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Abstract

This paper presents a definition of a read-write register
that sometimes returns out-of-date values, shows that the
definition is implemented by the probabilistic quorum algo-
rithm of [19], and shows how to program with such registers
using the framework of̈Uresin and Dubois [25]. Conse-
quently, existing iterative algorithms for an interestingclass
of problems (including finding shortest paths, constraint
satisfaction, and transitive closure) will converge with high
probability if executed in a system in which the shared data
is implemented with registers satisfying the new definition.
Furthermore, the algorithms in this framework will inherit
positive attributes concerning load and availability fromthe
underlying register implementation. A monotone version of
the new register definition is specified and implemented; it
can provide improved expected convergence time and mes-
sage complexity for iterative algorithms.

1. Introduction
Randomization is a powerful tool in the design of al-

gorithms. As summarized in [20, 11], randomized algo-
rithms are often simpler and more efficient than determin-
istic algorithms for the same problem. Simpler algorithms
have the advantages of being easier to analyze and imple-
ment. A well known example is the factoring problem, for
which simple randomized polynomial-time algorithms are
widely used, while no corresponding deterministic polyno-
mial time algorithm is known. Randomized algorithms have
a failure probability, which can typically be made arbitrar-
ily small and which manifests itself either in the form of
incorrect results (Monte Carlo algorithms) or in the form of
unbounded running time (Las Vegas algorithms).

In this paper, we will define a shared memory framework
for distributed algorithms, in which the implementation of
the shared memory can be randomized. In particular, read
operations can return out-of-date values. We define new
conditions, which constrain this error probability, such that
an interesting class of popular algorithms will work cor-
rectly when implemented over ourrandom registers(de-

fined below). At the same time, our conditions are suffi-
ciently weak to allow certain kinds of probabilistic repli-
cated systems to implement random registers. These repli-
cated systems have very attractive properties, such as high
scalability, availability and fault tolerance [19]. The main
problem in replicated systems is to maintain consistency
among the replicas. Quorum systems try to maintain con-
sistency by defining collections of subsets of replicas (quo-
rums) and having each operation select and access one quo-
rum from the collection. Traditional, orstrict, quorum sys-
tems require all quorums in the collection to intersect pair-
wise. Malkhi et al. [19] introduce the notion of aprobabilis-
tic quorum system, in which pairs of quorums only need to
intersect with high probability. Malkhi et al. show that this
relaxation leads to significant performance improvements in
the load of the busiest replica server and the availability of
the quorum system in the face of replica server crashes. We
show that our definition of random registers captures simi-
lar properties, by accommodating the probabilistic quorum
system as one possible implementation.

As we will show, using random registers can result in
improved load, availability in the face of server crashes, and
message complexity, but seems to require a special style of
programming. Apparently there is a tradeoff between ease
of programming and performance, when randomized data
structures are used. These results are somewhat analogous
to the situation with “weak”, or “hybrid”, consistency con-
ditions, which can be implemented quite efficiently but re-
quire the application programs to be data-race-free [1, 4].

To the best of our knowledge, little existing work has
focused on defining the semantics of distributed data struc-
tures that sometimes return out-of-date values, or on trying
to characterize classes of applications that can tolerate such
data structures.

In this paper, we propose a formal definition of a random
read/write register. The consistency condition provided by
our definition is a probabilistic variation on the concept of
regularity from Lamport’s paper [16].

We show that our definition of a random register can
be implemented by the probabilistic quorum algorithm of



[19, 18], which has the advantages mentioned above, that
the load on the busiest replica server is limited and the avail-
ability in the face of server crashes is high.

Next we show how registers satisfying our definition can
be used to program iterative algorithms in the framework
presented bÿUresin and Dubois [25]. The implication is
that we can use existing iterative algorithms for a signif-
icant class of problems (including finding shortest paths,
constraint satisfaction, and transitive closure) in a system in
which the shared data is implemented with registers satis-
fying our condition, and be assured that the algorithms will
converge with high probability. Furthermore, algorithms in
the framework will inherit any positive attributes concern-
ing load and availability from the underlying register imple-
mentation.

