
An Approach to Location Tracking of Mobile
Sensors based on Distributed Randomized Multisets

Hyunyoung Lee
Department of Computer Science

University of Denver
Denver, CO 80208, USA
Email: hlee@cs.du.edu

Andreas Klappenecker
Department of Computer Science

Texas A&M University
College Station, TX 77843-3112, USA

Email: klappi@cs.tamu.edu

Abstract— The tracking of location information in mobile ad
hoc sensor networks is a well-studied problem for which many
solutions have been proposed. The approach discussed in this
paper is based on the systematic use of a distributed shared data
structure. Specifically, randomized versions of replicated sets and
multisets are introduced. It is shown that this probabilistic ap-
proach can improve the performance of infomation disemination
applications in mobile ad hoc sensor networks. The extra layer of
abstraction greatly simplifies the programming, since the library
implementing the randomized sets and multisets can be re-used
for other applications. A literate program is provided that allows
the reader to experiment with our randomized sets and multisets.

I. INTRODUCTION

The location information of mobile sensors is essential for
many applications and usually a part of the name resolution
in routing protocols. One of the obstacles is that the location
information of a moving sensor might not be available at all
times. To remedy this fact, it is advantageous to keep at least
slightly outdated location values that allow the routing protocol
to make an informed guess about the current location of the
sensor. In this paper, we discuss an approach to implement
such a location tracking scheme that is based on a distributed
data structure that implements a randomized multiset.

The location information is replicated, and we use a quorum
based scheme to access this information. In order to reduce
the number of messages, we employ a randomized quorum
scheme. Based on this randomized quorum scheme, we de-
scribe the implementation of randomized sets and multisets.
These randomized versions approximate the behavior of their
deterministic counter parts, but some care is required in
choosing the parameters for an application. Therefore, we
discuss and analyze the behavior of multiset operations in
detail.

The implementation of such distributed algorithms is a
nontrivial task. The abstract data structures that we introduce
here provide an extra layer of abstraction that greatly simplifies
the implementation of this location tracking application and
other information dissemination applications, since the library
implementing the data type operations hides much of the
details, and one can focus on the implementation of the
application, rather than on low-level issues.

Recall that a multiset is an unordered collection of elements,
in which an element can occur multiple times; whereas a set is
an unordered collection of distinct elements. Many algorithms
use these basic data structures. In fact, they are so common that
many programming languages support sets and multisets either
directly or through standard libraries (for example, the STL of
C++). We provide here distributed replicated versions of set
and multisets. For the purpose of information dissemination
in mobile sensor networks, it is often sufficient to provide
the correct information (such as the most recent location)
with a high probability. In this particular application one can
tolerate to receive occasionally a slightly outdated location of
a sensor. The benefit is that the overall number of messages is
dramatically reduced by employing a randomized approach.

It might be helpful to explain the concept behind a replicated
multiset by way of a (somewhat playful) example. Assume
that we have a set of n servers (the term ‘server’ is used in a
liberal sense; it might be a beacon or an arbitrary mobile sensor
node). We number the servers, for simplicity, from 1 to n. We
represent a set (or multiset) M by replicas Mr on server r for
r ∈ {1, . . . , n}. To give an idea how this is traditionally done,
let’s have a look at a small example with five servers:

Server 1 : M1 =
{

,
}
,

Server 2 : M2 =
{

, ,
}
,

Server 3 : M3 =
{

,
}
,

Server 4 : M4 =
{

, ,
}
,

Server 5 : M5 =
{

,
}
.

The five replicas represent the set

M =
5⋃

r=1

Mr =
{

, , ,
}
.

You will notice that each element of M is contained in
exactly three replicas. This means that whenever a client
process requests the replicas from 3 servers, then the client
can reconstruct M by taking the union of the three sets. This
scheme is based on a traditional quorum system where each
client process is supposed to access k > n/2 replica servers
to read a set or to write an element.

The drawback of this scheme is that it is fairly rigid and
it might even be undesirable for a client process to contact

such a large number of servers. Imagine for instance a mobile
sensor network, where some servers are not available at all
times. A large quorum Q of k > n/2 replica servers is likely
to contain some servers that are not reachable, and this can be
a considerable bottleneck.

