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Abstract fined below). At the same time, our conditions are suffi-
ciently weak to allow certain kinds of probabilistic repli-
This paper presents a definition of a read-write register cated systems to implement random registers. These repli-
that sometimes returns out-of-date values, shows that thecated systems have very attractive properties, such as high
definition is implemented by the probabilistic quorum algo- scalability, availability and fault tolerance [19]. The ima
rithm of [19], and shows how to program with such registers problem in replicated systems is to maintain consistency
using the framework ofiresin and Dubois [25]. Conse- among the replicas. Quorum systems try to maintain con-
quently, existing iterative algorithms for an interesticigss sistency by defining collections of subsets of replicasof
of problems (including finding shortest paths, constraint rumsg and having each operation select and access one quo-
satisfaction, and transitive closure) will converge witigln rum from the collection. Traditional, @trict, quorum sys-
probability if executed in a system in which the shared data tems require all quorums in the collection to intersect-pair
is implemented with registers satisfying the new definition wise. Malkhi et al. [19] introduce the notion ofaobabilis-
Furthermore, the algorithms in this framework will inherit tic quorum system, in which pairs of quorums only need to
positive attributes concerning load and availability frahe intersect with high probability. Malkhi et al. show thatghi
underlying register implementation. A monotone version of relaxation leads to significant performance improvementsi
the new register definition is specified and implemented; it the load of the busiest replica server and the availabifity o
can provide improved expected convergence time and mesthe quorum system in the face of replica server crashes. We

sage complexity for iterative algorithms. show that our definition of random registers captures simi-
lar properties, by accommodating the probabilistic quorum
1. Introduction system as one possible implementation.

Randomization is a powerful tool in the design of al- = AS we will show, using random registers can result in
gorithms. As summarized in [20, 11], randomized algo- improved load, availability in the face of server crashesl a

rithms are often simpler and more efficient than determin- MeSSage complexity, but seems to require a special style of
istic algorithms for the same problem. Simpler algorithms Programming. Apparently there is a tradeoff between ease
have the advantages of being easier to analyze and imple®f Programming and performance, when randomized data
ment. A well known example is the factoring problem, for structur_es are us_ed. These results are some_what analogous
which simple randomized polynomial-time algorithms are t© the situation with “weak”, or *hybrid”, consistency con-
widely used, while no corresponding deterministic polyno- ditions, which can be implemented quite efficiently but re-
mial time algorithm is known. Randomized algorithms have 9uire the application programs to be data-race-free [1, 4].

a failure probability, which can typically be made arbitrar ~ To the best of our knowledge, little existing work has

ily small and which manifests itself either in the form of focused on defining the semantics of distributed data struc-

incorrect results (Monte Carlo algorithms) or in the form of tures that sometimes return out-of-date values, or ondryin
unbounded running time (Las Vegas algorithms). to characterize classes of applications that can tolevate s
In this paper, we will define a shared memory framework data structures.

for distributed algorithms, in which the implementation of ~ In this paper, we propose a formal definition of a random
the shared memory can be randomized. In particular, readead/write register. The consistency condition providgd b
operations can return out-of-date values. We define newour definition is a probabilistic variation on the concept of
conditions, which constrain this error probability, subatt ~ regularity from Lamport's paper [16].

an interesting class of popular algorithms will work cor- We show that our definition of a random register can
rectly when implemented over ouandom registergde- be implemented by the probabilistic quorum algorithm of