Then we show how a reasonable, and easily imple-
mented, modification of our original definition can be an-
alyzed to prove expected convergence time in the iterative
framework. Simulation results show that there is a signif-
icant benefit from the modified definition in that iterative
algorithms converge faster.

Finally, we prove that the use of random registers can
lead to a significant reduction in message complexity com-
pared to strict systems in at least one important situation.

2. Related Work
A number of consistency conditions for shared memory

have been proposed over the years, including safety, regu-
larity and atomicity [15, 16], sequential consistency [14],
linearizability [12], causal consistency [3] and hybrid con-
sistency [5]. These definitions have all been deterministic
with little or no regard to possible errors.

Afek et al. [2] and Jayanti et al. [13] have studied a
shared memory model in which a fixed set of the shared ob-
jects might return incorrect values, while the others never
do. This model differs from the one we are proposing,
whereeveryobject has some (small) probability of return-
ing an incorrect value.

If the type of error caused by a randomized implemen-
tation is that there is some (small) probability of not termi-
nating instead of producing a wrong answer, the difficulty
in specifying the shared object is lessened, since any values
returned will satisfy the deterministic specification. Exam-
ples of this situation include [24, 23, 10], discussed below.

Randomized implementations have been proposed for
several shared data structures in various architectures, as we
now discuss.

Malkhi et al. [19, 18] have proposed a probabilistic quo-
rum algorithm to implement a read-write variable over a
message passing system. Probabilistic quorums seem like a
useful distributed building block, thanks to their good per-
formance (analyzed in [19] and reviewed in Section 6.4).
However, to make probabilistic quorums usable by pro-
grammers, a more complete semantics of the register which

they implement must be given, together with techniques for
programming effectively with them.

Shavit and Zemach have implemented novel randomized
synchronization mechanisms called combining funnels [24]
and diffracting trees [23] over simpler shared objects. In
these algorithms, the effect of randomization is on the per-
formance; wrong answers are never returned.

PRAM simulations using randomized data structures are
shown in [10] and referenced in [19].

In this paper, we show that one class of iterative conver-
gent algorithms can handle infrequent out-of-date values.
The first analysis of the convergence of iterative functions
when the input data can be out of date was by Chazan and
Miranker [8]. Subsequently a number of authors refined
this work (cf. Chapter 7 of [6] for an overview).̈Uresin and
Dubois [25] give a general necessary and sufficient condi-
tion on the function for convergence. Essentially the same
convergence theorem is presented in Chapter 6 of [6]. This
class of functions includes solutions to many practical ap-
plications, including solving systems of linear equations,
finding shortest paths, and network flow [6]. The conver-
gence rates of iterative algorithms have been studied by,
e.g., [6, 26]; the emphasis in these papers is on comparing
the rate with out-of-date data to the rate with current data,
under various scheduling and timing assumptions.

3. Specifying a Random Register (RR)
We are interested in randomized distributed algorithms

that implement a shared read/write register. Our first task
is to specify the behavior of such a register. Although the
particular implementation to be discussed in this paper is a
message-passing one, we would like thespecificationto be
implementation-independent, so that it could apply to any
kind of implementation.

A Read/Write Register A read/writeregister X shared
by several processes supports two operations, read and
write. Each operation has an invocation and a re-
sponse. Readi(X) is the invocation by processi of a read,
Writei(X; v) is the invocation byi of a write of the valuev,
Returni(X; v) is the response toi’s read invocation which
returns the valuev, and Acki(X) is the response toi’s write
invocation. We will focus onmulti-reader, single-writer
registers.

A register allows sequences of invocations and responses
that satisfy certain conditions, including the following:(1)
the first item in the sequence is an invocation, (2) each in-
vocation has a matching response, and (3) no process has
more than one pending operation at a time.

In addition, the values returned by the read operations
must satisfy some kind ofconsistency condition. Below
we will present a randomized consistency condition.

