Brief Announcement: Randomized Shared Queues’

Hyunyoung Lee and

Jennifer L. Welch

Department of Computer Science, Texas A&M University
College Station, TX 77843-3112, USA

{hlee, welch}Q@cs.tamu.edu

ABSTRACT

This paper presents a specification of a randomized shared
queue that can lose some elements or return them out of
order (not in FIFO), shows that the specification can be
implemented over the probabilistic quorum algorithm of [4,
3], and analyzes the behavior of this implementation. Dis-
tributed algorithms that can tolerate some lost and out-
of-order messages are candidates for replacing the message
queues with random queues. The modified algorithms will
inherit positive attributes concerning load and availability
from the underlying queue implementation. The behavior
of an application — a class of combinatorial optimization al-
gorithms — when it is implemented using random queues is
analyzed.

1. SPECIFICATION OF RANDOM QUEUE

Queues are a fundamental concept in many areas of com-
puter science. A common application in distributed comput-
ing are message queues in communication networks. Many
distributed algorithms use high-level communication opera-
tions, such as scattering or all-to-all broadcasts (cf. Chapter
1 of [2] for an overview). These algorithms can typically tol-
erate inaccuracies in the order in which the queue returns
its elements, as the order of the elements in the message
queue is typically impacted by the unpredictability of the
communications network.

We define a random queue to be a randomized version
of a shared queue, of which some properties are relaxed such
that the number of enqueued data items is not preserved and
the items can be dequeued out of order (not in FIFO).

A queue @ shared by several processes supports two op-
erations, Enq(Q,v) and Deq(Q,v). Enq;(Q,v) is the invo-
cation by process i to enqueue the value v, Ack;(Q) is the
response to i’s enqueue invocation, Deq;(Q,v) is the invo-
cation by i of a dequeue operation, and Ret;(Q,v) is the

*A full version of this paper, which includes all proofs, is
available as Technical Report: TR01-004, Department of
Computer Science, Texas A&M University, March, 2001.

response to ¢’s dequeue invocation which returns the value
v. A possible return value is also L, indicating an empty
queue. The set of values from which v is drawn is uncon-
strained.

We will focus on multi-enqueuer, single-dequeuer queues;
thus, the enqueue can be invoked by all the processes while
the dequeue can be invoked only by one process.

Given a real number p that is between 0 and 1, a system
is said to implement a p-random queue if the following
conditions hold.

e (Liveness) every operation invocation has a following
matching response;

o (Integrity) every operation response has a preceding
matching invocation;

e (No Duplicates) for each value z, Deq(Q, z) occurs at
most once;

e (Per Process Ordering) for all i, if Enq;(Q,z1) ends
before Enq;(Q,z2) begins, then z» is not dequeued
before x1 is dequeued,;

(Probabilistic No Loss) for every enqueued value z,
Pr[z is dequeued] > p.

2. IMPLEMENTATION OF RANDOM QUEUE

We now describe an implementation of a p-random queue.
The next section computes the value of p, assuming that the
application program using the shared queue satisfies certain
properties.

The queue algorithm is based on the probabilistic quorum
algorithm of Malkhi et al. [4]. There are r replicated memory
servers.

We begin by describing a random queue for the special
case of a single enqueuer. The case of n > 1 enqueuers is
implemented over a collection of n single enqueuer queues.

The enqueue operation (Enq) mirrors the probabilistic
quorum write operation: The local timestamp is incremented
by one and attached to the element that is to be enqueued.
The resulting pair is sent to the replicas in the chosen quo-
rum, a randomly chosen group of k servers.

The key notion in the dequeue operation (SingleDeq) is
a timestamp limit (7). At any given time, all timestamps
that are smaller than the current value T are considered to
be outdated. T is included in the dequeue messages to the
replica servers and allows them to discard all outdated val-
ues. Beyond this, SingleDeq mirrors the probabilistic quo-
rum read operation: The client selects a random quorum,

sends dequeue messages to all replica servers in the quorum
and selects the response with the smallest timestamp t4. It
updates the timestamp limit to 1" := t4 + 1 and returns the
element that corresponds to tg.

Each replica server implements a conventional queue with
access operations enqueue and dequeue. In addition, the
dequeue operation receives the current timestamp limit as
input and discards all outdated values (e.g., by means of re-
peated dequeue operations). The purpose of this is to ensure
that there are exactly k replica servers that will return the
element v with timestamp T in response to a dequeue re-
quest. Thus, the probability of finding this element (in the
current dequeue operation) is exactly the probability that
two quorums intersect. This property is of critical impor-
tance in the analysis in the following section. It does not
hold if outdated values are allowed to remain in the replica
queues, as those values could be returned instead of vr by
some of the replica servers containing vr.