[19, 18], which has the advantages mentioned above, thathey implement must be given, together with techniques for
the load on the busiest replica server is limited and thd-avai programming effectively with them.
ability in the face of server crashes is high. Shavit and Zemach have implemented novel randomized
Next we show how registers satisfying our definition can synchronization mechanisms called combining funnels [24]
be used to program iterative algorithms in the framework and diffracting trees [23] over simpler shared objects. In
presented byJresin and Dubois [25]. The implication is these algorithms, the effect of randomization is on the per-
that we can use existing iterative algorithms for a signif- formance; wrong answers are never returned.
icant class of problems (including finding shortest paths, = PRAM simulations using randomized data structures are
constraint satisfaction, and transitive closure) in aeysin shown in [10] and referenced in [19].
which the shared data is implemented with registers satis- In this paper, we show that one class of iterative conver-
fying our condition, and be assured that the algorithms will gent algorithms can handle infrequent out-of-date values.
converge with high probability. Furthermore, algorithms i  The first analysis of the convergence of iterative functions
the framework will inherit any positive attributes concern when the input data can be out of date was by Chazan and
ing load and availability from the underlying register irepl ~ Miranker [8]. Subsequently a number of authors refined
mentation. this work (cf. Chapter 7 of [6] for an overviewdlresin and
Then we show how a reasonable, and easily imple- Dubois [25] give a general necessary and sufficient condi-
mented, modification of our original definition can be an- tion on the function for convergence. Essentially the same
alyzed to prove expected convergence time in the iterativeconvergence theorem is presented in Chapter 6 of [6]. This
framework. Simulation results show that there is a signif- class of functions includes solutions to many practical ap-
icant benefit from the modified definition in that iterative plications, including solving systems of linear equations
algorithms converge faster. finding shortest paths, and network flow [6]. The conver-
Finally, we prove that the use of random registers can gence rates of iterative algorithms have been studied by,
lead to a significant reduction in message complexity com-e.g., [6, 26]; the emphasis in these papers is on comparing
pared to strict systems in at least one important situation. the rate with out-of-date data to the rate with current data,
2. Related Work under various scheduling and timing assumptions.

A number of consistency conditions for shared memory 3. Specifying a Random Register (RR)
have been proposed over the years, including safety, regu- \we are interested in randomized distributed algorithms
larity and atomicity [15, 16], sequential consistency [14] that implement a shared read/write register. Our first task
linearizability [12], causal consistency [3] and hybricheo s to specify the behavior of such a register. Although the
sistency [S]. These definitions have all been deterministic p4 ticular implementation to be discussed in this paper is a
with little or no regard to possible errors. message-passing one, we would like $pecificatiorto be

Afek et al. [2] and Jayanti et al. [13] have studied a jmplementation-independent, so that it could apply to any
shared memory model in which a fixed set of the shared ob-yinq of implementation.

jects might return incorrect values, while the others never
do. This model differs from the one we are proposing,
whereeveryobject has some (small) probability of return-
ing an incorrect value.

If the type of error caused by a randomized implemen-
tation is that there is some (small) probability of not termi
nating instead of producing a wrong answer, the difficulty
in specifying the shared object is lessened, since any salue
returned will satisfy the deterministic specification. Bxa

ples of this situation include [24, 23, 10], discussed below registers. . .
Randomized implementations have been proposed for A register allows sequences of invocations and responses

several shared data structures in various architectuisegea  Uhat satisfy certain conditions, including the following)
now discuss. the first item in the sequence is an invocation, (2) each in-

Malkhi et al. [19, 18] have proposed a probabilistic quo- vocation has a matching response, and (3) no process has

rum algorithm to implement a read-write variable over a MOre than one pending operation at a time. _
message passing system. Probabilistic quorums seem likea !N @ddition, the values returned by the read operations
useful distributed building block, thanks to their good-per must_sat|sfy some kind qfon3|sten<_:y condition _E_Selow
formance (analyzed in [19] and reviewed in Section 6.4). we will present a randomized consistency condition.
However, to make probabilistic quorums usable by pro- Processes and Their Steps A processis a (possibly in-
grammers, a more complete semantics of the register whicHinite) state machine which has access to a random number

A Read/Write Register A read/writeregister X shared

by several processes supports two operations, read and
write.  Each operation has aninvocation and are-
sponse Read(X) is the invocation by procesf a read,
Write; (X, v) is the invocation by of a write of the value,
Return(X,v) is the response tés read invocation which
returns the value, and Ack(X) is the response tis write
invocation. We will focus ormulti-reader, single-writer



generator. A process models the software at each node that | R ‘
implements the random register layer; it communicates with ! !
the shared memory application program above it and with L L L L L ‘
some interprocess communication system below it. The | Lo Lo . Lo Lo \
process has a distinguished state calledrifiil state. W; (@ W,(b) Wz(c) W,(b) Ws() Ws(c)

We assume a system consisting of a collectiop pfo-
cesses.

