Brief Announcement: Specification, Implementation and Application of
Randomized Regular Registers

Hyunyoung Lee and

This paper presents a definition of a randomized reg-
ular register, shows that the definition is implemented
by the probabilistic quorum algorithm of [3], and shows
how to program with such registers using the frame-
work of [4]. Consequently, existing iterative algorithms
for a large class of problems (including solving systems
of linear equations, finding shortest paths, etc.) will
converge with high probability if executed in a system
in which the shared data is implemented with registers
satisfying the new condition. A modified definition is
presented and its expected time for convergence is cal-
culated and compared experimentally with that for the
original definition.

We define a random regular register to satisfy:
every operation invocation has a matching response; ev-
ery read reads from a write that starts before the read
ends; and for every finite execution that ends in a write
invocation, the probability that this write W is read
from infinitely often is 0, if an infinite number of writes
are performed in the extension. We show in [1] that the
probabilistic quorum algorithm of [2, 3] implements a
random regular register, by showing that the probabil-
ity that at least one replica from W’s quorum survives
£ subsequent writes is at most k(2=£)¢, where n is the
number of processes and k is the quorum size.

The class of algorithms considered in [4] are those
in which a function is applied repeatedly to a vector to
produce another vector. In typical applications, each
vector component may be computed by a separate pro-
cess, based on that process’ current best estimate of the
values of all the vector components — estimates which
might be out of date. Uresin and Dubois show that
if the function satisfies certain properties and if the
outdatedness of the vector component estimates is not
too extreme, then this iterative procedure will even-
tually converge to the fixed point of the function, in
increments called pseudocycles. Functions satisfying

1Department of Computer Science, Texas A&M University,
College Station, TX 77843. e-mail: {hlee, welch}@cs.tamu.edu.

Jennifer L. Welch*

the desired properties are called asynchronously con-

tracting operators (ACOs). In [1] we prove: If F is

an ACO, then in every execution using random regular
registers, the computed vector eventually converges to

the fixed point of F with probability 1.

Our second definition requires the register to be
monotone, meaning that if a read reads from a cer-
tain write, then no subsequent read by the same pro-
cess reads from an earlier write. Additionally, let YV
be a random variable whose value is the number of
reads by a process after a write W until W or a
later write is read from by that process. Then there
must exist p, 0 < p < 1, such that for all »r > 1,
Pr(Y =7) < (1-p)" - p.

In [1] we define a round to be a minimal length
(contiguous) subsequence of an execution in which each
process performs at least one update of its vector com-
ponents, and we prove the following: In every exzecution
using monotone random reqular registers with constant
p, the expected number of rounds per pseudocycle is at
most . Thus the expected number of rounds for an
ACO requiring M pseudocycles for convergence is at
most M /p.

In [1] we prove that a simple modification to the
probabilistic quorum algorithm for n processes with
quorum size k implements a monotone random regu-
lar register with p = 1 — (";*)/(}). This implies that
the expected number of rounds per pseudocycle is at
most —1—.

1-(2)*

[1] H. Lee and J. L. Welch, “Specification, Implemen-
tation and Application of Randomized Regular
Registers,” TR00-012, Department of Computer
Science, Texas A&M University, March 2000.

[2] D. Malkhi and M. Reiter, “Byzantine Quorum Sys-
tems,” In Proceedings of the 29th ACM Sympo-
sium on Theory of Computing, pages 569-578,
May 1997.

[3] D. Malkhi, M. Reiter, and R. Wright, “Probabilis-
tic Quorum Systems,” In Proceedings of the 16th
Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 267-273, Aug. 1997.

[4] A. Uresin and M. Dubois, “Parallel Asynchronous
Algorithms for Discrete Data,” J. ACM, Vol. 37,
No. 3, pages 558-606, July 1990.



