() << "." << endl;

}

int main() {
cout << "Construct a set of cardinality 300.";
cout << " For quorum size k=16,";
cout << endl << "repeated read operations yield ";
cout << "sets of cardinality:" << endl;
print_sizes(16);

cout << "For quorum size k=12, we obtain sets ";
cout << "of cardinality: " << endl;
print_sizes(12);

}

16 rset.nw October 29, 2004

Example E. We have restricted ourselves so far to the creation of a ran-
domized set and subsequent read operations. Using these primitives, we can
define probabilistic versions of set operations such as union, intersection,
and set difference in the following way:

A.read() ∪ B.read(), A.read() ∩ B.read(), A.read() \ B.read().

The read operation A.read() is expected to return (1−ε)|A| elements, where
ε is determined by the number of servers n and the quorum size k,

ε =
(
n− k
k

)/(
n

k

)
.

This means that A ∪ B and A ∩ B are approximated by subsets. However,
A \ B is approximated by a set that can be too large or too small (and we
discourage the usage of this operation). Anyway, you might want to gain
experience with these operations so that you know what to expect.

16 〈testE.cc 16〉≡
#include <iostream>
#include <set>
#include <vector>
#include "rset.h"
using namespace std;

int main () {
int n = 6;
int k = 3;
rset<int> A(n,k);
rset<int> B(n,k);
A.insert(1);
A.insert(2);
A.insert(3);

B.insert(3);
B.insert(4);
B.insert(5);

cout << "A = {1,2,3} " << endl;
cout << "B = {3,4,5} " << endl;

cout << "A union B = {1,2,3,4,5}" << endl;
rset<int> C = A + B;
cout << C;

October 29, 2004 rset.nw 17

cout << "A intersection B = {3}" << endl;
rset<int> D = A * B;
cout << D;

cout << "A minus B = {1,2}" << endl;
rset<int> E = A - B;
cout << E;

}

Example F. In the previous two examples, we have studied the effect of
the quorum size on the read operations. We conclude this section by giving
a small program that allows you to calculate the probability ε that two
quorums will be disjoint, ε =

(
n−k
k

)
/
(
n
k

)
.

We prompt the user to provide the quorum size k and the number of
servers n. The calculation is done with a procedure binom that calculates
the binomial coefficient

(
n
k

)
. The type T of the template should be some

integer type such as int, long or the like.
17 〈binomial 17〉≡ (18)

template <class T>
T binom(T n, T k) {
T mi = min<T>(k,n-k);
if (mi < 0)
return 0;

else if (mi == 0)
return 1;

else {
T ma = max<T>(k,n-k);
T res = ma+1;
for (T i = 2; i <= mi; i++) {
res = (res*(ma + i)) / i;

}
return res;

}
}

18 rset.nw October 29, 2004

The calculation of the binomial coefficient rests on the observation that the
product (n − k + 1)(n − k + 2) · · · (n − k + `) is divisible by `! for ` ≥ 1.
Therefore, it is possible to calculate

(
n
k

)
= (n− k+ 1)(n− k+ 2) · · ·n/k! by

successive multiplications of the terms (n − k + i) and divisions by i that
keep the intermediate products relatively small.

18 〈testF.cc 18〉≡
#include <iostream>
#include "rset.h"
using namespace std;

〈binomial 17〉

int main() {
int n,k;

// prompt user to provide the key parameters
cout << "Please provide the number of replicas ";
cout << "n = ";
cin >> n;
cout << "the quorum size ";
cout << "k = ";
cin >> k;

double eps = binom<long long>(n-k,k)/(double)binom<long long>(n,k);
cout << "Precision epsilon = " << eps << endl;

}

October 29, 2004 rset.nw 19

3 Conclusions

Randomized sets are a natural data structure for distributed algorithms
that share information among different servers. If the number n of servers
is small, then it is natural to use a quorum size of k > n/2 to access the
replicas. However, for a modest to larger number of servers, the message
complexity for such a traditional quorum approach can be intolerable. The
probabilistic approach outlined in the paper “Randomized Sets and Mul-
tisets” by H. Lee and A. Klappenecker, 2004, can provide a remedy. We
encourage you to experiment with our programs, so that you are able to
appreciate the advantages and disadvantages of this approach.

It is somewhat surprising that a systematic study of randomized data
structures is still lacking. Our approach generalizes directly to the other
associative containers of Stepanov’s STL (namely multisets, maps, and mul-
timaps). We encourage the reader to modify our programs to study such
randomized data structures (this is nice exercise that is not difficult). We
would be delighted to hear about implementations of other randomized data
structures.

Acknowledgments. We thank Gabriel Dos Reis and Bjarne Stroustrup for very helpful advice
on compiler and language issues. The research by H.L. was supported by University of Denver
PROF grant 88197. The research by A.K. was supported by NSF CAREER award CCF 0347310,
NSF grant CCR 0218582, a TEES Select Young Faculty award, and a Texas A&M TITF initiative.

	Quorum
	Randomized Sets
	Conclusions