There is some set dfiggers that can take place in the
system. Triggers consist of operation invocations as well
as system-dependent events (for example, the receipt of a__ . o ) .
message in a message-passing system). The occurrence _8}’1; if it returnsb_, t_hen |t_ is defined to read f{ofW4; and if
a trigger at a process causes the process to tatgpaDur- It réturnsc, then it is defined to read frofv.~
ing the step, the process applies its transition functidtsto A system is said to implementrandom register if, for
current state, the particular trigger, and a random number€Very adversang,
to generate a new state and soomugputs. The outputs can  [R1] every operation invocation in every complete execu-
include (at most) one operation response as well as some  tion (of the adversary) has a matching response,
system-dependent events (for example, message sends i@y] every read in every complete execution (of the adver-
message-passing system). A step is completely described  sary) reads from some write, and
by the current state, the trigger, the random number, the ne
state, and the set of outputs.

Figure 1. Diagram for definition of reads from.

Vﬁ?(ﬂ] for every finite execution (of the adversary) such that

] ) A(e) is a write invocation, the probability that this
Adversaries and Executions To capture the nondeter- write is read from infinitely often is 0, if an infinite

minism due to the uncertainties in communication delays number of writes are performed in the extension.
and pattern of operation invocations, we formally define an
adversary to be a partial funcnon.from the set Pf aII. € inition as the probabilistic condition in [R3] must hold for
guences of steps to the set of triggers. That is, given aeverya dversary andverywrite

sequence of steps that have occurred so far, the adversary '
determines what trigger will happen next. Note that the ad- 4, |mp|ementing a Random Register
versarycannotinfluence what random number is received
in the next step, only the trigger. LetaND be the set of
all p-tuples of the form(R!, ..., R?) where eachR’ is an
infinite sequence of integers{, ..., D}. D indicates the
range of the random number#’ describes the sequence
of random numbers available to procéss an execution
— R;i is the random number available at stepCall each

Notice that this is a kind of “worst-case” probabilistic eef

In this section, we show that the probabilistic quorum al-
gorithm presented by Malkhi et al. [19, 18] implements a
random register. Their algorithm works in a reliable, asyn-
chronous message passing environment.

The following specializations are needed to the general
model given in Section 3: Triggers include receiving a mes-

. sage from a process. Outputs include sending a message to
element inRAND arandom tuple. . . i
a process. Constraints on the adversary include: every mes-

Given an adversaryd and a random tupleR = . I ved. and dcei
(R! RP), anexecutionexe¢A, R) can be defined to sage sentis eventually received, and every message réceive
Y ' ’ was previously sent but not yet delivered.

be a sequence of steps in the standard way (the full paper The algorithm uses the notion ofuorum, which is

has a detailed description). . )
o subset of the set of all replicas, of sizgthe quorum
The adversary must respect the applications pattern of . S . : .
L . - sizg. We have simplified the read/write register algorithm
operation invocations and the characteristics of the commu . :
Fo ) from [18] to assume only one writer and absence of fail-
nication medium. . . : :
; . e oo . ures. The shared register is replicated aveervers. This
An executione is completeif it is either infinite or, in . .
R, . ' . replicated server system is used bpyprocesses through
the case itis finited(e) is undefined. This means that there . . ;
. : T the shared register subsystem associated with each process
is nothing further to do — the application is through mak- : : )
. . .. Each server keeps a local replica of the register to be im-
ing calls on the shared variables and no further action is . : . . .
. . I plemented. A timestamp is associated with the replica. To
required by the interprocess communication layer. . .
perform a read, the shared register subsystem queries a quo-
A Random Register Given an execution, a read opera-  rym and returns the value with the largest timestamp result-
tion R in e is said toread from write OperatlonW in e if ing from the query. To perform a Wnte’ the shared reg|ster
(1) W begins before? ends, (2) the value returned Iyis
1This definition might not capture the “real” write that is defrom

the same as that written By, and (3)IV is the latest write . . . . e : .
L. . " . in a particular implementation, which might occur earlietfowever, this
satisfying the previous two conditions. Consider the exam- gefinition is sufficient for proving that eventually each taritops being

plein Figure 1. IfR returnsa, then it is defined to read from  read from, which is what is required in this paper.