For the case of n > 1 enqueuers, we extend the single-
enqueuer, single-dequeuer queue for an n-enqueuer, single-
dequeuer queue by having n copies of single-enqueuer queue,
i.e., n single-enqueuer queues (Q1,...,Q,), one per en-
queuer. The i-th enqueuer (1 < ¢ < n) enqueues to Q;.
The single dequeuer dequeues from all n queues by making
calls to the function Deq(), which selects one of the queues
and tries to dequeue from it.

Deq() checks the next queue in sequence. The round-robin
sequence can be replaced by any other queue selection crite-
rion that queries all queues with approximately the same
frequency. The selection criterion will impact the order
in which elements from the different queues are returned.
However, it does not impact the probability of any given
element being dequeued (eventually), as the queues do not
affect each other, and the attempt to dequeue from an empty
queue does not change its state.

3. ANALYSIS OF RANDOM QUEUE IMPLE-
MENTATION

For this analysis, we assume that the application program
invoking the operations on the shared random queue satisfies
a certain property. Every complete execution consists of
a sequence of segments. Each segment is a sequence of
enqueues followed by a sequence of dequeues, which has at
least as many dequeues as enqueues. Fix a segment. Let m.,
resp., my, be the total number of enqueue, resp., dequeue,
operations in this segment. Let m = m. + mq. Let Y;
be the indicator random variable for the event that the i-th
element is returned by a dequeue operation (1 < i < m). In
the following lemma, the probability space is given by the
enqueue and dequeue quorums which are selected by the
queue access operations. More precisely, let P (r) denote
the collection of all subsets of size k of the set {1,...,7}.
Since there are m enqueue and dequeue operations, we let
Q = Pi(r)™ be the universe. The probability space for the
following lemma is given by the finite universe and the
uniform distribution on £2.

LEMMA 1. The random wvariables Y; (1 < i < me) are
mutually independent and identically distributed with

Pr(Yi=1)=p= (1— (15))

THEOREM 1. The algorithm in Section 2 implements a
random queue.

4. APPLICATION OF RANDOM QUEUE:
GO WITH THE WINNERS

In this section we show how to incorporate random queues
to implement a generic randomized optimization algorithm
called Go with the Winners (GWTW), which was proposed
by Aldous and Vazirani [1]. We analyze how the weaker
consistency provided by random queues affects the success
probability of the GWTW algorithm. Our goal is to show
that the success probability is not significantly reduced.

A combinatorial optimization problem is given by a state
space S (typically exponentially large) and an objective func-
tion f, which assigns a ‘quality’ value to each state. The task
is to find a state s € S, which maximizes (or minimizes) f(s).
It is often sufficient to find approximate solutions. For ex-
ample, in the case of the clique problem, S can be the set
of all cliques in a given graph and f(s) can be the size of
clique s.

In order to apply GWTW to an optimization problem,
the state space has to be organized in the form of a tree
or a DAG, such that the following conditions are met: (a)
The single root is known. (b) Given a node s, it is easy to
determine if s is a leaf node. (c) Given a node s, it is easy
to find all child nodes of s. The parent-child relationship
is entirely problem-dependent, given that f(child) is better
than f(parent). For example, when applied to the clique
problem on a graph G, there will be one node for each clique.
The empty clique is the root. The child nodes of a clique
s of size k are all the cliques of size k + 1 that contain s.
Thus, the nodes at depth ¢ are exactly the i-cliques. The
resulting structure is a DAG. We could have defined a tree
by considering ordered sequences of vertices.

Greedy algorithms, when formulated in the tree model,
typically start at the root node and walk down the tree un-
til they reach a leaf. The GWTW algorithm follows the
same strategy, but tries to avoid leaf nodes with poor val-
ues of f, by doing several runs of the algorithm simultane-
ously, in order to bound the running time and boost the
success probability (success means a node is found with a
sufficiently good value of f). We call each of these runs a
particle — which carries with it its current location in the
tree and moves down the tree until it reaches a leaf node.
The algorithm works in synchronous stages. During the k-th
stage, the particles move from depth k to depth k+ 1. Each
particle in a non-leaf node is moved to a randomly chosen
child node. Particles in leaf nodes are removed. To com-
pensate for the removed particles, an appropriate number
of copies of each of the remaining particles is added.

The main theme to achieve a certain constant probability
of success is to try to keep the total number of particles at
each stage close to the constant B.

The framework of the GWTW algorithms is as follows: At
stage 0, start with B particles at the root. Repeat the follow-
ing procedure until all the particles are at leaves: At stage
i, remove the particles at leaf nodes, and for each particle
at a non-leaf node v, add at v a random number of parti-
cles, this random number having some specified distribution.
Then, move each particle from its current position to a child
chosen at random.

We consider a distributed version of the GWTW frame-

work, presented as Algorithm 2 in the full paper. Consider
an execution of Algorithm 2 on m processes. At the be-
ginning of the algorithm (stage 0), B particles are evenly
distributed among the n processes. Since, at the end of
each stage, some particles may be removed and some parti-
cles may be added, the processes need to communicate with
each other to perform load balancing of the particles (global
exchange). We use shared-memory communication among
the processes. In particular, we use shared queues to dis-
tribute the particles among processes.