Let us digress a little bit from our discussion of replicated
multisets and discuss the concept of a probabilistic quorum,
which was introduced by Malkhi, Reiter, Wool, and Wright [8]
as a means to replace traditional quorum systems. In this
case, a client selects a quorum of, say, size k = Ω(n1/2+ε).
Unfortunately, one may find two quorums that are disjoint.
However, if the clients choose the two quorums uniformly at
random, then the two quorums are likely to share at least one
server thanks to the birthday paradox. A concrete numerical
example might help the reader to appreciate this property.
Suppose that we have n = 50 servers. A traditional quorum
system chooses quorums of size k ≥ 26. However, if we
assume that the clients select merely k = 16 servers per
quorum, then any two quorums that are chosen uniformly
at random will be disjoint with probability less than ε <
0.000448. So it is unlikely that two quorums do not overlap,
but at the same time the overhead incurred by querying the
servers is significantly reduced.

Coming back to our discussion of distributed multisets, it
now seems natural to explore the possibility to build random-
ized set and multiset operations using probabilistic quorum
constructions. An advantage of a smaller quorum size is a
significantly reduced message complexity – a client has to
communicate with considerably fewer servers to execute the
operations. On the downside, all operations on randomized sets
or multisets involve a certain (controllable) amount of error ε.
The situation is comparable with floating point or fixed-point
arithmetic where the operations also introduce inaccuracies.

In the section on Location Tracking, we describe an applica-
tion of randomized multisets to the location tracking problem
of sensor nodes, since this provides the motivation for the
later sections. We introduce in the section on Read and Write
Operations the read and write operations for randomized sets
and multisets and analyze the behavior of these operations. We
derive in the section Further Operations other set and multiset
operations that are mostly based on these primitives. We find
that the price that we have to pay for the significantly reduced
quorum sizes is a small loss of values in most primitive
operations.

Notations. If n is a positive integer, then we denote by [n]
the set {1, 2, . . . , n}. The family of all k-subsets of the set [n]
is denoted by

(
[n]
k

)
.

II. LOCATION TRACKING

In this section, we illustrate how to use our randomized
multisets for location tracking in mobile ad hoc sensor net-
works. Recall that the location tracking problem in a mobile
ad hoc sensor network is to provide location information of
mobile sensors as part of a name resolution protocol. Such a
location service is important because a simple name resolution

protocol does not work in a mobile environment without static
infrastructure.

Lee, Welch and Vaidya [5] proposed a scheme based on
replicated location tracking servers. Each server has a replica
of the location database containing the most recent location
information of the mobile nodes. Each mobile node is respon-
sible to periodically update its location. Tseng et al. proposed
a location tracking scheme using mobile agents [11]. A quad-
tree structured location service is used in the Grid system [7].

Here we sketch a location tracking scheme using our ran-
domized multisets in implementing the location information
database M . The basic idea of the new scheme is that we
keep a “history” of movement of mobile sensors rather than
the single most recent location information.

The reason why this scheme works well is because move-
ment is continuous and it is always better to have at least
some slightly outdated location information than to have no
location information at all. Consequently, the errors due to our
randomized multiset have less impact in a system keeping the
location history.

Each element of M is a tuple

〈location data, sensor id, timestamp〉.
Each mobile sensor is uniquely identified by the sensor id,
and associated with a client process. Furthermore, each client
process has a local timestamp which is incremented by one
for each add operation it performs.

a) • Add Location.: Whenever a sensor i wants to record
its new location information loc, it increments its timestamp
t by one and invokes add(x,M), where the element x is of
the form 〈loc, i, t〉. The implementation of the add operation
is given in the section on Read and Write Operations.

Each replica server r keeps a replica Mr of M . When a
replica server r receives 〈add x〉 message, it adds x to Mr.
There is a system parameter expire that serves as a threshold
of how long the old information should be kept. For example,
if expire = 5, then each server will keep at most the five most
recent location entries for each sensor. Thus, the server will
check after each add operation whether it should remove old
location data of the sensor.

b) • Lookup.: When a mobile sensor i wants to know
the location of mobile sensor j, it performs lookup(j,M).
As a result of the lookup operation, sensor i will receive a
list of location data of sensor j.

To implement the lookup operation, the client process
does the following. It chooses a random quorum Q of replicas
and sends the message 〈lookup j〉 to each replica server
r in Q. The servers reply with lists of the location data of
j, which the client merges and sorts according to increasing
timestamps. Then it returns the sorted list of location data of
j to the application.