Processes and Their Steps A processis a (possibly in-
finite) state machine which has access to a random number
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generator. A process models the software at each node that
implements the random register layer; it communicates with
the shared memory application program above it and with
some interprocess communication system below it. The
process has a distinguished state called theinitial state.

We assume a system consisting of a collection ofp pro-
cesses.

There is some set oftriggers that can take place in the
system. Triggers consist of operation invocations as well
as system-dependent events (for example, the receipt of a
message in a message-passing system). The occurrence of
a trigger at a process causes the process to take astep. Dur-
ing the step, the process applies its transition function toits
current state, the particular trigger, and a random number
to generate a new state and someoutputs. The outputs can
include (at most) one operation response as well as some
system-dependent events (for example, message sends in a
message-passing system). A step is completely described
by the current state, the trigger, the random number, the new
state, and the set of outputs.

Adversaries and Executions To capture the nondeter-
minism due to the uncertainties in communication delays
and pattern of operation invocations, we formally define an
adversary to be a partial function from the set of all se-
quences of steps to the set of triggers. That is, given a
sequence of steps that have occurred so far, the adversary
determines what trigger will happen next. Note that the ad-
versarycannotinfluence what random number is received
in the next step, only the trigger. LetRAND be the set of
all p-tuples of the formhR1; : : : ; Rpi where eachRi is an
infinite sequence of integers inf0; : : : ; Dg. D indicates the
range of the random numbers.Ri describes the sequence
of random numbers available to processi in an execution
— Rij is the random number available at stepj. Call each
element inRAND a random tuple.

Given an adversaryA and a random tupleR =hR1; : : : ; Rpi, an executionexec(A;R) can be defined to
be a sequence of steps in the standard way (the full paper
has a detailed description).

The adversary must respect the applications pattern of
operation invocations and the characteristics of the commu-
nication medium.

An executione is complete if it is either infinite or, in
the case it is finite,A(e) is undefined. This means that there
is nothing further to do — the application is through mak-
ing calls on the shared variables and no further action is
required by the interprocess communication layer.

A Random Register Given an executione, a read opera-
tion R in e is said toread from write operationW in e if
(1)W begins beforeR ends, (2) the value returned byR is
the same as that written byW , and (3)W is the latest write
satisfying the previous two conditions. Consider the exam-
ple in Figure 1. IfR returnsa, then it is defined to read from

W1 (a) W2 (b) W3 (c) W4 (b) W5 (c) W6 (c)

R

Figure 1. Diagram for definition of reads from.W1; if it returnsb, then it is defined to read fromW4; and if
it returnsc, then it is defined to read fromW6.1

A system is said to implement arandom register if, for
every adversaryA,

[R1] every operation invocation in every complete execu-
tion (of the adversary) has a matching response,

[R2] every read in every complete execution (of the adver-
sary) reads from some write, and

[R3] for every finite executione (of the adversary) such thatA(e) is a write invocation, the probability that this
write is read from infinitely often is 0, if an infinite
number of writes are performed in the extension.

Notice that this is a kind of “worst-case” probabilistic def-
inition as the probabilistic condition in [R3] must hold for
everyadversary andeverywrite.

4. Implementing a Random Register
In this section, we show that the probabilistic quorum al-

gorithm presented by Malkhi et al. [19, 18] implements a
random register. Their algorithm works in a reliable, asyn-
chronous message passing environment.

The following specializations are needed to the general
model given in Section 3: Triggers include receiving a mes-
sage from a process. Outputs include sending a message to
a process. Constraints on the adversary include: every mes-
sage sent is eventually received, and every message received
was previously sent but not yet delivered.