When using random queues, the errors will affect GWTW,
since some particles disappear with some probability. How-
ever, we show that this does not affect the performance of
the algorithms significantly. In particular, we estimate how
the disappearance of particles caused by the random queue
affects the success probability of GWTW.

We now show that Algorithm 2 when implemented with
random queues will work as well as the original algorithms
in [1].

We use the notation of [1] for the original GWTW algo-
rithm (in which no particles are lost by random queues): Let
X, be a random variable denoting the number of particles
at a given vertex v. Let S; be the number of particles at the
start of stage ¢. At stage 0, we start with B particles. Then
So =B and S; = EUEV@ X,, for i > 0, where V is the set
of all vertices at depth ¢. Let p(v) be the chance the par-
ticle visits vertex v. Then a(j) = Evevj p(v) is the chance
the particle reaches depth j at least. p(w|v) is defined to
be the chance the particle visits vertex w conditioning on it
visits vertex v. The values s;,1 < ¢ < £ are constants which
govern the particle reproduction rate of GWTWs. The pa-
rameter x is defined to express the “imbalance” of the tree
as follows: For ¢ < j, Kkij = fz(—g})zvevip(v)az(ﬂv), and
KR = maxOSKder Kij.

Aldous and Vazirani [1] prove

LEMMA 2.

2/ 1
varS; < RBGSi(;) Z S—], 0<i<d.
j=0

We will use this lemma to prove similar bounds for the
distributed version of the algorithm, in which errors in the
queues can affect particles. For this purpose, we formulate
the effect of the random queues in the GWTW framework.

More precisely, given any original GWTW tree T, we de-
fine a modified tree 7", which accounts for the effect of the
random queues. Given a GWTW tree T, let T’ be defined
as follows: For every vertex in T, there is a vertex in T".
For every edge in 7', there is a corresponding edge in 7". In
addition to the basic tree structure of T', each non-leaf node
v of T has an additional child w in T’. This child w is a leaf
node. The purpose of the additional leaf nodes is to account
for the probability with which particles can disappear in the
random queues in Algorithm 2.

Given any node w in 7" (which is not the root) and its
parent v, let p'(w|v) denote the probability of moving to w
conditional on being in v. For the additional leaf nodes w
in T', we set p'(w|v) = 1 — p, where 1 — p is the probability
that a given particle is lost in the queue. For all other pairs

(w,), let p/(w|v) = p-p(wlv). Then a'(i), a'(ilv), S, s,
X, and k' can be defined similarly for T".

Given a vertex v of T', let p(v) denote the probability that
Algorithm 2, when run with a single particle and without
reproduction, reaches vertex v. The term “without repro-
duction” means that the distribution mentioned in the first
“for” loop of the algorithm is such that the number of added
particles is always zero. The main property of the construc-
tion of T is:

FAcT 1. For any vertez v of the original tree T, p'(v) =
p(v). Furthermore, Pr(Algorithm 2 reaches depth) =
p- Pr(GWTW on T’ reaches depth £) for any £ > 0.

We can now analyze the success probability of Algorithm
2 (a combination of GWTW and random queues) by means
of analyzing the success probability of baseline GWTW on
a slightly modified tree. This allows us to use the results
of [1] in our analysis. In particular,

LEMMA 3.

i
i—1, 2 7
varSl<—nB'p ’az(z)z ::] ~, 0<i<d
si” g plal))

In order to allow a direct comparison between the bounds
of Lemmas 2 and 3, it is necessary to relate the constants
(si)1<i<e and (s})1<i<¢. These constants govern the particle
reproduction rate of GWTW and can either be set externally
or determined by a sampling procedure described in [1]. If
we set s; = p'~!s; then the expectations of Lemmas 2 and 3
are equal and the variance bounds are within a factor of p of
each other. The variance bound is used in [1] in connection
with Chebyshev’s inequality to provide a lower bound on the
success probability of GWTW. It follows that the negative
effect of random queues on the GWTW variance bounds can
be compensated for by increasing the number B of particles
at the root by a factor of 1/p.

5. REFERENCES

[1] D. Aldous and U. Vazirani. “Go With the Winners”
Algorithms. In Proc. of 35th IEEE Symp. on
Foundations of Computer Science, pp. 492-501, 1994.

[2] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed
Computation, Prentice-Hall Inc., Englewood Cliffs,
NJ, 1989.

[3] D. Malkhi and M. Reiter. Byzantine Quorum Systems.
Proc. of the 29th ACM Symp. on Theory of
Computing, pp. 569-578, May 1997.

[4] D. Malkhi, M. Reiter, and R. Wright. Probabilistic
Quorum Systems. In Proc. of the 16th Annual ACM
Symp. on Principles of Distributed Computing, pp.
267-273, Aug. 1997.