When a server r receives 〈lookup j〉 message from client
i, it creates a list (that is ordered by timestamp values) of j’s
location data in Mr and sends the list back to i. If no such
data exists in Mr, it sends i the list with a single value ⊥,
indicating that it does not have location information on j.

III. READ AND WRITE OPERATIONS

We describe in this section the most fundamental operations
to create, write, and read a randomized set or multiset. We an-
alyze several key properties of these operations; in particular,
we determine the expected size of the set returned by the read
operation. The first operation concerns the genesis of sets:

c) • Create.: We can create a set or multiset M by

create(M).

This operation creates the replica Mi = ∅ on each server i in
the range 1 ≤ i ≤ n.

The read and write operations have the following behavior:
d) • Add.: The write operation

add(x,M)

chooses uniformly at random a k-subset W of [n] :=
{1, . . . , n} and adds the element x to the replicas Mw for
all w in W . In other words, the operation has the effect

Mw := Mw ∪ {x} for all w in W.

So the multiplicity of x is increased by one in the case of
multisets; and the replica contains x in the case of sets.

e) • Read.: Similarly, the read operation

read(M)

chooses uniformly at random a k-subset R of [n] and returns
the union of the replicas Mr with r in R; in other words, the
read operation returns the set

⋃
r∈R Mr.

The replicas Mr with 1 ≤ r ≤ n represent a set M if and
only if M =

⋃
r∈[n] Mr.

Lemma 1: Suppose that we choose two quorums R and W
in

(
[n]
k

)
uniformly at random. Then

Pr[R ∩ W = ∅] =
(

n − k

k

)/(
n

k

)
.

In the terminology of Malkhi, Reiter, Wool and Wright [8],
our operations are based on a probabilistic ε-intersecting
quorum system Qk =

(
[n]
k

)
of all k-subsets of the set [n] =

{1, . . . , n} with a uniform access strategy. The previous lemma
simply records the fact that two quorums in Qk intersect
with probability 1 − ε, where ε =

(
n−k

k

)(
n
k

)−1
. If we are

conservative and choose k > n/2, then we recover a tradi-
tional, deterministic quorum system in which any two quorums
intersect. An advantage of probabilistic quorum systems is
that one can choose considerably smaller quorum sizes [8]. In
our application, the benefit is a considerably reduced message
complexity to access the distributed data structures. This leads
to considerable savings of energy of the mobile sensors.

If we choose quorums of size k ≤
n/2�, then a read
quorum can fail to intersect with a previous write quorum, and
thus a set returned by the read operation might have smaller
cardinality than it should have. Fortunately, it is possible to
choose the quorum size k such that the probability of such an
undesired event becomes negligible.

Let us first investigate the consequences of a particular
quorum size selection before we make recommendations on
the choice of k. Clearly, a crucial figure is the expected size
of the set returned by a read operation.

Proposition 2: Suppose that the read and write quorums
use the quorum system Qk =

(
[n]
k

)
with uniform access

probability. If the replica sets represent a set M of cardinality
m = |M |, then the expected value of the size X of the set
returned by read(M) is at least

E[X] ≥ m(1 − ε) with ε =
(

n − k

k

)/(
n

k

)
.

Equality holds if and only if each element of M is represented
by exactly k replicas.

Proof: Denote by Mr the replica at server r, where 1 ≤
r ≤ n. It is clear from the definition of a write operation
that an element x of M is contained in at least k replicas.
It follows that the set Wx = { r | 1 ≤ r ≤ n, x ∈ Mr} has
cardinality sx = |Wx| ≥ k. Let R denote a read quorum of
size k and denote by Yx the indicator random variable for
the event Wx ∩ R �= ∅. Then the probability Pr[Yx = 1] =
Pr[Wx ∩ R �= ∅] is given by

Pr[Yx = 1] = 1 −
(

n − sx

k

)/(
n

k

)
≥ 1 − ε. (1)

We have X =
∑

x∈M Yx. By linearity of expectation, we
obtain

E[X] = E
[∑

x∈M

Yx

]
=

∑
x∈M

Pr[Yx = 1] ≥ m(1 − ε),

which proves our claim.
We would like to choose the quorum size k such that E[X]

is close to the cardinality |M | and such that it is unlikely that
a particular read operation returns a set of size X that deviates
much from the expected value E[X]. Let us first derive a bound
on var[X].