The algorithm uses the notion of aquorum, which is
a subset of the set of all replicas, of sizek (the quorum
size). We have simplified the read/write register algorithm
from [18] to assume only one writer and absence of fail-
ures. The shared register is replicated overn servers. This
replicated server system is used byp processes through
the shared register subsystem associated with each process.
Each server keeps a local replica of the register to be im-
plemented. A timestamp is associated with the replica. To
perform a read, the shared register subsystem queries a quo-
rum and returns the value with the largest timestamp result-
ing from the query. To perform a write, the shared register

1This definition might not capture the “real” write that is read from
in a particular implementation, which might occur earlier.However, this
definition is sufficient for proving that eventually each write stops being
read from, which is what is required in this paper.
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subsystem for the writer causes the replicas in a quorum to
be updated with the new value and its new timestamp. Each
quorum is chosen randomly with uniform distribution from
the set of all possible quorums (allk-subsets of the set of all
replicas) [19].

Theorem 1 The probabilistic quorum algorithm imple-
ments a random register.

Proof. (Sketch) The interesting condition is [R3]. Choose
a writeW . We show in the full paper that the probability
that at least one of the replicas inW ’s quorum survives̀
subsequent writes is at mostk � (n�kn )`, wherek is the quo-
rum size andn is the number of servers. Since this expres-
sion goes to 0 as̀ increases without bound, the probability
thatW is read from infinitely often is 0.

To explain the advantages of the probabilistic quorum
implementation, we review two important properties of
quorum systems: availability and load. Theavailability of
a quorum system is the minimum number of servers that
must fail to cause at least one member of every quorum in
the system to fail [22]. To achieve high availability of
(n),
the smallest quorum size of the strict quorum system must
be�(n). This property is satisfied by themajority quorum
system, in which every quorum has sizebn2 c+ 1 [22].

The load of a quorum system was defined in [21] to be
the minimal access probability of the busiest server, min-
imizing over all strategies for choosing the quorums. In
[21] it was proved that the load of a strict quorum system
with n servers is at leastmax( 1k ; kn ), wherek is the size
of the smallest quorum. Malkhi et al. [19] showed this re-
sult also holds asymptotically for probabilistic quorum sys-
tems. Thus the optimal (smallest) load for both probabilistic
and strict systems is achieved when the smallest quorum has
size�(pn).

Naor and Wool [21] showed that strict quorum systems
trade off availability and load such that any strict system

with optimal load of�� 1pn� has onlyO (pn) availabil-

ity. Malkhi et al. [19] showed thatusing probabilistic quo-
rums breaks this trade-offand achieves simultaneously high

availability of�(n) and optimal load of�� 1pn�.

5. Iterative Programs Using RRs
A Framework for Iterative Algorithms First, we give
some background on̈Uresin and Dubois’ result. The class
of algorithms considered are those in which a function is
applied repeatedly to a vector to produce another vector. In
typical applications, each vector component may be com-
puted by a separate process, based on that process’ current
best estimate of the values of all the vector components —
estimates which might be out of date.Üresin and Dubois
show that if the function satisfies certain properties and if

the outdatedness of the vector entry estimates is not too ex-
treme, then this iterative procedure will eventually converge
to the fixed point of the function.

We use the following notation derived from [25].
Let m be the size of the vector to be computed. Ifx

denotes anm-vector, thenxi denotes componenti of x. We
consider a functionF fromS to S, whereS is the Cartesian
product ofm setsS1; : : : ; Sm.

Let changebe a function fromN (the natural numbers)
to 2f1;:::;mg, and letviewi, 1 � i � m, be a function fromN to N . These functions will be used to produce a se-
quence of updated vectors, as detailed below. The value of
change(k) indicates which vector components are updated
during updatek; the value ofviewi(k) indicates which ver-
sion of componenti is used in the update occurring during
updatek. We require thechangeandview functions to sat-
isfy these conditions:

[A1] viewi(k) < k, for all i andk, implying that the view
of a component must always come from the past

[A2] eachi 2 f1; : : : ;mg occurs inchange(k) for infinitely
many values ofk, implying that each component is up-
dated infinitely often

[A3] for eachi 2 f1; : : : ;mg, viewi(k) takes on a particular
value for only finitely many values ofk. This condi-
tion restricts the asynchrony by stating that a particular
computed value for a component is used subsequently
only finitely often.

