
An Optimization of the Buddy Model for Securing Mobile Agents

Yueh-Hua Lee and Hyunyoung Lee

Department of Computer Science

University of Denver

Denver, CO 80208, U.S.A.

{ylee7, hlee}@cs.du.edu

Abstract

This paper proposes an improvement over a multi-agent system (MAS) security model, known as the

“buddy model”. The buddy model partitions the mobile agents in a system into several security groups.

In a group, an agent is protected by its neighbors, which are its “buddies”. The model achieves the

security requirement by periodically exchanging tokens within a group. We propose “Join”, “Leave”,

and “Accept” algorithms to collect nearby mobile agents into a group; moreover, our “Merge” and “Split”

algorithms maintain a reasonable size and diameter of a group where the diameter is the distance between

two farthest mobile agents in a group.

1 Introduction

This paper proposes a scheme to improve a security model, namely the “buddy model”, for an agent com-

munity. Mobile Agents are autonomous programs that can migrate from hosts to hosts [2,7]. A mobile agent

can decide when and where to move. When migrating, a mobile agent brings the implementation, data, and

execution state with it. Mobile agent technology has continuously developed in recent years. The concept

of agent community results from the maturity of mobile agent technology. The agent community is a MAS

with a specific community goal [8]. A community integrates different mobile agents that perform different

functions in order to achieve one common goal. An agent community is a dynamic entity: Mobile agents

join and leave their community frequently. Furthermore, an agent community may consist of several sub-

communities with different secondary community goals; several communities may form a super-community

that has a primary community goal. It is natural that an agent community is designed in a hierarchical way;

however, hierarchical implementation brings vulnerabilities. Attackers can easily target the mobile agents in

the top level of the hierarchy or create malicious mobile agents that assume the identities of administrative

mobile agents in order to ruin the whole community.

The “buddy” model is proposed by Page et al. [8, 9]. The term “buddies” refers to the neighbors of a

mobile agent in a pre-assigned group. In the model, the mobile agents within a group generate tokens and

send the tokens to their buddies periodically. By using the tokens, they protect buddies and monitor the

health condition of buddies. Page et al. argue that the model avoids the vulnerabilities of a hierarchical

scheme for mobile agent security: Because each mobile agent performs an identical role in the security

function, it is hard for an attacker to find and attack a central coordinator.

This paper explores an improvement of the “buddy” model. The optimization issue should be taken

into account when the model is applied to a large-scale scenario. If the mobile agents move far away from

one another, the network suffers from their frequent token delivery. We try to reduce the network traffic

by grouping nearby agents together dynamically. When a mobile agent migrates to a far away host, the

agent leaves the old group and joins a new nearby group. We also note that the size of a group dynamically

changes in time. Our improvement scheme provides means to merge two small groups into a larger group

and to split a large group into two or several smaller groups. The scheme can also be applied to other MAS

if the system can be divided into groups and requires frequent communication between group members. A

system gains better performance because the group members that need to communicate are geographically

near to one another.

There are five algorithms in our optimization approach. The “Join”, “Leave”, and “Accept” algorithms

collect nearby mobile agents into a group. Our “Merge” and “Split” algorithms maintain reasonable size

and diameter of a group by using a temporary central coordinator. The following sections are organized as

follows: Section 2 describes related works. Section 3 explains our system model. Section 4 describes the

five algorithms of our optimization scheme. Section 5 contains the analysis of the algorithms. Section 6

concludes the paper.

2 Related Works

Communication is a prime factor of MAS performance. There have been a great deal of research trying to

optimize the communication cost for MAS in different scenarios. Zhang et al. [13] examine the proactive

communication in multi-agent teamwork scenario and introduce a dynamic decision-theoretic approach.

