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Abstract

The coverage problem is of great interest for many sen-
sor network applications, for example, detection of intrud-
ers in the sensor field. Topological changes in sensor net-
works may affect qualities of sensor coverage. In this pa-
per, we present two suites of algorithms for dynamically
maintaining the coverage and the measures of its quali-
ties. Using only local knowledge, our algorithms capture
the dynamic changes of network topology and efficiently
maintain the coverage by updating the radii of sensors
combined with limited sensor mobility. Our algorithms
are fully distributed and have the advantages of low com-
munication complexity with no need of a tight bound on
message propagation delay.

1 Introduction

With sensory equipments on-board, a sensor can measure
the environment within a certain range of itself. Networked
sensors with their communication and computation capa-
bilities act as monitors of the environment. As sensors are
deployed in a field, the coverage of the field by the sensors
is of great interest for various application-specific reasons,
for example, detection of intruders in the field. Sensors of-
ten remain in a fixed location once deployed, in which case
the topology of the sensor network remains static. But
if we take into consideration scenarios such that sensors
may be out of service due to battery depletions, or sen-
sors are mobile in the field, the network topology becomes
dynamic. How to maintain the coverage in a dynamic net-
work topology is the problem we study in this paper.

We assume the omni-directionality of a sensor and model
the area covered by the sensor as a disk centered at the sen-
sor. The radius of the disk varies according to the power
spent on sensory equipments. The union of all the areas
covered by the networked sensors is the coverage of the
sensor network.

In the first suite of our algorithms, we study the path
computation problems for a mobile agent moving across
a sensor field. Given a starting point, S, and a stopping
point, T , in the sensor field, two types of path problems
have been proposed [4], maximum breach path and maxi-

mum support path: In the maximum breach path problem,
we want to find a path between point S and point T that
stays as far away as possible from sensors. It evaluates the
vulnerability of a sensor network, i.e., how well the sen-
sors are placed and to what extent they can be breached.
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In the maximum support path problem, we want to find
a path between S and T that stays as closely to sensors
as possible. It measures the efficiency of the network cov-
erage. Figure 1(Right) shows an example of maximum
breach path, in which the path between S and T , denoted
by the thick dotted line, is not covered by the union of sen-
sor disks. Figure 1(Left) shows an example of maximum
support path, in which a path between S and T , denoted
by the thick dotted line, is completely covered by the union
of sensor disks.

When a sensor fails, a breach may occur on the cov-
erage, i.e., the maximum breach path and/or maximum
support path may no longer hold true. In Figure 1(Right),
the sensor with disk indicated by the dotted circle is out of
service, in which case the current maximum breach path
is no longer true since now there exist paths between S
and T going through the area used to be covered by the
dotted circle. The minimum distance from points on the
paths to the sensor network is greater than the current
maximum breach path. Similarly, the maximum support
path is no longer true in the case of sensor failure shown
in Figure 1(Left). The loss of the node with disk in dotted
circle causes a division of the covered region into two dis-
connected regions. Paths between S and T are no longer
completely covered.

The distance of a point p to the sensor network is de-
fined as the smallest Euclidean distance from p to any
of the sensor nodes. A maximum breach path is a path
that the minimum distance from points on the path to
the sensor network is maximized. This distance is called
the worst-case coverage distance of the network. A maxi-
mum support path is a path that the maximum distance
of points on the path to the sensor network is minimized.
This distance is called the best-case coverage distance of the
network. We propose distributed algorithms for dynami-
cally maintaining the worst-case coverage distance and the
best-case coverage distance. To the best of our knowledge,
this is the first work that solves this problem using dis-
tributed algorithms. Our algorithms have the advantages
of low communication complexity with no need of a tight
bound on message propagation delay.

In the second suite of our algorithms, we study the
coverage maintenance problem raised from node failures.
We propose network reconfiguration schemes that main-
tain the coverage of a sensor field with limited total energy
consumption thus prolong the lifetime of the network.

We define the coverage area that each sensor partici-
pates in coverage as the area covered by the sensor and its
one-hop and two-hop neighbors. When a node failure is
detected, sensors make no effort of recovery until a thresh-
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Figure 1: Left: example of best coverage radius. Right: exam-

ple of worst coverage radius.

old of percentage of uncovered area is reached. In order
to recover the area, sensors increase their radii and move
within a limited range with limited energy cost. We de-
sign algorithms to determine the uncovered area and its
percentage and to calculate the best strategy for recover-
ing the area. Our algorithms use only local information
and are fully distributed and highly scalable.

