
February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

The International Journal of Parallel, Emergent and Distributed Systems
Vol. , No. , , 1–13

RESEARCH ARTICLE

A Simple Byzantine Fault-Tolerant Algorithm for a Multi-Writer
Regular Register

Khushboo Kanjani, Hyunyoung Lee, Whitney L. Maguffee and Jennifer L. Welch∗

Department of Computer Science and Engineering

Texas A & M University

College Station, TX 77843-3112, U.S.A.

(October 2009, revised February 2010)

Distributed storage systems have become popular for handling the enormous amounts of data
in network-centric systems. A distributed storage system provides client processes with the ab-
straction of a shared variable that satisfies some consistency and reliability properties. Typically
the properties are ensured through a replication-based implementation. This paper presents an
algorithm for a replicated read-write register that can tolerate f Byzantine faulty servers when
there are at least total 3 f + 1 replica servers. The targeted consistency condition is weaker than
the more frequently supported condition of atomicity, but it is still strong enough to be useful in
some important applications. By weakening the consistency condition, the algorithm can support
multiple writers more efficiently and more simply than the known multi-writer algorithms for
atomic consistency.

Keywords: distributed storage system; regularity; multi-writer; Byzantine faulty server

1. Introduction

Distributed storage systems have become popular for handling the enormous
amounts of data in network-centric systems using, for example, the Internet [19].
A distributed storage system provides client processes with the abstraction of
a shared variable (say, a read-write register) that can be accessed concurrently
by multiple client processes and that satisfies some consistency and reliability
properties. The distributed storage system can provide many such shared vari-
ables to handle the vast amount of data and is implemented on top of an un-
derlying network of server nodes, which store the actual information. To ensure
fault-tolerance, availability, and improved throughput, the information is typi-
cally replicated among the servers, for example, Yahoo’s ZooKeeper coordination
service [10].

In large-scale distributed systems, the likelihood of some components experi-
encing failures is quite large. Thus it is important for a distributed storage system
to be fault-tolerant. In this paper, we focus on two kinds of failures. First, we
consider the possibility that some fraction of the servers can become arbitrarily
corrupted (i.e., Byzantine faulty). Second, we also consider the possibility that
some of the client processes can become non-responsive (i.e., crash faulty). Repli-
cation is a well-known technique for fault-tolerance, but imposes its own costs in

∗Corresponding author. Email: welch@cse.tamu.edu

ISSN: 1744-5760 print/ISSN 1744-5779 online
© Taylor & Francis
DOI: 10.1080/1744576YYxxxxxxxx
http://www.informaworld.com

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

2 K. Kanjani et al.

terms of additional storage required and the complexity of schemes for keeping
replicas consistent (cf. Chapter 7 of [9]).

The behavior of a shared register is defined by a consistency condition which is
a set of constraints on values returned by data accesses when those accesses may
be interleaved or overlapping. A strong consistency condition like atomicity (or
linearizability) [13] gives an impression of sequential behavior, which is conve-
nient to work with [8] but it has a high implementation cost in terms of message
and time complexity [4]. A well-known weaker condition for the case of a single
writer, called regularity, was proposed by Lamport [13]: each read of a regular
register returns the value written by either the latest write that precedes the read
or by some write that overlaps the read, but no relative ordering is imposed on
the values returned by different reads. Shao et al. [16, 17] have proposed versions
of regularity for multiple writers.

It appears that implementing a multi-writer register is more challenging than
a single-writer one. Indeed, the majority of the fault-tolerant implementations of
multi-writer registers simply apply multiple copies of a single-writer protocol,
one copy for each writer. There are two major limitations of this scheme: the
implementation cost is proportional to the number of writers, and there is a fixed
upper bound on the number of writers allowed. To overcome these limitations, in
this paper, we focus on a direct implementation of a multi-writer register.

Our contribution: This paper presents an algorithm for a replicated read-write
register that can tolerate Byzantine failures of up to a third of the replica servers
and crash failures of any number of clients. The level of fault tolerance achieved is
optimal as it matches the lower bound in [15]. The targeted consistency condition
is a version of regularity that supports multiple writers. Although regularity is
weaker than the more frequently supported condition of atomicity, it is still strong
enough to be useful in some important applications such as mutual exclusion [16,
17]. By weakening the consistency condition, the algorithm can support multiple
writers more efficiently and more simply than the known multi-writer algorithms
for atomic consistency.