subsystem for the writer causes the replicas in a quorum tothe outdatedness of the vector entry estimates is not too ex-
be updated with the new value and its new timestamp. Eachtreme, then this iterative procedure will eventually cagee
guorum is chosen randomly with uniform distribution from to the fixed point of the function.
the set of all possible quorums (&Hsubsets of the set of all We use the following notation derived from [25].
replicas) [19]. Let m be the size of the vector to be computed.xIf
denotes am-vector, thenr; denotes componenbf x. We

Theorem 1 The probabilistic quorum algorithm imple-  consjder a functiof from S to S, wheresS is the Cartesian
ments a random register. product ofm setsSy, ..., Sp.

Let changebe a function fromV (the natural numbers)
Proof. (Sketch) The interesting condition is [R3]. Choose to 2{1:-+™} and letview;, 1 < i < m, be a function from
a write /. We show in the full paper that the probability N to N. These functions will be used to produce a se-
that at least one of the replicas W’'s quorum survived quence of updated vectors, as detailed below. The value of
subsequent writes is at mdst (=£)¢, wherek is the quo-  changék) indicates which vector components are updated
rum size and is the number of servers. Since this expres- during update; the value ofview; (k) indicates which ver-
sion goes to 0 aéincreases without bound, the probability sion of component is used in the update occurring during
that¥ is read from infinitely often is 0. u updatek. We require thehangeandviewfunctions to sat-
isfy these conditions:
[A1] view,(k) < k, for all i andk, implying that the view

of a component must always come from the past

To explain the advantages of the probabilistic quorum
implementation, we review two important properties of
guorum systems: availability and load. Taeailability of i . A
a quorum system is the minimum number of servers thatA2] €achi € {1,...,m} occurs inchanggk) for infinitely
must fail to cause at least one member of every quorum in ~ Many values ok, implying that each componentis up-

the system to fail [22]. To achieve high availability@f), dated infinitely often

the smallest quorum size of the strict quorum system mustA3] foreachi € {1,...,m}, view;(k) takes on a particular

be©®(n). This property is satisfied by thaajority quorum value for only finitely many values of. This condi-

system, in which every quorum has sizg| + 1 [22]. tion restricts the asynchrony by stating that a particular
Theload of a quorum system was defined in [21] to be computed value for a componentis used subsequently

the minimal access probability of the busiest server, min-  only finitely often.

imizing over all strategies for choosing the quorums. In Given a functiorF, an initial vectori, andchangeandview
[21] it was proved that the load of a strict quorum system functions, define ampdate sequenceof F to be an in-
with n servers is at leashax(+, %), wherek is the size finite sequence of vectors(0), x(1), x(2),... such that

of the smallest quorum. Malkhi et al. [19] showed this re- x(0) = i; and for eachk > 1 and alli, 1 < i < m,

sult also holds asymptotically for probabilistic quorunssy  x;(k) equalse;(k — 1) if 7 is not inchanggk), and equals

tems. Thus the optimal (smallest) load for both probalilist ~ Fi(z1 (view: (k)), . .., &m (viewn, (k))) if i is inchangék).

and strict systems is achieved when the smallest quorumhas Uresin and Dubois show that [Al] through [A3] are

size®(y/n). equivalent to the following condition (which will be used
Naor and Wool [21] showed that strict quorum systems in Section 6): there exists an increasing infinite sequence

trade off availability and load such that any strict system of integersy(0) = 0,¢(1), ¢(2),..., where updatep(K)

with optimal load of® (\Lﬁ) has onlyO (v/n) availabil-  throughe(K +1) — 1 comprisepseudocyclek’, such that

. . " . A [B1] each component of the vector is updated at least once

ity. Malkhi et al. [19] showed thatsing probabilistic quo- , .

rums breaks this trade-ofind achieves simultaneously high in each pseudocycle, and [B2] during each update in pseu-
N ) docycleKX > 1, the view of each components a value

availability of ©(n) and optimal load 0® (ﬁ) that was updated in pseudocyde— 1 or later.