To migrate multi-hop neighbors of a failed node in or-
der to recover the area has been proposed in [7]. Our
approach combines mobility with different radii. We use
probabilistic methods to measure the percentage of nodes
alive, the total coverage deterioration, and the average mi-
gration distance, in time.

The rest of the paper is organized as follows. We present
the two suites of algorithms in Sections 2, 3, and 4, fol-
lowed by our simulation results in Section 5. We discuss
some related works in Section 6 and conclude in Section 7.

2 Dynamic maintenance of best and worst

coverage radii

In this section we assume a uniform sensor network in
which all the sensors have the same sensing range and com-
munication range. Sensors cannot detect any objects out-
side of the sensing range, neither can sensors have direct
communication with any sensors outside of the communi-
cation range. Sensors are represented by a set of points P
in R

2. Let n be the total number of sensors, i.e., |P | = n.
Let D(P, r) be the union of all disks centered at points
of P with radius r. Let D(P, r) be the complementary of
D(P, r). Given a pair of sensor nodes S and T : The best

coverage radius [4] is defined as the minimum coverage ra-
dius r such that there exists a trajectory between S and
T that is totally covered by D(P, r). The worst coverage

radius [4] is defined as the maximum coverage radius r
such that there exists a trajectory between S and T that
is covered by D(P, r). Examples of the radii are shown in
Figure 1.

Theorem 2.1. For best coverage radius, there exists at

least one pair of nodes whose disks are tangent to each

other.

Proof. Suppose there does not exist a pair of nodes whose
disks are tangent to each other. Then all pairs of nodes are

either disconnected or overlapping. Since the best coverage
radius completely covers a path between a pair of points S
and T , the union of all the sensor disks covering the path is
a connected region. Since the sensor disks are overlapping,
we can decrease the radius such that two of the disks are
tangent to each other. This contradicts the definition of
best coverage radius.

Similarly, we can prove the following.

Theorem 2.2. For worst coverage radius, there exists at

least one pair of nodes whose disks are tangent to each

other.

Network topological changes may cause changes to the
best and/or worst coverage radii. Therefore, the mainte-
nance of topological information of the network is the first
step of the maintenance of the coverage radii. The second
step is to determine the occurrences of breaches on the cov-
erage. To restore the coverage, the topological information
is employed to determine the new best and/or worst cov-
erage radii. The coverage is restored when all the sensors
start sensing and communicating using the new radii.

2.1 Maintenance of boundaries

The boundaries of the union of the sensor disks are com-
posed of arcs of sensor disks that are not covered by any
other sensors. For best coverage radius, there are two
kinds of boundaries, the outer boundary of the area and
the boundaries of the holes within the area. We identify
the first kind with number 0 and the second kind with the
identifiers the holes they belong to. Each hole is identified
by a random number selected at the time the hole first
appears. For worst coverage radius, there are three kinds
of boundaries, the inner boundary and the outer bound-
ary of the area, and the boundaries of the holes within the
area. The inner boundary, identified as 1, is the boundary
closest to the point enclosed by sensors, for example, point
S in Figure 1. The outer boundary, identified as 0, is the
boundary closest to the other point, for example, point T
in Figure 1. The inner boundary and the outer boundary
intersect at the tangent points of the pair of nodes that are
tangent to each other.

Since we want to keep track of the boundaries, we only
take into account the changes of network topologies that
cause changes to the boundaries. There are four kinds of
changes in terms of sensor dynamics: 1. a sensor on any
of the boundaries fails or is out of service, 2. a sensor on
any of the boundaries is moved to another location, 3. a
node not on any of the boundaries fails or is out of service
and causes a hole that is not covered by any sensors, 4. a
sensor not on any of the boundaries is moved within the
range of some boundary nodes.

These changes can be represented in two operations of
the nodes, insertion and deletion. Insertion is to place a
node at a location. Deletion is to remove a node from a lo-
cation. Now, the four types of changes can be represented
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as follows: 1. a boundary node is deleted, 2. a bound-
ary node is deleted from a location and then is inserted
at another location, 3. a non-boundary node is deleted, 4.
a non-boundary node is deleted from a location and then
is inserted at another location within the range of some
nodes on the boundary.