2. Related Work

Distributed storage systems have been an active area of research, and various
lower bounds have been proved and protocols proposed for different system
models.

The following lower bounds are known for the distributed storage problem.
Martin et al. [15] have proved that any storage protocol tolerant of f Byzantine
faulty servers requires at least 3 f + 1 servers total to ensure safe1 semantics and
liveness; this result also holds for randomized protocols and for self-verifying data
(data that cannot be undetectably altered, e.g., digitally signed data). Guerraoui
and Vukolic [7] showed that more than one message round trip is required for the
read protocol for any implementation of a safe register that tolerates any number
of client crashes and up to f ≥ n/4 Byzantine servers when servers are inactive
(and thus may not send unsolicited messages to readers). This result does not
apply to our algorithm because the servers are not inactive. Abraham et al. [1]
proved that implementing a shared register on top of other base shared objects
requires at least two rounds of operations on the base objects for a write.

1Safety is an even weaker consistency condition than regularity [13], and thus the result holds also for all stronger
conditions, including regularity and atomicity.

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

Parallel, Emergent and Distributed Systems 3

Several algorithms for Byzantine-fault-tolerant distributed storage have been
proposed. The multi-writer algorithm in [14], which is based on Byzantine quorum
systems, provides regular semantics for self-verifying data (data that cannot be
undetectably altered, e.g., digitally signed data) and the weaker condition of
safety when making no assumption of self-verifying data; the algorithms support
multiple writers although the multi-writer versions of the consistency conditions
are subject to multiple interpretations. The multi-writer algorithms in [3, 5, 6] all
provide atomic semantics. Aiyer et al. [3] and Bazzi and Ding [5] give multi-writer
register implementations by simulating m copies of the single-writer protocol
where m is the number of writers. Cachin and Tessaro’s algorithm [6] requires
communication among the servers and digital signatures infrastructure. We focus
on designing a multi-writer register directly without using multiple copies of
a single writer register algorithm and without server-to-server communication.
However, our algorithm provides a weaker consistency condition than atomicity
and assumes reliable broadcasting. Another direction for weakening atomicity in
the presence of Byzantine servers, proposed by Aguilera and Swaminathan [2], is
to provide a register whose operations can be aborted by the clients.

Shao et al. [16, 17] initiated the study of how to extend the classic definition of
regularity, which only considered a single writer process, to the case of multiple
writers. Several different definitions were proposed, each with an accompanying
protocol, and the comparative usefulness of the definitions for solving mutual
exclusion was discussed. The protocols in these papers do not tolerate Byzantine
failures of servers. We use a variant of one of these definitions, which offers a good
tradeoff between efficiency of implementation and usefulness in applications.

Earlier versions of the algorithm in this paper appeared in [11, 12]; these earlier
versions required n > 4 f .

3. Definitions

A shared read/write register x supports two kinds of operations that can be in-
voked by users: a read, with invocations of the form readi(x), where i indicates the
user, and responses of the form returni(x, v), where v is the value returned; and a
write, with invocations of the form writei(x, v), where i indicates the user and v the
value to be written, and responses of the form acki.

We consider a distributed system containing n server processes and any number
of client processes. Each client works on behalf of a user by accepting invocations
to read or write the shared register, executing some code, communicating with
servers, and deciding how and when to provide a response to the user. Servers
store the data and the clients communicate with servers to read and write the data.
The interprocess communication is by passing messages over an asynchronous
communication network. Such a model is suitable for wide-area networks, since
there are no timing assumptions on the delay in passing a message. We assume
reliable, FIFO communication channels between clients and servers, properties
which can be approximated in practice. We also assume that at most f servers can
be Byzantine faulty, where n > 3 f , but when a Byzantine process sends a message
it cannot hide or alter its id as the sender of the message. Furthermore, any number
of clients can fail by crashing. In addition, it is assumed that broadcasts are reliable:
if a process starts sending a message to a set of processes, all processes in the set
are assured to receive the message.