. . Roughly speaking, a pseudocycle comprises at least one

>. lterative Programs Using RRs update to each vector component using information that is

A Framework for Iterative Algorithms  First, we give not too out of date.

some background odresin and Dubois’ result. The class The functionF is called arasynchronously contracting

of algorithms considered are those in which a function is operator (ACO) if there is a sequence of sdiX0), D(1),

applied repeatedly to a vector to produce another vector. InD(2), ..., whereD(0) C S, satisfying the following con-

typical applications, each vector component may be com-ditions: [C1] For eachk, D(K) is the Cartesian product

puted by a separate process, based on that process’ curreof ». setsD; (K), ..., D, (K). [C2] There exists some inte-

best estimate of the values of all the vector components —ger M such thatD(K + 1) is a proper subset dP(K) for

estimates which might be out of datélresin and Dubois  all K < M, andD(K) contains a particular single vector

show that if the function satisfies certain properties and if for all K > M. This single vector is the fixed point of the



function. [C3] Ifx is in D(K), thenF(x) is in D(K + 1), 6.1. Definition

forall K. A random register isnonotoneif it satisfies the follow-
Theorem 2 [25] If F is an ACO onD(0), D(1),. .., then ing two additional conditions for every adversary. The first
every update sequence Bfstarting withi € D(0) con- condition is that the returned values are monotone:
verges to the fixed point & [R4] In every execution, if read by process follows read
R' by process thenR does not read from a write that
Their proof shows that after all the components are up- precedes the write from which’ reads.

dated in theKth pseudocycle the computed vector subse-
quently is always contained if?(K), and thus the vector
converges to the fixed point in at magt pseudocycles.

The second additional condition is needed in order to

bound the convergence time when computing an ACO us-

ing monotone random registers. L¥tbe a random vari-

Using Random Registers An asynchronous iteration us- able whose value is the number of reads by a process after

ing random registers corresponds to an execution of the fol-a write W until 1V or a later write is read from by that pro-

lowing algorithm @lg. 1): Responsibility for updating the ~ cess. The intuition is that is the probability of “success”

m components of the vectoris partitioned among thg for a read; the probability that reads are required is (at

processes. For each 1 < j < m, componeny of X, most) the probability that — 1 reads fail and then theth

denotedr;, is held in a shared variablg;, whichis aran-  read succeeds.

dom register. EaclX; is initialized to contain the value of [R5] There exists;, 0 < ¢ < 1, such that for al- > 1,

componeny of i, wherei is the initial vector on which the Pr(Y =r)<(1—¢q)"!-q.

iterative algorithm is to compute. Each processor repeat- )

edly reads eveny ;, applies the functiod” to the data, and ~ 6.2 Implementation

updates theX;’s for which it is responsible. This algorithm Here we sketch aonotone probabilistic quorum algo-

satisfies: rithm: The shared register subsystem for each process keeps
) _ track of the largest timestamp, as well as the associated

Theorem 3 If Fis an ACO onD(0), D(1),..., thenin ev-  yqye, that it has returned so far during any read. If the

ery complete execution of Alg. 1 using random registers ini- queries to a read quorum all return smaller timestamps, then

tialized to a vector inD(0), the computed vector eventually  the saved value is returned, otherwise the original alwrit
converges to the fixed point Bfwith probability 1. is followed.

Theorem 4 The monotone probabilistic quorum algorithm

Proof. We show that the update sequence extracted fromg, ., raplicas with quorum sizé implements a monotone
an execution satlsf|es_ [A1], [A?] and [ASJ wlth probability random register withy = 1 — (n;k) /(2)
1. Then Theorem 2 will hold with probability 1.