In the first case, the neighbors each can determine if
any section of their boundaries is now part of the bound-
ary of the whole region, i.e., if they are on the boundary.
This can be done by determining if any part of the arc
used to be covered by the failed node is not covered by
any of its own neighboring nodes. Those who become a
boundary node update their status and notify their status
changes to their neighbors. The first part of the second
case runs the same as in the first case. In the second part,
the neighboring nodes that are boundary nodes each de-
termines if the new location of the moving node causes
a change to their boundary status. This can be done by
checking if the moving node completely covers any of its
boundary curves. If it does, the node loses that arc as a
boundary arc. Otherwise, it remains a boundary node. In
the third case, the neighboring nodes of the failed node
each determines if any part of the arc previously covered
by the failed node is no longer covered by any of its neigh-
boring nodes. If so, the node becomes a boundary node.
The new boundary nodes select an identifier for this new
region. The first part of the last case runs the same as in
the third case. The second part runs the same as in the
second part of the second case. Each case requires only
constant number of messages with O(log n) bit complexity
since each message contains a sender ID.

2.2 Dynamic best coverage radius

When a breach occurs, the neighboring nodes of the failed
node elect two leader nodes from each of the disconnected
sets. The leaders send out a message to neighboring bound-
ary nodes notifying the disconnecting of the regions. Along
with the message is the identifier of the region the leader
belongs to. Clearly the boundary nodes receiving the mes-
sage are all on the outer boundary, since the regions are
now disconnected, as shown in Figure 2(Left), where the
boundaries of the two disconnected regions are denoted by
the thick curves. No boundary arc of the holes can cause
disconnection before it first becomes an outer boundary.

The neighboring nodes of the failed node determine the
temporary new radius by finding the shortest distance be-
tween the two disconnected sets. The leader nodes each
sends the radius to neighboring boundary nodes together
with the identifier of the region. The messages travel in
the same direction.

To find the minimum increase of the radius, we only
need to consider those nodes that are on the opposite
sides of the breach. Upon receiving the radius, the bound-
ary nodes increase their communication radius accordingly
attempting to communicate with boundary nodes of the
other side. There is no need to assume an approximately
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Figure 2: Left: Determining the best coverage radius. Right:

Determining the worst coverage radius.

equal propagating speed on both sides. One side may prop-
agate the radius at a faster pace, in which case the nodes
of that side wait for any communication attempts from the
other side. A node should be able to hear from a node of
the other side if it is within its communication range. If
a node hears from a node of the other side, the two nodes
determine the new radius to be the half of the distance
between them, i.e., when their disks are tangent to each
other, as shown in Theorem 2.1. They then send this ra-
dius to their neighbors. If a node does not hear from any
nodes of the other side within time ε, it concludes that
the radius remains the same and sends it to its neighbors.
This process repeats until the radius is received again by
the two leaders. The radius is the new best coverage ra-
dius. The new radius is then propagated throughout the
network.

We assume uniformly distributed sensors, thus the num-
ber of boundary nodes is O(

√
n). The message carrying

the radius information is sent and received only once by
each boundary node. Since each message carries the sender
ID, which costs O(log n), the total message complexity for
finding the best coverage radius is O(

√
n log n).

2.3 Dynamic worst coverage radius

The maintenance scheme for worst coverage radius is sim-
ilar to the best coverage radius scheme. The leader nodes
send the radius to neighboring boundary nodes together
with the identifier of the region. The boundary nodes
receiving the message from the leaders are all on either
the inner or the outer boundary, for no boundaries of the
holes can cause a breach before it is first on the inner or
outer boundary, as shown in Figure 2(Right), where the in-
ner boundary is denoted by the thin curves and the outer
boundary by the thick curves.

To find the minimum increase of the radius, we only
need to consider those nodes that are on the opposite sides
of the breach. We need to treat the inner boundary and
the outer boundary separately. The inner boundary prop-
agates the radius to all of its nodes. The outer boundary
only needs to propagate the radius to those nodes that
are on the side of a separator opposite to S, a straight
line shown in Figure 2(Right) as the dotted line that goes
through the two leader nodes of the opposite sides. This is
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Figure 3: The nodes are divided into two sets: red (in thick

circle) and non-red. A communication tree rooted at a red node

is shown in the dotted circle.

because the inner boundary nodes on the other side of the
separator are closer to each other than the outer bound-
ary nodes of that side. We will not find a smaller radius
between those outer boundary nodes.