The concept of multi-agent teamwork is similar to that of an agent community. They focus on analyzing

information production and support of proactive communication. The agents adopt different strategies, which

are Silence, ActiveAsk, and Wait, to optimize the communication utility. Goldman et al. [3] observe the

communication of decentralized cooperative MAS. They develop a theoretical model and an approximation

technique of the decentralized control of the communication optimization problem. The model helps to

analyze the trade-off between the cost of information exchange and the value of the information. Helin [4]

discusses the communication of mobile agents in wireless networks. There are two policies of communication,

which are migrating or sending request to the host. Helin proposes a model to find the optimal decision among

them. Jim [6] studies a MAS in which all agents communicate simultaneously. He shows that such MAS is

equivalent to a Mealy machine with finite state while the states are determined by the concatenation of the

strings in the agent communication language. In addition, increasing the language improves the performance

of the MAS. Yang et al. [12] analyze four factors that affect the performance of MAS: communication mode,

semantics, frequency, and agent migration sequence. They propose a mathematical model to describe the

communication tasks and provide means to optimize the cost.

The mobile agent security issue is receiving more and more attention in recent years. To migrate and

operate in an untrustworthy network is the nature of mobile agents. A general security infrastructure for all

potential threats has not been found because of the heterogeneity of the execution environments such as the

Internet. Several researches try to find specific solutions for specific security threats; others try to classify

security threats and integrate different countermeasures. Jansen classifies the security threats into four

categories: an agent attacking an agent platform, an agent platform attacking an agent, an agent attacking

another agent, and other entities attacking the agent system [5]. Similarly, Bierman classifies the malicious

host threats into four categories namely integrity attacks, availability refusal, confidentiality attacks, and

authentication risks [1]. They propose systematical classification and definition of threats in order to help

developing a general security scheme. However, a perfect solution has not been achieved.

3 System Model

We assume an asynchronous network with arbitrary topology. A security group is represented by an undi-

rected graph S(V, E). Each vertex represents a mobile agent and each edge represents buddy relationship.

In other words, if two mobile agents are buddies, there is an edge that connects them. We assume that the

mobile agents have ability to compute the distance between any two mobile agents. The distance is measured

by the number of hops between them. We define D as the maximum diameter of a group. The size of a

group is between L and U where L is the lower bound and U is the upper bound. We choose L < U/2 to

avoid iterative merge and split.

When a mobile agent broadcasts a request, it waits for a threshold T of time. T < 2δ where δ is the

maximum message delay for a communication channel whose length is D. If a reply message cannot arrive

S(V, E): a graph that represents a security group.

p, pi, q, qi, u, ui, v, vi, w, wi , where i = 1, 2, . . .: mobile agent.

G, Gi, H, Hi , where i = 1, 2, . . .: security groups.

C : temporary coordinator.

n, m, mi: the number of mobile agents (size) of the agent community or in a security group.

d: the number of hops between two mobile agents.

r: the diameter of a security group. The distance between two farthest mobile agents in a group.

D: (system parameter) the maximum allowable diameter.

T : (system parameter) the time threshold for an agent to wait.

T ′ : the number of local clock ticks that can represent T .

U, L: (system parameter) the upper bound and lower bound of the size of a group.

δ: the maximum message delay for a communication channel of length D.

Figure 1: Notations

within T time period, we assume that the source of the reply message is unable to respond or is far away

from the mobile agent that sends the broadcast message. However, we have to synchronize mobile agents

that dock at different machines. The threshold T is measured by clock ticks. When a mobile agent moves to

a new host, it sends a synchronization request to its home platform (the home platform is the origin of the

agent). The home platform will send two replies, which are “start” and “end”, and the time between the two

replies is T . The mobile agent counts the number of local clock ticks, which is T ′, between receiving “start”

and “end”. Using this approach, T is evaluated by T ′ and mobile agents on different hosts are synchronized.

The system parameters T , D, L, and U are known to every agent.

In the “Merge” and “Split” algorithms, we use a temporary coordinator to lead the merge and split

processes. We assume that a randomized leader election algorithm can choose a unique leader at random.

Therefore, there is still no way for an attacker to find and attack the temporary coordinator. Ramanathan

et al. propose a randomized leader election algorithm that works in arbitrary network topology and requires

only O(n) messages where n is the number of processes [10]. The algorithm is further discussed in Section 4.