Given an execution α of the system, the projection of α onto the invocations
and responses of the reads and writes produces a schedule (denoted σ). The goal
is for the schedule of every execution to satisfy mw-regularity, i.e., to satisfy the

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

4 K. Kanjani et al.

P0

P1

P2

P3
R 2 (x,2)

R 1 (x,2)

R 4 (x,4) R 5 (x,2)

R 6 (x,4)

R 3 (x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Figure 1. A schedule that satisfies mw-regularity

following three conditions.
Well-Formedness: For every client i, the projection ofσonto the events involving

i, denoted σ|i, is a sequence of alternating invocations and responses, beginning
with an invocation.

Non-faulty Liveness: For every client i, σ|i ends with an invocation only if i is
faulty (crashes).

We require the existence of a set ops(σ) consisting of all the completed operations
in σ (matching invocations and responses) and some of the pending writes in σ
(invocations without matching responses). The consistency condition of interest
will be defined with respect to ops(σ).

MWReg: For each read operation r in ops(σ), there exists a total order τr on the
set consisting of r and all write operations in ops(σ) such that

• τr is legal, meaning that r returns the value of the write that immediately
precedes it in the total order (if r appears first, then it returns the initial value);
and

• τr is σ-consistent, meaning that for all operations op1 and op2 in ops(σ), if op1

ends before op2 begins in σ, then op1 precedes op2 in τr.

Furthermore, for all reads r1 and r2 in ops(σ), τr1
and τr2

agree on the ordering of
all writes that are relevant to both r1 and r2, where a write w is relevant to a read
r if w begins in σ before r ends.

Fig. 1 gives an example of a schedule that satisfies mw-regularity. Possible total
orders for all the read operations are as follows:

R1: W(x, 1), W(x, 2), R1(x, 2)
R2: W(x, 1), W(x, 2), R2(x, 2)
R3: W(x, 1), W(x, 2), R3(x, 2)
R4: W(x, 1), W(x, 2), W(x, 4), R4(x, 4)
R5: W(x, 1), W(x, 2), R5(x, 2), W(x, 3), W(x, 4)
R6: W(x, 1), W(x, 2), W(x, 3), W(x, 4), R6(x, 4)

This schedule is not atomic, since under atomicity if read R4 obtains the new value
4 of the register, the subsequent read R5 should not obtain the old value 2.

As shown in [16], if there is only one writer, then mw-regularity reduces to
the standard definition of (single-writer) regularity. The relationships between
mw-regularity and a number of other consistency conditions are demonstrated
in [16, 18]. In particular, mw-regularity is incomparable with both sequential
consistency and with causal consistency. The intuition for the incomparability
of mw-regularity and sequential consistency is that mw-regularity, unlike se-
quential consistency, requires every total order to respect the real-time order of
non-overlapping operations; on the other hand, sequential consistency, unlike
mw-regularity, requires the existence of single total order of operations.

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

Parallel, Emergent and Distributed Systems 5

4. Algorithm

In this section we describe the three parts of the algorithm: the reader proto-
col (Alg. 1), the writer protocol (Alg. 2), and the server protocol (Alg. 3). The
interactions between a reader and the servers are illustrated in Fig. 2 while the in-
teractions between a writer and the servers are illustrated in Fig. 3. The algorithm
was inspired by that in [3].

Algorithm 1 Reader’s protocol

1: Initially:
2: my ctr≔ 0
3:

4: when read() occurs:
5: my ctr≔ my ctr + 1
6: ts arr[s]≔ ⊥, val arr[s]≔ ∅ for each server s
7: send ( , my ctr) to all servers
8:

9: when (, t, 〈v, ts〉) message is received from server s:
10: if (t = my ctr ∧ ts arr[s] = ⊥) then
11: ts arr[s]≔ ts
12: val arr[s].add(〈v, ts〉)
13: check()
14: end if
15:

16: when (, 〈v, ts〉) is received from server s:
17: val arr[s].add(〈v, ts〉)
18: check()
19:

20: procedure check():
21: if (|{s: ts arr[s] , ⊥ }| ≥ n − f) then
22: if there exists a pair 〈v, ts〉 such that

(not old): ts is greater than or equal to at least 2 f + 1 entries of ts arr
and
(valid): 〈v, ts〉 is contained in at least f + 1 entries of val arr then

23: send () to all servers
24: return 〈v, ts〉
25: end if
26: endif

Reader’s Protocol. The timestamp ts is in the form of a pair 〈counter, id〉 where
counter is a non-negative integer and id is the id of the client process that performs
the read. The ts arr array has an entry for each server. The entry for server s
stores the first value received from s in an  message since the read began.
The val arr array has an entry for each server. The entry for server s contains all
values (together with their timestamps) that are received from s in  and 
messages since the read began. For both arrays, in order for an  message not
to be ignored, it must be tagged with a counter indicating that it is in response to
the reader’s  message for the current read.