Upon receiving the radius, a boundary node determines
the new radius in the same way as in the dynamic best
coverage radius case. Once the new worst coverage radius
is found, it is propagated throughout the network. Finding
the worst coverage radius requires O(

√
n log n) message

complexity.

3 Dynamic coverage with migration of re-

dundant nodes

Nodes in a sensor network can be divided into two sets:
redundant nodes and non-redundant nodes. A redundant

node, referred as red node, is a node whose sensing disk
is completely covered by other sensors. A non-redundant

node, referred as non-red node, is a node whose sensing
disk is not completely covered by other sensors, i.e., part
of the sensing area is covered by the node alone. An ex-
ample of the two types of nodes is shown in Figure 3, with
the redundant nodes as dots in circles (in red) and non-
redundant nodes as dark dots (in blue). While node fail-
ure of a redundant node causes no change to coverage, a
non-redundant node failure causes the loss of part of the
coverage of the field. There has been research investigat-
ing in eliminating redundant nodes in order to save energy.
Our scheme, however, uses the redundant nodes to recover
the lost area from node failure. We assume that the en-
ergy cost of the movement for a sensor is ignorable, for
example, when sensors are mounted on vehicles that use
separate source of energy for movement.

We want to keep track the closest red node in distance
to each non-red node such that when a non-red node fails
the red node can be moved to the location of the non-red
node to replace it. We call the red node the recovery node

of the non-red node. In this scheme, we assume that sen-
sors are unit disks and the distance between two sensors
are Euclidean distance. Each non-red node determines its
recovery node using a connect construction method as fol-
lows. If a non-red node has red nodes in its neighbors,
it connects to the one closest and makes the red node its

recovery node. Otherwise it connects to the neighboring
non-red node whose closest red node is minimum distance
to itself and makes the red node its recovery node. We
call the structure a communication tree. An example of
communication tree is in the dotted circle in Figure 3.

Property 3.1. The communication tree is indeed a tree.

Proof. We first prove that a node cannot connect to multi-
ple nodes. This is true by the connect construction method.
We then prove that the structure defined above has no
loops. Suppose there exists a loop among k nodes. Then
none of the k nodes is a red node since red nodes do not
connect to other nodes. Thus all the k nodes are non-red
nodes and do not connect to a red node. This contradicts
the construction method.

Lemma 3.2. If there exists red nodes within range of a

non-red node, one of the red nodes that the non-red node

connects to is its recovery node.

Proof. Suppose the statement is not true. Then there ex-
ists a red node that is closer to the non-red node in distance
but is not among its neighboring red nodes. This cannot
be true since the distance is Euclidean distance.

Property 3.3. The nodes of a communication tree is closer

to the root node in distance than to any other red node.

Proof. By Lemma 3.2 and the construction of the tree.

When a node is inserted, for example, when a new sen-
sor is deployed to the field, the communication tree is up-
dated accordingly. If a node’s sensing disk is not com-
pletely covered by neighboring nodes, it is deemed a non-
redundant node. If the sensing disk is completely covered
by its neighbors, it is a redundant node. When a non-red
node is inserted, it communicates with neighboring nodes
to find if any red nodes are within range or not. The non-
red node picks the closest red node within range if it exists,
otherwise it communicates with neighboring non-red nodes
to find the locations of their closest red nodes, as shown in
Figure 4(a). It picks the closest red node with minimum
distance to itself. By this it adds itself to a communication
tree of the red node, as shown in Figure 4(b). When a red
node is inserted, it announces itself by broadcasting hello
message containing its location information, as shown in
Figure 5(a). A neighboring node receiving the message cal-
culates the distance to the red node and decides whether
it is the closest red node. If it is, it connects to the new
red node, as shown in Figure 5(b).

When a non-red node fails, the neighboring nodes no-
tify the closest red node of the non-red node to move to the
location of the non-red node. Thus the lost area is com-
pletely recovered. The nodes previously connecting to the
non-red node now connects to the red node which becomes
non-red.