Condition [Al] is satisfied in any execution thanks to Proof. The interesting condition to show is [R5]. Choose a
part [R2] of the definition of a random register, since the particular writelV in a particular execution and a particular
value returned by a read is always a value that was previ-process. W or a later write will be read from by if W
ously written. Condition [A2], which says that each vector is followed by a read whose quorum overldpss quorum.
component is updated infinitely often, is really a require- (There are other scenarios in whictan obtain a value later
ment on the application. This is satisfied in any complete thanWW, but we do not consider them in this analysis.)
execution produced by an adversary, since the adversary The probability of a read?’s quorum not overlapping
must be consistent with the application and the application W’s is (" *)/(}), since there ar¢) possible choices for

has the necessary infinite loop. Finally, condition [A3] is R’s quorum and there ar@;k) choices for quorums that
satisfied with probability 1, since it is equivalent to p&t8] do not overlagV’s. The probability that” = r is at most

of the definition of a random register. B the probability that- — 1 reads have quorums that do not
overlapW’s and then the--th read’s quorum does overlap

6. Monotone Random Regjister W's. The latter probability i§1 — )"~ - ¢, since quorums
are chosen independently. [ ]

In this section, we define a variation of a random register

that satisfies two .additional properties. _ 6.3. Expected Convergence Time for an ACO
One property is that the values returned by the register In this section we show an upper bound on the expected

argmonotonemeanlng that if a read reads from a certain umber of rounds required per pseudocycle (cf. Section 5)
write, then no subsequent read by the same process rea R the execution of an ACO, if the vector components are
from an earlier write. This requirement should yield perfor . : ' .

. A ’ ) implemented with a monotone random register.
mance improvement by avoiding updates which might be A round is a minimal length (contiguous) subsequence

wasted onreading more outdated va]ues even thougha MOTSt an execution in which each process reads all the regjsters
recent value has already been read in a previous update.

5



applies the function, and updates its registdrieastonce.

systems, in which each process performs exactly one itera-

(If the system is synchronous, meaning that message delaytion of the loop in Alg. 1 per round.
and process step times are constant, then each round con- Let M., (k) be the expected number of messages sent

sists ofexactlyone execution of the loop by each process.)

Theorem 5 In every execution of Alg. 1 using monotone
random registers with parameter the expected number of
rounds per pseudocycle is at m%st

Proof. Consider any adversary and any finite execution
e of A that has just completed pseudocyicléor anyh > 0.
We will calculate how many rounds are needed on averag
for pseudocyclé: + 1 to complete. (Pseudocycle 0 needs
just one round since there are no values earlier than the ini
tial values.)

Condition [B1] in the definition of pseudocycle implies
that at least one round is needed.

Condition [B2] implies that for allX; and all processes
i, t must read from a write that is, or follows, the first write
to X; in pseudocyclé, before pseudocycle + 1 can end.
Once this read occurs, by [R4] all subsequent reads by pro
cess; of X; will be at least as recent.

The required number of rounds is at most the random
variableY, as defined for [R5] in Section 6.1. [R5] and
laws of probability show thal’y” < 7.

Corollary 6 LetF be an ACO that converges M pseudo-

cycles. The expected number of rounds taken by any com-

€

per pseudocycle with the monotone probabilistic quorum
implementation, and/,. (k) be that with a strict quorum
implementation, where the parameteindicates the size
of the quorums. Inspecting Alg. 1 shows that the total
number of messages sent per roungisik + 2mk. Then
[Ean. 1] Mpres(k) = 2¢p,m(p + 1)k wherec, is the ex-
pected number of rounds per pseudocycle. And [Egn. 2]
M- (k) = 2m(p + 1)k since a strict quorum system uses
one round per pseudocycle.

We will compare the expected message complexity of
the two strategies in two extreme situations: quorum sys-
tems with high availability, and those with optimal load.
(See Section 4 for definitions.)