Each mobile agent knows the addresses and identities of its direct buddies and buddies of buddies. The

information is stored in an array, Neigh[]. Each entry in Neigh[] has three fields. The first field records the

identity; the second field records the address; the third field indicates the agent is a direct buddy or buddy

of a buddy. If a mobile agent senses that the size of the group or Neigh[] changes, it appends the information

to its token. Upon receiving the token, the buddies modify their local information according to the token.

FALSE

Neigh[]Original token context Size_group

Format of a token when the size or Neigh[] changes

140.112.1.6 TRUE

AddressIdentity Direct buddy
A

B 140.116.6.12 TRUE

C 210.64.125.5 FALSE

D 140.116.250.3

Figure 2: Illustration of a token

community identifier, agent identifier, group identifier: Unique ID issued by home platform.

size group, q size group: The number of mobile agents of a group.

my location, q location: The address of a mobile agent.

Neigh[], q Neigh[]: Array that stores identities, addresses, and other information of the buddies.

All Address[]: Array that stores the addresses of all mobile agents in a group.

parent, child: The identities of parent and child nodes.

flag split candidate: If a mobile agent is a candidate for split, the flag is set to TRUE; otherwise, it is FALSE.

Flag split candidate is TRUE if size subtree is greater than or equal to L.

num split candidate: The number of candidates (or TRUE bits of flag split candidate) in the subtree.

size subtree: The size of the subtree rooted at a particular node.

split factor: The parameter of split.

〈tok〉: The token of the group.

Figure 3: Variables

4 The Algorithms

Our scheme consists of the five algorithms: “Join”, “Accept”, “Leave”, “Merge”, and “Split”. If two variables

have the same name, the term “this” refers to the local variable of a mobile agent.

Join, Accept, and Leave. When a mobile agent p moves far away from its buddies and decides to join

a new group, p broadcasts a “join request” and waits for T time to receive “accept messages” form q. The

“accept message” contains the size of q’s group and the distance between p and q. When the timeout occurs,

p chooses the nearest agent q. If there are two or more agents that have the same distance and the distance

is the smallest, p chooses the agent that resides in a smaller group. If the sizes of the groups are also the

same, p chooses one of them arbitrarily. Then, p sends a confirmation, to the nearest agent q and receives

Neigh[] of q. After all, p joins the group, which q resides in, and leaves the old group. If no accept message

is received, p ceases its work and returns to the home platform.

In the Accept algorithm, an agent p computes the distance from p to q when it receives a join request

from q. If the distance is smaller than D, p sends an accept message to q. When p receives a confirmation, q

becomes a buddy of p. At the same time, p appends size group and Neigh[] in the token. When p’s buddies

receive the token, they update their size group and Neigh[] accordingly.

Merge. When a group becomes smaller than L, it should merge with a nearby group. In order to have

efficient communication among the buddies, we want to minimize the total path lengths of the new group.

There are three phases in the Merge algorithm. In phase one, the mobile agents elect a temporary coordinator

C at random. In phase two, each mobile agent p in the group H finds an agent u that belongs to another

group Gi and is nearest to p. We use the same approach in the Join algorithm to find such agent u: p

broadcasts a message and waits for T time. Other agents who receive the message report the distance and

size group. If there are two or more mobile agents that report the same distance and the distance is the

smallest, the one with smaller size group is chosen. If size group are also the same, p chooses arbitrarily.

Then, p finds the agent w, which is the farthest agent of p in Gi. Agent p queries all agents in Gi to find

such w. Then, p computes the distance d between p and w. We call d the “longest distance”, which indicates

the diameter of the new group after merging. Next, p reports d, Gi and the size of Gi to the coordinator C.