When a read is invoked, the reader sends a   message to each server
requesting the value and timestamp stored at that server. Upon receiving an 

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

6 K. Kanjani et al.

message from a server, the reader updates the ts arr and val arr arrays appropri-
ately. Upon receiving a message from a server, the reader updates the val arr
array with the new information, but does not change the ts arr array; this distinc-
tion is crucial to the correctness of the algorithm. Once the reader receives replies
from n − f servers, the reader begins checking to see if any value it has stored in
its val arr array meets the termination condition.

Read Termination Condition. The reader can stop and return a value once a value
is found that meets both the valid and not old conditions. A value meets the
valid condition when val arr indicates that more than f servers have sent that
value to the reader. A value is not old when it has a timestamp that is greater
than or equal to the timestamps recorded in ts arr for at least 2 f + 1 servers. Once
a write completes, at most f servers can hold old timestamps because a write
only completes once the writer has received acknowledgments from at least n− f
servers.

Byzantine servers may send  or  messages containing incorrect times-
tamps and values. Nevertheless, the termination condition ensures that the value
returned by a read was written by some actual write (i.e., is valid), and further-
more, this write did not occur too far in the past (i.e., is not old). Specifically, if w
is the write that wrote the return value, then there is no other write w′ that started
after w finished and ended before the read began.

A value meets the valid condition when val arr indicates that more than f
servers have sent that value to the reader. Thus at least one nonfaulty server sent
the value and so the value was written by some write (and not manufactured by
a faulty server).

A value meets the not old condition when its timestamp is at least as large as
the timestamps recorded in ts arr for at least 2 f + 1 servers. Once w has finished,
at least n− f servers have the value written by w, since w does not finish until the
writer has received acknowledgments from at least n − f servers. Thus, at most
f servers have older values. The maximum number of old timestamps that the
reader can store in its ts arr is 2 f , f from the nonfaulty, but out-of-date, servers,
and f from the Byzantine servers sending values with artificially low timestamps1.
Thus the not old condition will not be met for an out-of-date value.

Writer’s Protocol. When a writer attempts a write, it first does a read to obtain a
recent timestamp. The counter component of the timestamp for the current write
is chosen to be one greater than the counter component of the timestamp obtained
from the read. After constructing the timestamp, the writer sends a  
message to each server. It is assumed that all messages sent by the writer are
delivered. With this assumption, the crash of a writer will not cause discord in the
system. The writer then waits for n− f servers to acknowledge receipt of the new
value and then the write terminates.

Server’s Protocol. Each server keeps in its local state a value rval, a timestamp rts,
and a set of readers readers. The variable rval contains the value written and the
variable rts keeps the timestamp (counter and id of the writer) associated with the
value. Once a   message is received at a server, the server sends rval and

1If, on the other hand, the Byzantine servers send timestamps that are artificially high, the valid check will not
allow the corresponding (artificial) value to be returned.

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

Parallel, Emergent and Distributed Systems 7

Algorithm 2 Writer’s protocol

1: Initially:
2: my ctr≔ 0
3:

4: when write(v) occurs:
5: my val≔ v
6: recv ack[s]≔ false for all servers s
7: 〈v′,〈r ctr, id〉〉≔ read() // invoke a read to find a recent timestamp
8: my ctr≔ r ctr + 1
9: send( , 〈my val, 〈my ctr, my id〉〉) to all servers

10:

11: when ( , t) is received from server s:
12: if (t = my ctr) then
13: recv ack[s]≔ true
14: if (|{s:recv ack[s] = true}| ≥ n − f) then
15: return ACK
16: end if
17: end if

rts to the reader that made the request and adds the reader to readers. Once the
server receives a message from a reader, the server removes that reader from
readers. When a writer sends information to the server, the server updates rval and
rts if the new value has a higher timestamp and sends an acknowledgment to the
writer. If readers is not empty, the server forwards the value and timestamp to each
member of readers.