When a red node fails or is moved, nothing needs to
be done to recover the area. But there are two kinds of
changes to its neighboring nodes: (1) some neighboring
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Figure 4: Insertion of a non-red node c (non-red node in circle,

red node in solid dot).
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Figure 5: Insertion of a red node c (non-red node in circle, red

node in solid dot).

red nodes may become non-red nodes due to the loss of
part of their coverage, and, (2) the non-red nodes hav-
ing the red node as recovery node need to find a new red
node and adjust their positions in the communication trees
accordingly. In both cases, the non-red nodes on the com-
munication tree of the lost red node need to find a new
recovery node. It can be done as follows. The loss of the
root of the tree is notified to all the nodes of the tree. Start-
ing from the leaves of the tree, nodes broadcast message to
their neighbors requesting their recovery node information.
They pick the one closest and join the tree of that node.
They then broadcast their new recovery node information.
The non-leaf nodes decide their recovery node after they
receive message of new recovery node. The original com-
munication tree is dissolved in this manner. One example
of it is shown in Figure 6.

(a)

A B
C

c d
b

a

(b)

A B
C

c d
b

a

Figure 6: (a) Communication tree. (b) Node B becomes a non-

red node and the subsequent change of node c joining another

tree rooted in A. (non-red node in circle, red node in solid dot.)

4 Lazy coverage with different radii and

limited mobility

Lazy failure detection. We define the energy cost of
sensor movement Em in terms of distance moved d times
a constant k, Em = k · d, where k is determined by the
particular vehicle. The energy cost of sensing Es with
radius r is Es = l · r2 where l is a constant specified
by the sensing equipment. The total cost of moving sen-

sors to different locations and enlarging radii is Etotal =∑n

i=1 Em,i+
∑n

i=1 Es,i, where n is the total number of sen-
sors. In our approach of combining mobility with different
radii, we want the total cost to be minimized.

We assume that initially the field is completely cov-
ered by sensors. A sensor periodically exchanges beacons
among its neighbors to maintain network connectivity. In
addition, it also sends to its neighbors the locations of all
its neighbors. Therefore each sensor knows its two-hop
neighbors. A node failure is first detected by its neighbors
and then broadcast to its two-hop neighbors. Thus each
node knows the percentage of area covered within two-hop
range. When the percentage of coverage falls below certain
threshold α, a coverage maintenance scheme is employed
to recover the lost area.

Assume that a failed node X has m neighbors, S1, S2,
. . . , Sm. Let the area covered by each node be A(Si), for
i = 1, 2,. . . m. Let the area covered by X be A(X). We
need to find the combination of movements of the neigh-
bors to new positions P1, P2, . . . , Pm and employments of
different radii of sensing range for S1, S2, . . . , Sm, such
that the following conditions are fulfilled.

1. A(X) ∩ (∪m
i=1A(Si)) is maximized.

2. Etotal =
∑m

i=1 Em,i +
∑m

i=1 Es,i is minimized.

4.1 Dynamic coverage schemes

The complexity of the problem stated above is exponential.
We propose recovery schemes under various constraints
and assumptions. We use the lazy failure detection scheme
to determine if a recovery is needed for a lost area caused
by node failure. Since there may be multiple disjoint areas
uncovered before a recovery scheme is performed and each
uncovered area is monitored by multiple sensors, the re-
covery is a joint effort of multiple sensors. Figure 7 shows
an example of two nodes in black with their one-hop (in
solid line) and two-hop (in dotted line) neighbors. Two
failed nodes in light (red) dots are two-hop neighbors of
the black nodes. Each node is responsible for recovering its
one-hop neighbors because two-hop neighbors are one-hop
neighbors of some other nodes. In Figure 7, for example,
recovering of the areas of the two red nodes is done by
their one-hop neighbors a, b, and c.

c

a b

Figure 7: Dynamic recovery with one-hop neighbors.
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4.1.1 Different radii without mobility

We propose a scheme that allows different radii for nodes
without mobility of the nodes. Our scheme increases the
radii of the one-hop neighbors of the failed node in 1+ε
intervals. Each node keeps increasing its sensing and com-
munication radii until the union of their sensing area com-
pletely recover the lost area. By increasing the radii the
nodes also maintain the area they previously covered. The
nodes communicate with each other to maintain the radii
information of other nodes.