In phase three, C chooses the group G among Gi according to d and leads the merge process. Again, if

there are more than two groups that have the same d and such d is the smallest, C compare the sizes of the

groups and chooses the one with smaller size. If the tie situation happens again, C chooses arbitrarily. The

merge process is to gather addresses of all agents in H and G, assign buddies for all agent, and update local

variables of all agents. Application developers decide how to assign buddies. The subroutine Gather Address

Algorithm 1 Join, Accept and Leave Algorithms (for agent p)

Algorithm Join

(The distance between any buddy > D)

distance, size := infinity; location := NULL

Broadcast “join request” 〈 my location, community identifier 〉

Set timer (timer := T)

Receive “accept message” 〈 q distance, q location, q size group 〉

If (q distance < distance) OR (q distance = distance AND q size group < size)

then location := q location; size := q size group

/* Timeout occurs */

If p receives no accept message then return to home platform

Send confirmation 〈 my location, agent identifier 〉 to the nearest agent q

Receive 〈 q Neigh[] 〉 from q

Send “leave message” 〈 Neigh[] 〉 to the old buddies

Update Neigh[], size group

Algorithm Accept

(receive join request 〈 q location, community identifier 〉 from q)

if (community identifier = this.community identifier) AND (distance between p and q ≤ D)

then send “accept message” 〈 distance, my location, size group 〉 to q

receive confirmation 〈 q location, identifier 〉 from q)

send 〈 Neigh[] 〉 to q

Update Neigh[], size group

Algorithm Leave

(receive leave message from q)

Update Neigh[], size group

Illustration of the Join and Accept

5. Finally, P sends message to its old group and informs that P leaves the old group.

distance from P to Q.
"accept message" with the
request, agent Q sends back
3. Upon receiving the join

4. P chooses the nearest
agent, e.g. Q3 and joins
the group of Q3.

PQ2

Q3

Q1 distance = 20

distance = 15

Acceptance, distance = 25

1. Agent P moves to a far away host
and decides to join a new group.

2. P broadcasts
its "join request."

Group G2P1
P2

u2

d = 20d = 10

u1

w1

Group H

Group G1

w2

Figure 4: Illustration of the Merge. L = 3 and U = 8. The group H runs the Merge algorithm. Agent u1(u2), which is not in

H, is the nearest agent of p1(p2). Agent w1(w2) is the farthest agent of p1(p2) in G1(G2). Because the distance between p1

and w1 is smaller than that of p2 and w2, Group H decides to merge with G1.

uses a depth-first search to gather addresses of all mobile agents. When gathering addresses, the subroutine

uses an array, All Address[]. Each entry in All Address[] contains two fields: The first field is the identity of

mobile agents and the second field is the address.

Algorithm 2 Merge Algorithm (for agent p)

Merge Algorithm

(size group < L)

Phase 1: Vote for a temporary coordinator C at random

Phase 2:

Find the nearest mobile agent u that is in a different group Gi

Find the farthest node w in Gi

Compute the distance d between p and w

Report d, Gi, and size of Gi to C

Phase 3:

If p = C then

Integer i := 1 // initialize All Address[]

Create array All Address[]

All Address[0].identity := this.agent identifier

All Address[0].identity := this.my location

Choose the group with the shortest d

Gather Address(Neigh[])

Request Neigh[] from w denote as it w Neigh[]

Gather Address(w Neigh[])

Assign buddies for each agent

Command all agents to update their local variables

Split. The Split algorithm consists of three phases. In phase one, we randomly elect a temporary coor-

dinator C and build a spanning tree over the mobile agents where C is the root. Each node represents a

mobile agent and has one parent variable and several child variables. Parent/child stores the identity of

parent/child node respectively. The subroutine Build Tree is a breadth-first algorithm. Every mobile agent

sends message 〈your parent, identity〉 to its direct buddies. The buddies reply message 〈your son, identity〉

or 〈not your son〉 to indicate whether the buddy is a child of the mobile agent that sends 〈your parent,

identity〉.

In phase two, we compute size subtree, split factor, flag split candidate, and num split candidate. Com-

puting split factor and flag split candidate requires no external messages. On the contrary, computing

Algorithm 3 Subroutine Gather Address

Gather Address(input array[]) // depth-first search

If all entries in input array[] is in All Address[] then return

For each entry in input array[]

If the entry is not in All Address[]

then copy the entry to All Address[i]; i := i + 1

Request Neigh[] from All Address[i].address denoted as q Neigh[]

Gather Address (q Neigh[])

size subtree and num split candidate at an agent p requires the num split candidate and size subtree of all

children of p. The approach is straightforward. If the node is a leaf node, the size subtree is one; other-

wise, the size subtree is the sum of size subtree of all children plus one. If the node is not a candidate,

the num split candidate is zero; otherwise, the num split candidate is the sum of num split candidate of all

children. Of course, each node other than the root should report size subtree and num split candidate to the

parents.