Algorithm 3 Server’s protocol

1: Initially:
2: readers≔ ∅
3: rval≔ 0
4: rts≔ 〈0,0〉
5:

6: when ( , t) message is received from reader r:
7: readers.add(r)
8: send (, t, 〈rval, rts〉) to r
9:

10: when () message is received from reader r:
11: readers.remove(r)
12:

13: when ( , 〈v, 〈ctr, w〉〉) is received from writer w:
14: if (rts < 〈ctr,w〉) then //new value v has later timestamp
15: rval≔ v
16: rts≔ 〈ctr,w〉
17: end if
18: for each r in readers do
19: send (, 〈v, 〈ctr,w〉〉) to r
20: end for
21: send ( , ctr) to w

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

8 K. Kanjani et al.

GET_INFO

Reader Server s

Server s FWDsFWD(v’,ts’)

value that satisfies
the termination

Reader receives a

conditions

FWD(v’’,ts’’)

INFO(v,ts)

DONE

from s’s list of

to s’s list of

to val_arr[s]
v, v’, v’’ are added

placed into ts_arr[s]
Timestamp ts is

Reader is added

active readers

any new values it
receives to Reader

Reader is removed

active readers

Figure 2. Reader – Server Interaction

Server s updates

Read

Writer Server s

Read is performed

to find latest

timestamp
WRITE_INFO(v,ts)

WRITE_ACK

Write completes

the value it stores

appropriately and

sends FWD(v,ts) to

all active readers

Figure 3. Writer – Server Interaction

5. Analysis

Now we prove that our algorithm is correct, in that it satisfies mw-regularity. We
also analyze the complexity of our algorithm.

5.1 Correctness

Consider any execution e of the algorithm in which at most f of the n servers are
Byzantine faulty, for n > 3 f , and any number of clients crash. Well-Formedness is
maintained by the algorithm, since a return is executed at a client only if a read is
pending at that client, and an ack is executed at a client only if a write is pending
at that client.

To show Non-faulty Liveness, we prove next that every operation invoked by a
non-faulty client eventually terminates.

T 5.1 Every read operation invoked by a non-faulty client terminates.

Proof Suppose for contradiction that some read r in e by some non-faulty client
process p never terminates. Because r never terminates, p eventually hears from
all non-faulty servers and all of the Byzantine servers which ever respond to its
  request. After this point, p’s ts arr no longer changes. Call this point in
time tstop. Let vts be the (2 f + 1)st smallest timestamp in p’s ts arr at time tstop. Let

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

Parallel, Emergent and Distributed Systems 9

T be the largest timestamp from a non-faulty server in p’s ts arr after tstop.

Claim. T is greater than or equal to vts.
Proof. Suppose in contradiction T is smaller than vts. Then all timestamps from
non-faulty servers are smaller than the (2 f+1)st smallest entry in ts arr. It follows
that there are at most 2 f timestamps from non-faulty servers in ts arr at time
tstop. Since p has heard from all non-faulty servers by time tstop, this contradicts
the fact that there are at least 2 f + 1 non-faulty servers because there are more
than 3 f servers overall.

Let w be the write whose timestamp is T and let v be the value written by w.
Let 〈v,T〉 be the value-timestamp pair sent in the   message of w to
all servers. Note that w succeeds in sending its   message, and by our
assumption about reliable broadcasts, all non-faulty servers eventually receive
the  message of w.

Now we show that, in contradiction to our assumption that r never terminates,
the value-timestamp pair 〈v,T〉 eventually satisfies not old and valid and thus r
does terminate.

First we show that, for every non-faulty server s, 〈v,T〉 appears in the val arr[s]
set of p during the execution of r. Consider any non-faulty server s whose entry in
ts arr at time tstop is T. It follows that p received an message containing 〈v,T〉
from s after r began. Thus p stored T in ts arr[s] and v in val arr[s] during r.