Given a functionF, an initial vectori, andchangeandview
functions, define anupdate sequenceof F to be an in-
finite sequence of vectorsx(0), x(1), x(2); : : : such that
x(0) = i; and for eachk � 1 and all i, 1 � i � m,xi(k) equalsxi(k � 1) if i is not inchange(k), and equalsFi(x1(view1(k)); : : : ; xm(viewm(k))) if i is in change(k).

Üresin and Dubois show that [A1] through [A3] are
equivalent to the following condition (which will be used
in Section 6): there exists an increasing infinite sequence
of integers'(0) = 0; '(1); '(2); : : :, where updates'(K)
through'(K +1)� 1 comprisepseudocycleK, such that
[B1] each component of the vector is updated at least once
in each pseudocycle, and [B2] during each update in pseu-
docycleK � 1, the view of each componenti is a value
that was updated in pseudocycleK � 1 or later.

Roughly speaking, a pseudocycle comprises at least one
update to each vector component using information that is
not too out of date.

The functionF is called anasynchronously contracting
operator (ACO) if there is a sequence of setsD(0), D(1),D(2), : : :, whereD(0) � S, satisfying the following con-
ditions: [C1] For eachK, D(K) is the Cartesian product
of n setsD1(K); : : : ; Dn(K). [C2] There exists some inte-
gerM such thatD(K + 1) is a proper subset ofD(K) for
all K < M , andD(K) contains a particular single vector
for all K � M . This single vector is the fixed point of the
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function. [C3] If x is in D(K), thenF(x) is in D(K + 1),
for all K.

Theorem 2 [25] If F is an ACO onD(0); D(1); : : :, then
every update sequence ofF starting with i 2 D(0) con-
verges to the fixed point ofF.

Their proof shows that after all the components are up-
dated in theKth pseudocycle the computed vector subse-
quently is always contained inD(K), and thus the vector
converges to the fixed point in at mostM pseudocycles.

Using Random Registers An asynchronous iteration us-
ing random registers corresponds to an execution of the fol-
lowing algorithm (Alg. 1): Responsibility for updating them components of the vectorx is partitioned among thep
processes. For eachj, 1 � j � m, componentj of x,
denotedxj , is held in a shared variableXj , which is a ran-
dom register. EachXj is initialized to contain the value of
componentj of i, wherei is the initial vector on which the
iterative algorithm is to compute. Each processor repeat-
edly reads everyXj , applies the functionF to the data, and
updates theXj ’s for which it is responsible. This algorithm
satisfies:

Theorem 3 If F is an ACO onD(0); D(1); : : :, then in ev-
ery complete execution of Alg. 1 using random registers ini-
tialized to a vector inD(0), the computed vector eventually
converges to the fixed point ofF with probability 1.

Proof. We show that the update sequence extracted from
an execution satisfies [A1], [A2] and [A3] with probability
1. Then Theorem 2 will hold with probability 1.

Condition [A1] is satisfied in any execution thanks to
part [R2] of the definition of a random register, since the
value returned by a read is always a value that was previ-
ously written. Condition [A2], which says that each vector
component is updated infinitely often, is really a require-
ment on the application. This is satisfied in any complete
execution produced by an adversary, since the adversary
must be consistent with the application and the application
has the necessary infinite loop. Finally, condition [A3] is
satisfied with probability 1, since it is equivalent to part [R3]
of the definition of a random register.

6. Monotone Random Register
In this section, we define a variation of a random register

that satisfies two additional properties.
One property is that the values returned by the register

aremonotone, meaning that if a read reads from a certain
write, then no subsequent read by the same process reads
from an earlier write. This requirement should yield perfor-
mance improvement by avoiding updates which might be
wasted on reading more outdated values even though a more
recent value has already been read in a previous update.

6.1. Definition
A random register ismonotoneif it satisfies the follow-

ing two additional conditions for every adversary. The first
condition is that the returned values are monotone:

[R4] In every execution, if readR by processi follows readR0 by processi thenR does not read from a write that
precedes the write from whichR0 reads.