A split candidate (or candidate) is a node whose size of subtree is greater than or equal to L. Obviously,

the coordinator C must be a candidate. The algorithm splits the group by cutting edges of the tree. If there

is only one candidate, which is the coordinator C, we preserve the edge to the child whose size subtree is

the smallest. If a tie situation occurs, C chooses arbitrarily. All other edges between C and its children are

cut. If the new groups are too small, they run the Merge algorithm. If there are two candidates, we cut the

edge between them. If there are three or more candidates, the algorithm chooses according to split factor,

where split factor = |size subtree − (size group/2)|. It makes the sizes of two new groups roughly half of the

original group. In phase three, C gathers addresses, assigns buddies for all mobile agents and update their

local variables.

Failure and Malicious Agents Handling. A mobile agent stops responding when it crashes or behaves

abnormally when it is compromised by a malicious entity. In [8], a mobile agent returns to the home platform

when any of the buddies fails. In [9], a mobile agent reports the failure situation to the home platform. The

home platform calculates the “confidence factor” of the group. If the confidence factor becomes smaller than

a pre-determined threshold, the home platform will call back all mobile agents or take other evasive actions.

Since the buddy model deals with the failed or malicious agents periodically, we assume that the number of

failed or malicious agents is f and
f

size group
< ε. The system developer can control the proportion ε using

the threshold of the confidence factor.

In our scheme, an agent waits for T time after sending a request. The agent ignores all replies after

the timeout occurs. In the Merge and Split algorithm, we need to gather all addresses using subroutine,

Gather Address. Because we maintain the information of direct buddies and buddies of buddies in Neigh[],

Gather Address fails only when all direct buddies and buddies of buddies fail. The redundant information

makes the algorithm robust.

The buddy model avoids hierarchical vulnerabilities because all mobile agents act an identical role with

respect to security function. It is undeniable that the temporary coordinator in the Merge and Split algo-

rithms is more important than other mobile agents. We exploit randomized leader election algorithms to

hide the coordinator from the outsiders. However, a malicious mobile agent inside a group can blindly claims

itself as the winner of the election and become the coordinator. We employ a variation of Ramanathan’s al-

gorithm [10] to solve the problem: in the competition, each contender must act for another randomly-chosen

contender. When a contender wins the election, the leader is the mobile agent that the winner represents.

Under this condition, a malicious mobile agent becomes the coordinator only if the mobile agent that acts

for it wins the election and the malicious mobile agent has no control of its representer. Thus, the algorithm

Algorithm 4 Split Algorithm (for agent p) and Subroutine Build Tree

Split Algorithm

(size group > U)

Phase 1: Vote for a temporary coordinator C (at random)

integer parent, child := −1

Build Tree()

If p = C then parent := this.agent identifier; Create array All Address[]

Phase 2: Compute size subtree

If size subtree < L then flag split candidate := FALSE else flag split candidate := TRUE

Compute split factor, num split candidate

If p = C then

If num split candidate = 1

then preserve the edge between C and the child whose size subtree is the smallest

cut edges between p other children

else if num split candidate = 2

then cut the edge between the nodes whose flags are TRUE

else

find the node q with smallest split factor

cut the edge between q and the parent of q

Phase 3: If p = C then Gather Address(Neigh[]); Assign buddies to each agent;

Command all nodes to update their local variables

Build Tree()

(parent 6= −1)

for each entry in this.Neigh[] send message 〈 your parent, this.agent identifier 〉 to this.Neigh[].address

(Receive message 〈 your parent, parent identity 〉)

If parent = −1

then parent := parent identity; Send message 〈 your son, this.agent identifier 〉 back

else Send message 〈 not your son 〉 back // The address of the parent can be found in Neigh[]

(Receive message 〈 your son, child identity 〉)

If child identity does not equal to any existing integer variable child

then generate new integer variable child; the new variable child := child identity

Illustration of the Split

Case3: L=3, U=8

Candidate

Non−candidate

The split edge

sf: split_factor

Case2: L=3, U=7 sf=2.5 sf=2.5

sf=1.5

Case1: L=3, U=5

can resist the malicious mobile agent.