Different radii cause asymmetric communication, that
is, node with smaller radius can hear from node with big-
ger radius but not vice versa. Thus node with bigger ra-
dius may not detect within its communication range the
existence of nodes with smaller radii. In order to main-
tain connectivity we propose the clustering of nodes with
smaller radii in a tree structure around the node with big-
ger radius. This can be done as follows. When a node with
smaller radius hears from a node with a bigger radius out-
side of self communication range, it increases self radius in
order to communicate with that node. This is based on the
fact that the energy cost for increasing a smaller sensing
range is less than the energy for increasing a bigger sensing
range, derived from the following.

Let r1 and r2 be the two sensing ranges, r1 > r2. Then
Es,1 = l · r1

2 and Es,2 = l · r2
2. If r1 and r2 are both

increased by δ, E′

s,1 = l · (r1 + δ)2 and E′

s,2 = l · (r2 + δ)2.
And E′

s,1−Es,1 = l·(2r1δ+δ2) > l·(2r2δ+δ2) = E′

s,2−Es,2.

4.1.2 Different radii with mobility

In this scheme we recover the lost area by increasing the
radii of one-hop neighbors of the failed node at 1+ε inter-
vals while moving the nodes on the straight line toward
the failed node. The scheme recovers the lost area while
maintaining the coverage of the previously covered areas.
Figure 8 illustrates the scheme. When the node (in thick
dotted circle in the center) fails, its one-hop neighbors a,
b, and c increase their radii while moving toward the failed
node. The process stops when the thick dotted circle is
completely covered by the union of the new disks of a, b,
and c in thin dotted circles.

c

a

b

Figure 8: Different radii with mobility scheme.

For a node with radius r to cover a point d distance
away from the node’s disk, we can calculate the energy cost
for the two schemes. For radius without mobility scheme,
the energy cost ER = l · (r + d)2. For radius with mobility

scheme, the energy cost EM = l · (r + d
2 )2 + k · d

2 . If
k
l

> 3
2d + 2r, EM > ER. The node should simply increase

its radius. If k
l

< 3
2d + 2r, EM < ER. The node should

use an increased radius together with mobility.

5 Simulations

We simulated our algorithms in ns-2. The energy parame-
ters we use are based on data presented in [6]. The trans-
mitting power is set at 282 mW , the receiving power at 175
mW , the sensing power at 1.75 µW , and the idle power at
0 mW . We assume the migration energy to be 0.1 mJ/m.
Each sensor is given the initial energy of 100J . The lifetime
of a node is modeled as an exponential distribution. The
cumulative distribution function of an exponential distri-
bution is F (t) = 1 − e−λt for time t. For F (t) we use a
random number u from a uniform (0,1) distribution, which

makes u = 1 − e−λt. Thus, t = − log(1−u)
λ

. Since (1 − u) is
another random number from uniform (0,1) distribution,

we use t = − log(u)
λ

to model the lifetime of a sensor node.
We consider two types of network topology: grid and

random distribution. For each topology, we deploy 100
sensors in a 350m x 350m field and 144 nodes in a 420m x
420m field. The initial communication radius of each node
is 35m. For our mobile redundant node scheme, we only
test the random deployment since the initial configuration
ensures that redundancy only occurs in random distribu-
tion topology. The energy cost for moving a redundant
node is set to 0 J/m since our assumption is that the node
has external source of energy for movement. To approx-
imate the coverage of the whole field, we divide the field
into 2m x 2 m cells and build a matrix with all the center
points of the cells. The coverage of each node is mod-
eled with sample points of 10-degree radial spacing and 10
points on each radius.

Each node keeps a timer for periodically broadcasting
beacons to neighbors. We set the timer to be 10 seconds.
At the end of each time period, messages are broadcast and
node failures are calculated using the probability model.
If a node fails and the failure is detected by neighboring
nodes, the recovery scheme is applied by the neighbors.
The simulation is stopped when only 5% of the nodes re-
main alive. Each simulation is run 7 times and the data
presented are the average of the data collected.