The second additional condition is needed in order to
bound the convergence time when computing an ACO us-
ing monotone random registers. LetY be a random vari-
able whose value is the number of reads by a process after
a writeW until W or a later write is read from by that pro-
cess. The intuition is thatq is the probability of “success”
for a read; the probability thatr reads are required is (at
most) the probability thatr � 1 reads fail and then ther-th
read succeeds.

[R5] There existsq, 0 < q � 1, such that for allr � 1,Pr(Y = r) � (1� q)r�1 � q.
6.2. Implementation

Here we sketch amonotone probabilistic quorum algo-
rithm: The shared register subsystem for each process keeps
track of the largest timestamp, as well as the associated
value, that it has returned so far during any read. If the
queries to a read quorum all return smaller timestamps, then
the saved value is returned, otherwise the original algorithm
is followed.

Theorem 4 The monotone probabilistic quorum algorithm
for n replicas with quorum sizek implements a monotone
random register withq = 1� �n�kk �=�nk�.
Proof. The interesting condition to show is [R5]. Choose a
particular writeW in a particular execution and a particular
processi. W or a later write will be read from byi if W
is followed by a read whose quorum overlapsW ’s quorum.
(There are other scenarios in whichi can obtain a value later
thanW , but we do not consider them in this analysis.)

The probability of a readR’s quorum not overlappingW ’s is
�n�kk �=�nk�, since there are

�nk� possible choices forR’s quorum and there are
�n�kk �

choices for quorums that
do not overlapW ’s. The probability thatY = r is at most
the probability thatr � 1 reads have quorums that do not
overlapW ’s and then ther-th read’s quorum does overlapW ’s. The latter probability is(1� q)r�1 � q, since quorums
are chosen independently.

6.3. Expected Convergence Time for an ACO
In this section we show an upper bound on the expected

number of rounds required per pseudocycle (cf. Section 5)
in the execution of an ACO, if the vector components are
implemented with a monotone random register.

A round is a minimal length (contiguous) subsequence
of an execution in which each process reads all the registers,
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applies the function, and updates its registersat leastonce.
(If the system is synchronous, meaning that message delays
and process step times are constant, then each round con-
sists ofexactlyone execution of the loop by each process.)

Theorem 5 In every execution of Alg. 1 using monotone
random registers with parameterq, the expected number of
rounds per pseudocycle is at most1q .

Proof. Consider any adversaryA and any finite executione ofA that has just completed pseudocycleh, for anyh � 0.
We will calculate how many rounds are needed on average
for pseudocycleh + 1 to complete. (Pseudocycle 0 needs
just one round since there are no values earlier than the ini-
tial values.)

Condition [B1] in the definition of pseudocycle implies
that at least one round is needed.

Condition [B2] implies that for allXj and all processesi, i must read from a write that is, or follows, the first write
toXj in pseudocycleh, before pseudocycleh+ 1 can end.
Once this read occurs, by [R4] all subsequent reads by pro-
cessi of Xj will be at least as recent.

The required number of rounds is at most the random
variableY , as defined for [R5] in Section 6.1. [R5] and
laws of probability show thatEY � 1q .

Corollary 6 LetF be an ACO that converges inM pseudo-
cycles. The expected number of rounds taken by any com-
plete execution of Alg. 1 using monotone random registers
with parameterq is at mostM=q.

We now provide an upper bound on the value of1=q for
the monotone probabilistic quorum algorithm withn repli-
cas and quorum sizek. Proposition 3.2 in [19] implies that�n�kk �=�nk� � (n�kn )k. Thus we have:

Corollary 7 For the monotone probabilistic quorum algo-
rithm, the expected number of rounds per pseudocycle is at
most 11�(n�kn )k .