Lemma 3: We keep the notation of the previous proposi-
tion. If the quorum size k is chosen1 such that ε ≤ 1/2, then
var[X] ≤ mε(1 − ε).

Proof: Recall that X is the sum of independent random
variables Yk; therefore, the variance sum theorem yields

var[X] = var[Y1] + var[Y2] + · · · + var[Ym]. (2)

The random variable Yk is a Bernoulli random variable with
probability of success given in (1). Recall that the function
x(1 − x) is monotonically decreasing on the interval [1/2, 1],
as is illustrated by the function plot:

0 0.5 1.0
0

0.25

0.50
f(x) = x(1 − x)

1Actually, we will of course choose k such that ε � 1/2.

Let pk := Pr[Yk = 1]. Then pk ≥ 1−ε ≥ 1/2, we obtain that
the variance var[Yk] = pk(1 − pk) is bounded from above by

var[Yk] = f(pk) ≤ f(1 − ε) = ε(1 − ε).

Therefore, we can conclude from equation (2) that var[X] ≤
mε(1 − ε), as claimed.

f) Tail Estimates.: We have shown that the size X of a
set returned by the read operation read(M) has expectation
value E[X] ≥ m(1−ε). We can select the quorum size k such
that ε becomes as small as we please, as we will show in the
next paragraph. We will demonstrate now that it is unlikely
that the value X deviates much from E[X].

Lemma 4: If X denotes the size of a set returned by
read(M) and m is the cardinality of M , then

Pr
[|X − E[X]| ≥ ε1/2 E[X]

] ≤ 1
(1 − ε)m

.

Proof: Recall that Chebychev’s inequality states that the
probability Pr[|X − E[X]| ≥ λ] is at most var[X]/λ2. Thus,
if we set λ = ε1/2 E[X], then we obtain the claim with the
help of Proposition 2 and Lemma 3.

Lemma 5: If X denotes the size of a set returned by
read(M) and the cardinality of M is m, then

Pr
[|X − E[X]| > d

]
< 2e−2d2/m.

In particular, if we set d = ε1/2 E[X], then

Pr
[|X − E[X]| > ε1/2 E[X]

]
< 2e−2ε(1−ε)2m.

Proof: Recall that the random variable X is given by
the sum of indicator random variables X =

∑
x∈M Yx. Define

new random variables Zx := Yx − px with px = Pr[Yx = 1]
for all x ∈ M . We have Pr[Zx = 1 − px] = px and Pr[Zx =
−px] = 1−px. The main point of this definition is that the sum
of the random variables Zx is given by X−E[X] =

∑
x∈M Zx,

and we can estimate the tails of the right hand side by

Pr[|X − E[X]| > d]=Pr[|
∑
x∈M

Zx| > d] ≤ 2e−2d2/m,

where the last inequality is a bound of Chernoff, see [2] or
[1, Lemma A.4].

g) Quorum Size.: Suppose that we have n servers and
select a quorum of size k < n/2, then we can estimate

ε =
(

n − k

k

)(
n

k

)−1

≤ e−k2/n, (3)

see, for instance, Jukna [3, p. 21]. Therefore, the probability
ε = ε(k) that two quorums of size k fail to intersect decreases
rapidly, especially for quorum sizes larger than n1/2. The next
figure illustrates the bound for n = 50 servers and a range of
quorum sizes:

0 4 8 12 16 20 24
0

0.5
1.0

b(k) = exp(−k2/50)

k

Example 1: If we choose each quorum to be of size k =
2
√

n, where n denotes the number of servers, then the prob-
ability ε that two quorums do not intersect is bounded by
ε ≤ 1/e4 ≈ 0.018 by equation (3). If we increase the quorum
size to k = 3

√
n, then ε ≤ 1/e9 < 0.00013.

Recall that the size X of a set returned by a read operation
read(M) is the sum of m independent random variables
X = Y1 + · · ·+Ym provided that the set M has cardinality m.
If m is large, then the central limit theorem tells us that we can
approximate X by the normal distribution N(E[X], var[X]),
see [6]. Thus, as a rule of thumb, the value X will lie within
the range m(1−ε)±4

√
mε(1 − ε) about 99.99% of the time.