5 Analysis

We evaluate the algorithms by the message complexity and the communication overhead. The message

complexity is the total number of messages that are needed to complete the algorithm. The communication

overhead is the total length of edges in the graph S(V, E) where V represents agents and E represents buddy

relationship. As mentioned in Section 3, if two mobile agents are buddies, there exist an edge that connects

them. The length of the edge is the number of hops along the shortest route between the two end points. Of

course, the routing algorithm chooses the shortest path to transfer tokens. Therefore, we regard the edges

as the communication channel to exchange tokens in the group S(V, E) and use the total length of edges to

represent the communication overhead for token exchange. Obviously, the topology has significant impact

on the communication overhead. We consider it to be an implementation issue and leave the flexibility to

choose the topology to the application developers. This section evaluates the communication overhead in

the worst-case topology, which is a clique. Thus, |E| = O(|V |2).

Theorem 1 Let n be the number of mobile agents in an agent community. Let G be a group of m−1 agents,

that has diameter r. Suppose that agent p joins the group G. Let x be the distance between p and its nearest

agent q in G. The message complexity of the Join algorithm is O(n) and the communication overhead is

O(m2(x + r)).

Proof. When p decides to join G, it broadcasts a “join request”, receives at most n “accept messages”,

sends one “confirmation message” and one “leave message”. Therefore, the Join algorithm requires one

broadcast message and O(n) point-to-point messages.

The new diameter is at most x+r. The communication overhead is O(m2(x+r)). We choose the nearest

group to minimize x.

Theorem 2 Let n be the number of mobile agents in an agent community. The message complexity of the

Merge algorithm of two groups of size m1 and m2 is O(nm1 + 3m2) and the communication overhead of the

merged group is O(rm2), where m = m1 + m2.

Proof. Suppose that a group H runs the Merge algorithm. Each agent pi in H executes the second phase

of the Merge algorithm to find group Gi. Finally, the coordinator C chooses the group G among Gi. Let r

be the diameter of the merged group. The communication overhead is O(rm2). The algorithm chooses the

smallest r in the second phase.

Let m1 and m2 be the number of mobile agents of H and G respectively. Phase one of the Merge

algorithm involves a leader election problem. Reference [10] shows that the leader election requires O(m1)

messages. In phase two, each agent pi in H broadcasts one message and receives at most n replies to find its

nearest neighbor ui that resides in group Gi. Then, pi sends at most U queries and receives at most U replies

to find the farthest agent wi in Gi. After that, pi reports to the coordinator C and C chooses the group G.

Because there are m1 mobile agents in H , this phase requires m1 broadcast messages and O(m1(n + 2U))

point-to-point messages.

In phase 3, the subroutine Gather Address requests Neigh[] from all agents in the merged group. It

requires 2m messages. After that, C assigns buddies for all agents in the new group by sending update

information to them, which requires m − 1 messages. The total number of point-to-point messages is

O(m1 + m1(n + 2U)+ 3m− 1). The number of broadcast messages is m1. Because m1 < L < m2 < U � n,

O(m1 +m1(n+2U)+3m−1) = O(m1 +m1n+3m1 +3m2−1) = O((n+4)m1 +3m2−1) = O(nm1 +3m2).

Theorem 3 Suppose that a group G of m mobile agents decides to split into two smaller groups, G1 and

G2. Let m1 and m2 be the number of mobile agents in G1 and G2. Let r be the diameter of G. The message

complexity of the Split algorithm is O(m2) and the total communication overhead of the two new groups is

O(r(m1
2 + m2

2)).