Now consider any non-faulty server s′ whose entry in ts arr at time tstop is
T′ , T. Because T is the highest timestamp in the array at time tstop sent by a
non-faulty server, T′ must be smaller than T. This means that when s′ sent its 
message to p, T′ was the highest timestamp associated with a write for which s′

had received a message. This is the case because servers store values in
order of increasing timestamp. Thus, s′ had not received the   message
for w when s′ sent its  message with T′ to p. Because s′ is non-faulty and
the   message for w is ensured to reach s′, s′ eventually receives the
  message for w and sends a  message to p containing 〈v,T〉. When
p receives this message, 〈v,T〉 is placed into val arr[s′]. Thus v eventually is in
val arr[s] for every non-faulty server s. So v will be in val arr[s] for at least 2 f + 1
servers and v will satisfy valid. Based on the Claim, 〈v,T〉 satisfies not old. Thus
〈v,T〉meets both conditions and r terminates, which is a contradiction. �

T 5.2 Every write operation invoked by a non-faulty client terminates.

Proof Consider any write operation invoked by a non-faulty client p. The embed-
ded read operation completes by Theorem 5.1. The write completes once p has
received an acknowledgment from n − f distinct servers. Because only f servers
can be Byzantine, there are at least n − f non-faulty servers. Because communi-
cation is reliable and p sends a   message to each server, each of the
n− f non-faulty servers eventually receives the  message and sends an
acknowledgment to p. These messages are received by p and the write terminates.
�

We now show that the execution satisfies MWReg. First, we give an intuitive
overview of why MWReg is satisfied. For each read we construct a total order on
a particular subset of the operations. By definition, the construction is legal. The
bulk of the proof is to show that the construction is σ-consistent. To do this, we
must show that every pair of operations that do not overlap in the execution are
placed in the same order in the construction. The case of a read followed by a
write works correctly because of the way the read’s valid check uses val arr (cf.
Lemma 5.5). The case of a write followed by a read works correctly because of the

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

10 K. Kanjani et al.

way the not old check uses ts arr (cf. Lemma 5.3). The case of a write followed by a
write works correctly because of the way the timestamps are used (cf. Lemma 5.4).

Let σ be the schedule of the execution. Let ops(σ) be the set of all completed
operations and all incomplete but “effective” writes in σ. A write is effective if
it executes Line 9 of the writer’s protocol, i.e., if it succeeds in broadcasting its
  message to all the servers. Let ts(op) be the timestamp of operation op
(if op is a write, it is the timestamp assigned to the value; if op is a read, it is the
timestamp associated with the value returned).

L 5.3 For each read operation r in ops(σ) and each write operation w in ops(σ), if
w ends before r begins, then ts(w) ≤ ts(r).

Proof Fix a read operation r and a write operation w in ops(σ) such that w ends
before r begins. Let p be the client process that executes r. After w has completed,
at least n− f servers have rts ≥ ts(w) because of the counter value included in the
 message. Thus at most f non-faulty servers have rts < ts(w) after w has
completed. Since the rts variable at each non-faulty server changes over time only
by increasing, and since the counter value is included in the   and 
messages, When r is executed, p receives timestamps less than ts(w) from at most
2 f servers. Thus not old(T) cannot be true for any T < ts(w) during the execution
of r, and ts(r) must be at least ts(w). �

L 5.4 The write operations in ops(σ) are totally ordered by timestamp and this total
order is σ-consistent.

Proof The use of the process id together with the incrementing of the counter in
the timestamp ensures that every write has a unique timestamp.

Suppose write w1 ends before write w2 begins in σ. Since w2 encompasses a
complete read, call it r, to decide its timestamp, Lemma 5.3 ensures that ts(r) ≥
ts(w1). Since ts(w2) is created by adding one to the counter in ts(r), it follows that
ts(w1) < ts(w2). �

Let setting the initial values for rval and rts in the servers to zero and 〈0,0〉
respectively, be considered the first write.

L 5.5 For every read operation r in ops(σ), there exists a write operation w in ops(σ),
denoted ρ(r), that is relevant to r such that the timestamps of r and w are the same and
the value returned by r is the value written by w.