6.4. Expected Message Complexity for an ACO
In this section, we compare the expected message com-

plexity per pseudocycle when executing an ACO for two
implementation strategies of the vector components. One
implementation strategy is the monotone probabilistic quo-
rum algorithm. The other strategy consists of strict quorum
systems, in which all quorums overlap. We show that al-
though the number of rounds required for convergence is
greater for the probabilistic case, there are some important
situations in which the message complexity is smaller. The
relationship betweenn, the number of servers used in the
random register implementation, andp, the number of pro-
cesses used by the ACO application, is crucial for this com-
parison. To ease the comparison, we consider synchronous

systems, in which each process performs exactly one itera-
tion of the loop in Alg. 1 per round.

Let Mprob(k) be the expected number of messages sent
per pseudocycle with the monotone probabilistic quorum
implementation, andMstr(k) be that with a strict quorum
implementation, where the parameterk indicates the size
of the quorums. Inspecting Alg. 1 shows that the total
number of messages sent per round is2pmk + 2mk. Then
[Eqn. 1]Mprob(k) = 2cnm(p + 1)k wherecn is the ex-
pected number of rounds per pseudocycle. And [Eqn. 2]Mstr(k) = 2m(p + 1)k since a strict quorum system uses
one round per pseudocycle.

We will compare the expected message complexity of
the two strategies in two extreme situations: quorum sys-
tems with high availability, and those with optimal load.
(See Section 4 for definitions.)

We first consider quorum systems with high availabil-
ity of 
(n). For the probabilistic case, we setk =�(pn), which ensures high probability of intersection be-
tween read and write quorums and also gives
(n) avail-
ability [19]. Plugging into Eqn. 1 gives [Eqn. 3]Mprob =�(2cnm(p+ 1)pn) = � (mppn) since1 < cn < 2 for
all n when the quorum size is

pn (cf. Corollary 7).
For the strict case,
(n) availability is only achieved

when every quorum has sizebn2 c+ 1. Settingk = bn2 c+1
in Eqn. 2 gives,Mstr = 2m(p+1) ��n2 �+ 1� = �(mpn)
which is asymptotically larger thanMprob for anyp.

Now we consider quorum systems that have optimal
load. For the probabilistic case, again we setk = �(pn),
which also gives optimal load. ThenMprob is the same
as Eqn. 3. There exist strict quorum systems in which
a priori sets of servers form the quorums (e.g., finite pro-
jective planes [17], a grid construction [9], etc.). Some of
these systems havek = �(pn), andMstr = �(mppn),
which yields the same message complexity as the proba-
bilistic case. However, it trades off with lower availability.

7. Simulation
We have simulated systems of non-monotone and mono-

tone random registers implemented using the algorithms
from Sections 4 and 6.2 with a specific ACO. The simula-
tion results shed some light on how much Corollary 7 over-
estimates the expected number of rounds per pseudocycle
in the monotone case, the convergence behavior in the non-
monotone case, and the difference between the synchronous
and asynchronous cases.

Our example application is an all-pairs-shortest-path
(APSP) algorithm presented in [25] and shown there to be
an ACO. The vectorx to be computed is two-dimensional,n by n, wheren is the number of vertices in the graph. Ini-
tially eachxij contains the weight of the edge from vertexi to vertexj (if it exists), is 0 if i = j, and is infinity oth-
erwise. The functionF applied tox computes a new vec-
tor whose(i; j) entry ismin1�k�nfxik + xkjg. There are
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p = n processes, and processi is responsible for updating
thei-th row vector ofx, 1 � i � n. The worst-case number
of pseudocycles required for convergence ofF is dlog2 de,
whered is the diameter of the input graph.

The sample input for our experiments is a directed graph
on 34 vertices that is a chain, with vertex 1 the sink and ver-
tex 34 the source. Each edge has weight 1. For this graph,dlog2 33e = 6 pseudocycles are required for convergence.

We simulated the execution of this APSP application
over random registers, implemented with both the modified
and original probabilistic quorum algorithm using 34 repli-
cas, over a range of quorum sizes, from 1 to 18. Once the
quorum size is at least 18, all quorums overlap, so every
read gets the value of the latest write, and the randomiza-
tion in the quorum choice has no effect. Message delays in
synchronous executions are all the same, whereas those in
asynchronous executions are exponentially distributed.