We first consider quorum systems with high availabil-
ity of Q(rn). For the probabilistic case, we sét =
©(y/n), which ensures high probability of intersection be-
tween read and write quorums and also gi(¥s) avail-
ability [19]. Plugging into Eqn. 1 gives [Eqn. 3,0, =
O (2¢,m(p + 1)y/n) = © (mpy/n) sincel < ¢, < 2 for
all n when the quorum size ig'n (cf. Corollary 7).

For the strict casef}(n) availability is only achieved
when every quorum has siz¢ | + 1. Settingk = [ 4] + 1
in Eqn. 2 givesMy,, = 2m(p+1) (| 2] +1) = © (mpn)
which is asymptotically larger thakl/,,,..,, for anyp.

Now we consider quorum systems that have optimal

plete execution of Alg. 1 using monotone random registersijoad. For the probabilistic case, again we ket 0(y/n),

with parameteg is at mosti//q.

We now provide an upper bound on the valud ¢§ for
the monotone probabilistic quorum algorithm withrepli-
cas and quorum size Proposition 3.2 in [19] implies that
(") /(1) < (%), Thus we have:

k k
Corollary 7 For the monotone probabilistic quorum algo-

which also gives optimal load. The,,,, is the same

as Egn. 3. There exist strict quorum systems in which
a priori sets of servers form the quorums (e.g., finite pro-
jective planes [17], a grid construction [9], etc.). Some of
these systems have= ©(y/n), and My, = O(mp/n),
which yields the same message complexity as the proba-
bilistic case. However, it trades off with lower availabyjli

rithm, the expected number of rounds per pseudocycle is at7. Simulation

1
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6.4. Expected Message Complexity for an ACO

We have simulated systems of non-monotone and mono-
tone random registers implemented using the algorithms
from Sections 4 and 6.2 with a specific ACO. The simula-

In this section, we compare the expected message comtion results shed some light on how much Corollary 7 over-

plexity per pseudocycle when executing an ACO for two estimates the expected number of rounds per pseudocycle
implementation strategies of the vector components. Onein the monotone case, the convergence behavior in the non-
implementation strategy is the monotone probabilisticcquo monotone case, and the difference between the synchronous
rum algorithm. The other strategy consists of strict quorum and asynchronous cases.

systems, in which all quorums overlap. We show that al- Our example application is an all-pairs-shortest-path
though the number of rounds required for convergence is(APSP) algorithm presented in [25] and shown there to be
greater for the probabilistic case, there are some impbrtanan ACO. The vectoxk to be computed is two-dimensional,
situations in which the message complexity is smaller. The n by n, wheren is the number of vertices in the graph. Ini-
relationship between, the number of servers used in the tially eachz;; contains the weight of the edge from vertex
random register implementation, apdthe number of pro- i to vertex;j (if it exists), is 0 ifi = j, and is infinity oth-
cesses used by the ACO application, is crucial for this com- erwise. The functiorr applied tox computes a new vec-
parison. To ease the comparison, we consider synchronousor whose(, j) entry ismin; <x<n{ix + x;}. There are



p = n processes, and process responsible for updating 256

thei-th row vector ofx, 1 < i < n. The worst-case number Upper bound ?mnomngpoor}g“;;;gﬁggggg T
of pseudocycles required for convergencd-a$ [log, d], @ 128 | Non-monotone SXEEQL%TS;‘S """ =
whered is the diameter of the input graph. ; 6a | Monotone asynchronous ---=--- |
The sample input for our experiments is a directed graph 2 Monotane synchronaus ---e--
on 34 vertices that is a chain, with vertex 1 the sink and ver- 8§ 32t
tex 34 the source. Each edge has weight 1. For this graph, £ .
[log, 33] = 6 pseudocycles are required for convergence. g 85
We simulated the execution of this APSP application @ 8l .
over random registers, implemented with both the modified ey

and original probabilistic quorum algorithm using 34 repli 012345678 910111213141516171819
cas, over a range of quorum sizes, from 1 to 18. Once the Quorum Size