Proof The value v returned by a client process p at the end of its execution of a
read r must satisfy the valid condition. The valid condition requires that at least
f + 1 servers have sent the same value before p may return it. This ensures that
at least one non-faulty server s has sent v. Because s is non-faulty, v is written by
a write. Because r is still in progress when p receives v, the write of v must have
started before r ends. �

Consider any read r in ops(σ). We construct a total order τr on the set consisting
of r and all writes in ops(σ) as follows.

• Order all the writes in ops(σ) that are relevant to r before any write that is not
relevant to r.

• Order all the writes that are relevant to r in timestamp order among themselves.
• Order all the writes that are not relevant to r in timestamp order among them-

selves.
• Order r immediately after ρ(r), from Lemma 5.5, and before the following write.

The total order τr is legal by construction (the rule explicitly states to place the
unique read r in the proper place).

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

Parallel, Emergent and Distributed Systems 11

Table 1. Complexity of the read/write operations

read() write()

Rounds 1 2
Messages 3n 5n + Rc

Message size constant constant

We now show that τr is σ-consistent. Consider any two writes w1 and w2 where
w1 ends in σ before w2 begins. If both writes are relevant to r or both writes are
not relevant to r, σ-consistency of τr follows from Lemma 5.4. If w1 is relevant to r
and w2 is not relevant to r, σ-consistency of τr follows from the fact that w1 starts
before r ends and w2 starts after r ends, and thus w2 cannot end before w1 starts.

Consider any write w that starts after r ends in σ. Let w′ = ρ(r), from Lemma 5.5.
Since w′ is relevant to r but w is not, w appears after w′ in τr. Since r is ordered
immediately after w′ in τr, w appears after r in τr.

Consider any write w that ends before r starts in σ. By Lemma 5.3, ts(w) ≤ ts(r).
Since r appears immediately after the write with timestamp equal to ts(r), r must
appear after w in τr.

Finally, the construction of the total orders ensures that for all reads r1 and r2 in
ops(σ), all writes in ops(σ) that are relevant to both reads are ordered consistently
in τr1

and τr2
. Thus we have:

T 5.6 The algorithm ensures MWReg.

5.2 Complexity

T 5.7 The read protocol has bounded message and time complexity.

Proof It has already been shown that a read terminates. In the read protocol, the
reader and servers are involved in one round trip of communication and the
reader sends a message to each server at the end of the read. It follows that
3n messages are sent to complete a read. Only one 〈value, timestamp〉 pair is sent
in each message. �

T 5.8 The write protocol has bounded message and time complexity.

Proof It has already been shown that a write terminates. A write requires a read
and one round trip of communication with servers. The number of messages
generated by a write is thus 5n + Rc where Rc is the number of read operations
concurrent with the write. Only one 〈value, timestamp〉 pair is sent in each mes-
sage. �

Each server only needs to store one copy of the most recent value and timestamp,
no matter how many writers there are.

6. Conclusions

We have presented an efficient replica-based algorithm to implement a shared
read-write register that can tolerate Byzantine failures of less than a third of the
replica servers. The consistency condition provided by the register is a variant
of a form of multi-writer regularity called MWReg in [16, 17]. This condition is
weaker than the more commonly provided condition of atomicity, but nevertheless
is useful for some important applications, such as mutual exclusion [16, 17].

The algorithm has several desirable properties. First, unlike other known al-
gorithms for Byzantine-tolerant distributed storage, which support m writers by
simulating m copies of a single-writer protocol, our algorithm directly supports

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

12 REFERENCES

multiple writers. As a result, the time and message complexity of the algorithm is
independent of the number of writers. The algorithm has optimal fault-tolerance
in that it is resilient to less than a third of the servers being Byzantine faulty,
and to any number of crash failures of clients. Furthermore, no communication is
required between clients or between servers. Reducing the number of values that
are stored at a reader during a read is an open question.

Numerous additional open questions remain. First, can an inherent separa-
tion with respect to scalability be shown between Byzantine-server-tolerant im-
plementations of multi-writer registers that are atomic and those that satisfy a
weaker condition such as regularity? Currently there is no known (Byzantine-
server-tolerant) multi-writer implementation which satisfies atomicity and does
not put an explicit bound on the number of writers. Second, there are several
other versions of multi-writer regularity proposed by Shao in [16]. How can these
other conditions be made tolerant to Byzantine servers? The algorithms proposed
in [16] to implement the consistency conditions have a modular structure based
on quorums; is there a modular way to tolerate Byzantine servers, say by using
Byzantine quorums [14]?