We bolster this claim by giving some experimental results
of a randomized set with m = 300 elements which is
realized with n = 50 replica servers. We plot the quorum
size k in the range 8 ≤ k ≤ 23 against the number of
elements that have been returned by a read operation. The
solid curve in the middle shows the expected number of
elements 300(1− ε), with ε =

(
50−k

k

)
/
(
50
k

)
, that are returned

by a read when the quorum size is k. The gray curves show
300(1−ε)±4

√
300ε(1− ε). The dots represent the measured

number of elements. For each quorum size k we have repeated
the experiment 10 times.

7 9 11 13 15 17 19 21 23
200

220

240

260

280

300

�

�

�

�

�

� � � � � � � � � � �

�

�

�

� �

� �
� � � � � � � � �

�

�

�

�

� �

� � � � � � � � � �

�

�

�
�

�
�

�
� � � � � � � � �

�

�

�

�
�

�
� � � � � � � � � �

�

�

�

�

�
�

� � � � � � � � � �

�

�

�

� �

�

� � � � � � � � � �

�

�

�

�

�

�
� � � � � � � � � �

�

�

�

� �

�
� �

� � � � � � � �

�

�

�

�

�

� �
� � � � � � � � �

k

The graph illustrates that for a quorum size of k ≥ 17 all 300
elements were returned in each run. Moreover, it illustrates that
all experimental results are within the region that we predicted
with our theoretical considerations.

IV. FURTHER OPERATIONS

We describe in this section further operations on randomized
sets, most of which are based on the primitives that we have
introduced and analyzed in the previous section.

h) • Cardinality.: We can obtain an estimate for the
cardinality of the set M by

X := size(read(M)).

Due to the probabilistic nature of the read operation, we cannot
expect to get a precise answer and need to be contend with
an estimate. It follows from Proposition 2 and Lemma 3 that

X ≈ m assuming that the quorum size k is chosen such that
ε � 1.

i) • Union.: We can obtain a union of two sets (or
multisets) B and C by

read(B) union read(C). (4)

We expect that read(B) and read(C) will return at least
(1−ε)|B| and (1−ε)|C| elements, respectively. Therefore, we
can expect that the operation (4) yields at least |B∪C|(1−ε)
elements. Furthermore, the result of (4) is contained in B∪C.

j) • Intersection.: The intersection

read(B) intersection read(C) (5)

of two randomized sets (or multisets) has an expected value
of at least (1 − ε)|B ∩ C| elements, because the operation
read(B) is expected to omit at most ε|B| elements. And
the result of (5) is contained in B ∩ C, so one can boost the
probability of success by several repetitions.

k) • Difference.: The most subtle behavior has the oper-
ation

read(B) minus read(C).

The expected number of elements returned by this operation is
between (1−ε)|B\C| and (1+ε)|B\C|; the potential increase
of elements is a result of the fact that read(C) might return
too few elements. We suggest to use a larger read quorum for
read(C) to remedy this effect.

l) • Containment.: The operation

x in M (6)

is realized by sending the request 〈 is x in M?〉 to a quorum
of servers that is selected uniformly at random from

(
[n]
k

)
. If

at least one server replies with true then the result is true,
otherwise it is false.

The answer has one-sided error. If x is not an element of
M , then (6) will always correctly return false. If x is an
element of M , then we get the incorrect answer false with
probability ≤ ε.

V. CONCLUSIONS

We proposed a location tracking scheme for mobile ad hoc
sensor networks that utilizes distributed shared data structures
such as randomized sets and multisets. We designed random-
ized set and multiset data structures and analyzed their basic
operations.

In our location tracking application, we took into account
that a slightly outdated location information can be still valu-
able information. Suppose that the last � positions that have
been disseminated by a sensor give a tolerable approximation
to its location. If an ε-intersecting quorum system is used
(meaning that the probability that a read and a write quorum
fail to intersect is ε), then the probability that a location query
will yield none of the last � location values is given by ε �.

For example, if we choose a quorum size of k = 2
√

n, then
ε ≤ 1/e4 ≈ 0.018. If we assume that the last � = 5 locations
of the sensor give a meaningful approximation to the current

location, then the probability that we do not get any of the
� = 5 most recent locations in a location query is at most
2.062× 10−9.