Our simulation results are presented in Figure 9 and
Figure 10. In Figure 9(a) and (b) we plot the coverage
deterioration over time for network topologies of 100 node
grid and 100 node randomly distributed. We compare the
performance of two schemes, the different radii without
mobility scheme (Radius only) and the different radii with
mobility scheme (Radius w/ mobility). As a benchmark
for worst-case coverage, we also simulate the scenario when
no recovery scheme is employed and call it Static scheme.
As expected, both the Radius only and the Radius with
mobility schemes provide better coverage than the Static
scheme. For both the grid and the random distribution
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topology, the radii only scheme show better coverage per-
centage. This is because the energy consumption for mov-
ing is much greater than the energy cost for enlarging radii,
i.e., the energy saved on a smaller radius is not enough to
compensate the cost for the distance moved. The same
is true in the 144 node scenarios, as shown in Figure 9(c)
and (d). We also plot the coverage efficiency of the schemes
by comparing the percentage of area covered by the node
alive. In the grid and random distribution topologies for
100 nodes, shown in Figure 9(d) and (e), the Radius only
scheme outperforms both the Radius with mobility and
Static scheme. This is because by increasing the radius
to a larger value the sensor covers some area previously
not covered by any sensors thus increases the total cover-
age. The Radius with mobility scheme also increases the
radius but to a smaller value than the Radius only scheme,
therefore the total coverage increased is also smaller. This
is true in the 144 node scenarios in Figure 9(g) and (h).
Note also that the Radius only scheme outperforms the
Radius with mobility scheme more in the random distri-
bution topology than in the grid topology. This is because
in the grid topology the area is completely covered initially.
The performance of redundant node migration scheme is
shown in Figure 10. For both 100 and 144 randomly dis-
tributed nodes, the scheme prolongs the coverage. We do
not compare this scheme with the other two schemes, for
the energy cost for mobility is zero in this scheme.

6 Related works

Meguerdichian et al. [4, 5] tackle the problems of find-
ing the maximum breach path and the maximum sup-
port path in sensor networks. For the maximum breach
path problem, they give an algorithm with complexity of
O(n2 log ∆), where n is the number of sensors, and ∆ is
the difference between the highest and the lowest weight
of an edge in the Voronoi Diagram of the sensor network.
Their algorithm for the maximum support path has the
time complexity same as the algorithm for the maximum
breach path. Their algorithms are not only centralized but
also heavily rely on geometric structures such as Voronoi
Diagram and Delaunay triangulation of the network, which
cannot be efficiently generated in a distributed manner.

Li et al. [3] prove the correctness of the algorithms
in [4]. They also give a distributed algorithm for find-
ing the best coverage distance and best coverage path in
O(n log n) time with O(n log n) bit complexity. Their algo-
rithm assumes only stationary sensors; no dynamic changes
to the sensors and the locations of sensors are considered.

Huang et al. [2] discuss the problem of dynamically
maintaining two measures of the quality of the coverage
of a sensor network, the best-case coverage and worst-case
coverage distances. They maintain a (1+ε) approximation
on the best-case coverage distance and a (2+ε) approxima-
tion on the worst-case coverage distance of the network, for
any fixed ε > 0. The algorithms have amortized or worst-
case poly-logarithmic update costs. All their algorithms

are centralized.
Zhang and Hou [9] prove that if the communication

range of a sensor is at least twice its sensing range, a com-
plete coverage of a convex area implies the connectivity
among the working set of nodes. They derive the optimal-
ity conditions that a subset of working nodes is chosen for
full coverage.

Huang and Tseng [1] give a O(n2 log n) algorithm that
determines if every point in a given area is covered by at
least one sensor.

Wang et al. [8] present a Coverage Configuration Pro-
tocol that provides various degrees of connected coverage.
They give a geometric analysis on the relation between
connectivity and coverage.

7 Conclusions

We have proposed distributed algorithms to dynamically
maintain two measures of quality of sensor coverage, the
best coverage radius and the worst coverage radius. Using
only local knowledge, our algorithms capture the dynamic
changes of network topology and efficiently update the
radii. Our algorithms are fully distributed with low com-
munication cost. We have also proposed dynamic coverage
maintenance schemes using only local knowledge. We have
done performance evaluations of the schemes.
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(a) Coverage vs. time: 100 node
grid.
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(b) Coverage vs. time: 100 nodes
randomly distributed.
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(c) Coverage vs. time: 144 node
grid.
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(d) Coverage vs. time: 144 nodes
randomly distributed.
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(e) Coverage efficiency: 100 node
grid.
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(f) Coverage efficiency: 100 nodes
randomly distributed.
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(g) Coverage efficiency: 144 node
grid.
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(h) Coverage efficiency: 144 nodes
randomly distributed.

Figure 9: Simulation results for lazy coverage schemes.
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Figure 10: Simulation results for migration of redundant nodes. Left: 100 node. Right: 144 node.
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