Proof. Phase one builds a spanning tree and elects a leader. For the subroutine Build Tree, each agent

sends messages 〈your parent〉 to at most m mobile agents in Neigh[]. After that, it receives either 〈your parent〉

or 〈not your son〉. Therefore, the message complexity for each agent is O(m) and the message complexity

for all agents in G is O(m2). Besides, we need O(m) messages to elect a leader.

In phase two, each node reports size subtree and num split candidate to its parent. This step requires

O(2(m − 1)) messages because there are m − 1 edges in a tree of size m. Note that the number of edges in

G does not equal to the number of edges in the spanning tree.

In phase three, the coordinator C collects addresses, assigns buddies and updates local variables of all

mobile agents of G. The subroutine Gather Address requires at most 2m messages. To assign and update

local variables, the coordinator sends m−1 messages. The total number of point-to-point messages required

in the Split algorithm is O((m2)+ 2(m− 1)+ (3m− 1)) = O(m2). The total communication overhead of G1

and G2 is O(r(m1
2 + m2

2)).

6 Conclusions

We proposed a means to improve the communication overhead of the buddy model by collecting nearby

mobile agents together in a dynamic way. Obviously, both size and diameter of a security group affect the

performance of the mobile agents. The main advantage of our approach is that the system is easy to maintain

by keeping a reasonable size and diameter of the security groups.

References

[1] E. Bierman, T. Pretoria, and E. Cloete. “Classification of Malicious Host Threats in Mobile Agent Computing”. Proc. of

South Africa Institute of Computer Scientist and Information Technology (SAICSIT) pages 141–148, 2002.

[2] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko, and D. Rus. “Mobile Agents in Distributed Information

Retrieval”. Intelligent Information Agents, chapter 15, pages 355–395, Springer-Verlag, 1999.

[3] C. Goldman and S. Ziberstein. “Optimizing information exchange in cooperative multi-agent systems”. Proc. of the Second

International Joint Conference on Autonomous Agents and Multiagent Systems, pages 137–144, 2003.

[4] H. Helin, H. Laamanen, and K. Raatikainen. “Mobile Agent Communication in Wireless Networks”. European Wire-

less’99/ITG’99, pages 211–216, 1999.

[5] W. Jansen and T. Karygiannis. “Mobile Agent Security”. NIST Special Publication 800-19, 1999.

[6] K. Jim, and C. Giles. “How Communication Can Improve the Performance of Multi-Agent Systems”. Proc. of the Fifth

International Conference on Autonomous Agents, pages 584–591, 2001.

[7] D. Kotz and R. Gray. “Mobile Agent and the Future of the Internet”. ACM Operating Systems Review 33(3), pages 7–13,

1999.

[8] J. Page, A. Zaslavsky, and M. Indrawan. “A buddy model of security for mobile agent communities operating in pervasive

scenarios”. Proc. of the Second Australasian Information Security Workshop (AISW2004), 32:17–25, 2004.

[9] J. Page, A. Zaslavsky, and M. Indrawan. “Countering security vulnerabilities using a shared security buddy model schema

in mobile agent communities”. Proc. of the First International Workshop on Safety and Security in Multi-Agent Systems

(SASEMAS 2004), pages 85–101, 2004.

[10] M. Ramanathan, R. Ferreira, S. Jagannathan, and A. Grama. “Randomized Leader Election”. Purdue University Technical

Report, http://www.cs.purdue.edu/homes/rmk/pubs/leader1.pdf, 2004.

[11] G. Tel. Introduction to Distributed Algorithms, 2nd edition, chapter 7, 2000.

[12] B. Yang, D. Liu, and K. Yang. “Communication Performance Optimization for Mobile Agent System”. Proc. of the First

International Conference on Machine Learning and Cybernetics, 2002.

[13] Y. Zhang, R. Volz, T. Ioerger, and J. Yen. “A Decision-Theoretic Approach for Designing Proactive Communication in

Multi-Agent Teamwork”. ACM Symposium on Applied Computing, pages 64–71, 2004.