As a companion to this paper, we provide a generic C++
implementation that illustrates the fundamental principles of
randomized sets. Our program is specified in Knuth’s literate
programming style that is easy to read [4]. The documentation
contains a self-contained explanation of all implementation
details. The reader can experiment with our program to explore
the practical consequences of quorum size choices and other
details.

Randomization can lower the message complexity and
increase the energy efficiency of mobile sensor networks.
Other applications in mobile sensor networks, such as data
aggregation and information dissemination, can benefit from
such properties as well. As another type of application, we
note that it is possible to modify Rabin’s Byzantine agreement
algorithm [10], [9] to take advantage of randomized multisets.

Acknowledgments. We thank Jennifer Welch for numerous
discussions on randomized data structures, and Riccardo Bet-
tati for discussions about implementations of Lamport’s time.
We appreciate helpful hints on generic C++ programming by
Bjarne Stroustrup and Gabriel Dos Reis.

The research by H.L. was supported by University of Denver
PROF grant 88197. The research by A.K. was supported
by NSF CAREER award CCF 0347310, NSF grant CCF
0218582, and a TEES Select Young Faculty award.

REFERENCES

[1] B. Chazelle. The Discrepancy Method – Randomness and Complexity.
Cambridge University Press, 2001.

[2] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on a sum of observations. Ann. Math. Statistics, 23(4):493–507,
1952.

[3] S. Jukna. Extremal Combinatorics with Applications in Computer
Science. Springer, 2001.

[4] D.E. Knuth. Literate programming. Computer Journal, 27:97–111, 1984.
[5] H. Lee, J.L. Welch, and N.H. Vaidya. Location tracking using quorums

in mobile ad hoc networks. Ad Hoc Networks, 1(4):371–381, 2003.
[6] D.S. Lemons. An Introduction to Stochastic Processes in Physics. The

Johns Hopkins University Press, 2002.
[7] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable

location service for geographic ad hoc wireless networks. In Proc. 6th
Annual Intl. Conf. Mobile Computing and Netorking (MobiCom 2000),
pages 120–130, Boston, MA, 2000. ACM Press.

[8] D. Malkhi, M.K. Reiter, A. Wool, and R.N. Wright. Probabilistic quorum
systems. Information and Computation, 170:184–206, 2001.

[9] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[10] M.O. Rabin. Randomized byzantine generals. In Proc. of the 24th
Annual Symp. on Foundations of Computer Science, pages 403–409,
1983.

[11] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang. Location tracking
in a wireless sensor network by mobile agents and its data fusion
strategies. In F. Zhao and L.J. Guibas, editors, Information Processing
in Sensor Networks, pages 625–641. Springer, 2003.

APPENDIX

As a companion to this paper, we have written routines
in C++ that illustrate the randomized multiset operations. We
have chosen a literate programming style, so that the documen-
tation can be easily appreciated. We provide a small excerpt

from the documentation of our program, which illustrates
the use of some elementary operations. An interested reader
can download the literate program (from which the LATEX
documentation and the C++ library and sample files can be
extracted) from the authors’ home pages.

A small excerpt from the literate program
[the preceding 15 pages are omitted]

We have restricted ourselves so far to the creation of a
randomized set and subsequent read operations. Using these
primitives, we can define probabilistic versions of set oper-
ations such as union, intersection, and set difference in the
following way:

A.read() + B.read(),
A.read() * B.read(),
A.read() - B.read().

The next program illustrates the use of these operations.
〈〈textE.cc〉〉 ≡
#include <iostream>
#include <set>
#include <vector>
#include "rset.h"
using namespace std;

int main () {
int n = 6;
int k = 3;
rset<int> A(n,k);
rset<int> B(n,k);
A.insert(1);
A.insert(2);
A.insert(3);

B.insert(3);
B.insert(4);
B.insert(5);

cout << "A = {1,2,3} " << endl;
cout << "B = {3,4,5} " << endl;

cout << "A union B = {1,2,3,4,5}" << endl;
rset<int> C = A + B;
cout << C;

cout << "A intersection B = {3}" << endl;
rset<int> D = A * B;
cout << D;

cout << "A minus B = {1,2}" << endl;
rset<int> E = A - B;
cout << E;

}

The reader can easily develop a good intuition about the ran-
domized multiset operations by experimenting with our generic
C++ library.