guorum size is at least 18, all quorums overlap, so every

read gets the value of the latest write, and the randomiza- Figure 2. Quorum Size vs. Rounds

tion in the quorum choice has no effect. Message delays in

synchronous executions are all the same, whereas those igyerestimate is in the proof of Theorem 5, where we did not
asynchronous executions are exponentially distributed.  take into account the fact that a read could obtain a value
We measured the number of rounds until every processmore recent than a given write without having to overlap
computes the APSP of given input graph. A round finishes any of that write’s replicas.
when every process completes at least one iteration of Alg.  The data indicates that the performance of the original al-
1 in which it reads the registers, applies the function, and gorithm is worse than that of the monotone algorithm. (The
writes its registers. Thus in the synchronous execution, appen squares in Figure 2 al@ver boundson the actual
round consists of every process completing exactly one it-yalyes — the simulations did not complete in a reasonable
eration of the loop, whereas in the asynchronous executiongmount of time.) For quorum sizes above 3, the original
processes can complete various numbers of iterations of theyigorithm’s performance is even worse than the computed
loop until one round is finished. At the end of each iter- upper bound for the monotone case.
ation of the loop, the simulation compares each process’s  \wjth monotone executions, notice how a small quorum

local copy of the row for which that process is responsible, (say 4) is as good as a large one (large enough to be strict).
against the precomputed correct answer for that row. TheThjs is in line with the intuition behind the original proba-
simulation completes when each comparison is equal. (Cf.pjjistic quorum paper [19].

[6, 26] for discussions of the issues involved in detecting . .

termination for iterative algorithms.) 8. Discussion

The upper bounds on the expected number of rounds un-  We have suggested two specifications of randomized
til convergence in the monotone case for the various quorumgata structures that can return wrong answers, namely two
sizes were calculated using the formula from Corollary 7 probabilistic versions of a regular register, non-moneton
and plotted in Figure 2. For each of the four combinations of and monotone. We showed that both specifications can be
monotone/non-monotone and synchronous/asynchronousmplemented with the probabilistic quorum algorithm of
seven runs of the simulation were performed per quorum([18, 19]. Furthermore, our specifications can be used to
size and the number of rounds required for convergence wasmplement a significant class of iterative algorithms [26] o
recorded for each. The average of these seven values wagractical interest. We evaluated the performance of the al-
then plotted in Figure 2. gorithms experimentally as well as analytically, compgtin

The synchronous and asynchronous executions do nothe convergence rate and the message complexity.
reveal much difference in the results. This is because the A number of challenging directions remain as future
structure of a round causes the differences in the messagevork. The definition of random register given here was in-
delays, which are exponentially distributed, to average ou spired by the probabilistic quorum algorithm and was help-
Asynchronous executions sometimes terminated faster tharful in identifying a class of applications that would work
synchronous ones if information propagation happened towith that implementation. It would be interesting to know
be favorable. whether our definition is of more general interest, that is,

The discrepancy between the calculated upper bound andvhether there are other implementations of it, or whether a
the experimental value for the monotone case is quite largedifferent randomized definition is more useful.
for very small quorums (e.g., 204 vs. 12.43 for synchronous  Another direction is how to design more powerful
and 9.08 for asynchronous executions wiegs 1), but it read/write registers and other data types in our framework.
decreases as the quorum size increases. One source of thdalkhi et al. [19] mention building stronger kinds of reg-



isters, such as multi-writer and atomic, out of the regis-
ters implemented with their quorum algorithms, by apply-

ing known register implementation algorithms. However, it [11]
is not clear howandomregisters can be used as building
blocks in stronger register implementations.

This paper has addressed the fault-tolerance of replica
serversfor applications running on top of quorum imple-
mentations for shared data. In contrast, the issue of fault
tolerance ofclientsfor asynchronously contracting opera-
tors is another challenge, and is ongoing work. We consider
the approximate agreement problem to be a good applical13
tion for such a new model.

Acknowledgments: We thank Kathy Yelick for drawing
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