Acknowledgments

We thank Z. Asad, M.A.R. Chaudhry, and the referees for helpful comments.
This research was supported in part by NSF grant DMI-0500265, NSF grant CNS-
0614929, Texas Higher Education Coordinating Board grants ARP 000512-0130-
2007, and ARP 000512-0007-2006. The work of Whitney L. Maguffee was sup-
ported by the CRA-W DREU program under NSF grant CNS-0540631. The work
of Khushboo Kanjani and Whitney L. Maguffee was performed while they were
at Texas A&M University.

References

[1] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi, Byzantine disk paxos: Optimal resilience with Byzantine
shared memory, Distributed Computing 18 (2006), pp. 387–408.

[2] M. Aguilera and R. Swaminathan, Remote Storage with Byzantine Servers, in Proceedings of the 21st ACM
Symposium on Parallelism in Algorithms and Architectures, 2009, pp. 280–289.

[3] A.S. Aiyer, L. Alvisi, and R.A. Bazzi, Bounded Wait-Free Implementation of Optimally Resilient Byzantine Storage
without (Unproven) Cryptographic Assumptions, in Proceedings of the International Symposium on Distributed
Computing, 2007, pp. 7–19.

[4] H. Attiya and J.L. Welch, Sequential consistency versus linearizability, ACM Trans. Comput. Syst. 12 (1994),
pp. 91–122.

[5] R. Bazzi and Y. Ding, Non-skipping timestamps for Byzantine Data Storage Systems, in Proceedings of the
International Symposium on Distributed Computing, 2004, pp. 405–419.

[6] C. Cachin and S. Tessaro, Optimal Resilience for Erasure-Coded Byzantine Distributed Storage, in Proceedings of
the International Conference on Dependable Systems and Networks, 2005, pp. 115–124.

[7] R. Guerraoui and M. Vukolic, How Fast Can a Very Robust Read Be?, in Proceedings of the ACM Symposium on
Principles of Distributed Computing, 2006, pp. 248–257.

[8] M.P. Herlihy and J.M. Wing, Linearizability: a correctness condition for concurrent objects, ACM Trans. Program.
Lang. Syst. 12 (1990), pp. 463–492.

[9] P. Jalote, Fault Tolerance in Distributed Systems, Prentice Hall, 1994.
[10] F.P. Junqueira and B.C. Reed, The life and times of a ZooKeeper, in Proceedings of the ACM Symposium on

Principles of Distributed Computing, 2009, p. 46.
[11] K. Kanjani, Supporting fault-tolerant communication in networks, Master’s thesis, Texas A&M University

(2008).
[12] K. Kanjani, H. Lee, and J.L. Welch, Byzantine fault-tolerant implementation of a multi-writer regular register,

in Proceedings of the 14th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems
(DPDNS), 2009.

[13] L. Lamport, On interprocess commnunication, part I: Basic formalism, Distributed Computing 1 (1986), pp.
77–85.

[14] D. Malkhi and M. Reiter, Byzantine quorum systems, Distributed Computing 11 (1998), pp. 203–213.
[15] J. Martin, L. Alvisi, and M. Dahlin, Minimal Byzantine Storage, in Proceedings of the International Symposium

on Distributed Computing, 2002, pp. 311–325.

February 9, 2010 15:29 The International Journal of Parallel, Emergent and Distributed Systems mw

REFERENCES 13

[16] C. Shao, Multi-writer consistency conditions for shared memory objects, Master’s thesis, Texas A&M University
(2007).

[17] C. Shao, E. Pierce, and J.L. Welch, Multi-writer Consistency Conditions for Shared Memory Objects, in Proceedings
of the International Symposium on Distributed Computing, 2003, pp. 106–120.

[18] C. Shao, J.L. Welch, E. Pierce, and H. Lee, Multi-writer consistency conditions for shared memory registers, Tech.
Rep. 2010-1-1, Texas A&M University, 2010.

[19] P. Yianilos and S. Sobti, The evolving field of distributed storage, IEEE Internet Computing (2001), pp. 35–39.