We measured the number of rounds until every process
computes the APSP of given input graph. A round finishes
when every process completes at least one iteration of Alg.
1 in which it reads the registers, applies the function, and
writes its registers. Thus in the synchronous execution, a
round consists of every process completing exactly one it-
eration of the loop, whereas in the asynchronous execution,
processes can complete various numbers of iterations of the
loop until one round is finished. At the end of each iter-
ation of the loop, the simulation compares each process’s
local copy of the row for which that process is responsible,
against the precomputed correct answer for that row. The
simulation completes when each comparison is equal. (Cf.
[6, 26] for discussions of the issues involved in detecting
termination for iterative algorithms.)

The upper bounds on the expected number of rounds un-
til convergence in the monotone case for the various quorum
sizes were calculated using the formula from Corollary 7
and plotted in Figure 2. For each of the four combinations of
monotone/non-monotone and synchronous/asynchronous,
seven runs of the simulation were performed per quorum
size and the number of rounds required for convergence was
recorded for each. The average of these seven values was
then plotted in Figure 2.

The synchronous and asynchronous executions do not
reveal much difference in the results. This is because the
structure of a round causes the differences in the message
delays, which are exponentially distributed, to average out.
Asynchronous executions sometimes terminated faster than
synchronous ones if information propagation happened to
be favorable.

The discrepancy between the calculated upper bound and
the experimental value for the monotone case is quite large
for very small quorums (e.g., 204 vs. 12.43 for synchronous
and 9.08 for asynchronous executions whenk = 1), but it
decreases as the quorum size increases. One source of the
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overestimate is in the proof of Theorem 5, where we did not
take into account the fact that a read could obtain a value
more recent than a given write without having to overlap
any of that write’s replicas.

The data indicates that the performance of the original al-
gorithm is worse than that of the monotone algorithm. (The
open squares in Figure 2 arelower boundson the actual
values — the simulations did not complete in a reasonable
amount of time.) For quorum sizes above 3, the original
algorithm’s performance is even worse than the computed
upper bound for the monotone case.

With monotone executions, notice how a small quorum
(say 4) is as good as a large one (large enough to be strict).
This is in line with the intuition behind the original proba-
bilistic quorum paper [19].

8. Discussion
We have suggested two specifications of randomized

data structures that can return wrong answers, namely two
probabilistic versions of a regular register, non-monotone
and monotone. We showed that both specifications can be
implemented with the probabilistic quorum algorithm of
[18, 19]. Furthermore, our specifications can be used to
implement a significant class of iterative algorithms [25] of
practical interest. We evaluated the performance of the al-
gorithms experimentally as well as analytically, computing
the convergence rate and the message complexity.

A number of challenging directions remain as future
work. The definition of random register given here was in-
spired by the probabilistic quorum algorithm and was help-
ful in identifying a class of applications that would work
with that implementation. It would be interesting to know
whether our definition is of more general interest, that is,
whether there are other implementations of it, or whether a
different randomized definition is more useful.

Another direction is how to design more powerful
read/write registers and other data types in our framework.
Malkhi et al. [19] mention building stronger kinds of reg-
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isters, such as multi-writer and atomic, out of the regis-
ters implemented with their quorum algorithms, by apply-
ing known register implementation algorithms. However, it
is not clear howrandomregisters can be used as building
blocks in stronger register implementations.

This paper has addressed the fault-tolerance of replica
serversfor applications running on top of quorum imple-
mentations for shared data. In contrast, the issue of fault
tolerance ofclients for asynchronously contracting opera-
tors is another challenge, and is ongoing work. We consider
the approximate agreement problem to be a good applica-
tion for such a new model.

Acknowledgments: We thank Kathy Yelick for drawing
our attention to reference [8], Nancy Amato and Marcus
Peinado for helpful conversations, and Lyn Pierce for valu-
able comments on an earlier draft.
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