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Abstract

An important property in sensor networks is the monitoring of temporal changes of hazardous

situations such as forest fires. Rescue groups need to be aware of dynamic changes that affect their

rescue efforts. In this paper, we discuss an infrastructure for sensor networks that provides a good

abstraction of geometric and topological features of a dynamically changing sensing environment.

This infrastructure enables efficient path planning and navigation using localized algorithms. We

propose a dynamic medial axis infrastructure that represents shapes and changes of shapes in a

geometric space. We develop distributed algorithms for maintaining this infrastructure as changes

occur. Dynamic medial axis allows rescue teams to find a short path to safety in a changing

environment. We show that our dynamic medial axis algorithms have low message complexities

and provide good approximations to the true medial axis.
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1 Overview

We propose a geometric abstraction of sensor networks that captures the changes of the network

topologies and provides an efficient path planning scheme based on the medial axis [2]. Defined as

the set of points with at least two closest neighbors on the boundaries of the shape, the medial axis

is a skeleton of a region that preserves both of its geometric and topological features. Therefore it

has been employed in areas such as robot motion planning and surface reconstruction [1], to explore

properties of shapes. Recently there has been a proposal [3] of using medial axis as an abstraction of

communication network of a sensor field. We show that the medial axis can be dynamically constructed

and efficiently modified to reflect the changing network topology, and can be compactly represented

by a graph of a size proportional to the number of geometric features. Then we explore an efficient

motion planning algorithm that can reflect the temporal properties of the network topology.

Our scheme uses medial axis as a compact abstraction of the sensor field topology, as done in MAP.

The difference between our work and MAP includes the capture of dynamic changes of networks. MAP

works only in static network topologies and takes no consideration of topological changes. Our scheme

is designed to handle topological changes of the sensor field and their effects on path planning.

Our construction algorithm of the initial medial axis is similar to MAP. First, the boundary of

sensor field is discovered by selecting a set of sensors on the boundary of the field and connecting

nearby sensors. The boundary sensors start the broadcasting of messages to initiate the construction.

The messages are either re-broadcast by neighboring sensors or dropped by the sensors that receive

multiple identical messages. A sensor that receives messages from more than one sources becomes a

medial axis node, which is defined as a node with at least two closest sensor nodes on the boundary.

A medial axis node confirms its routes to the boundary by sending messages to the nodes from which

it received messages. The medial axis is composed of all the medial axis nodes, represented by the

thicker dotted lines in Figure 1. The thinner dotted lines in Figure 1 represent paths from a medial

axis node to the boundary of the sensor field.

As the network topology changes continuously, the medial axis is modified to capture the emer-
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Figure 1: Medial axis, medial axis nodes, and

their routes to the boundary

a b

Figure 2: A medial axis graph

gence of new features, the change of the shape of existing features, the merging of multiple features,

and the disappearance of features. Messages are initiated from the nodes on the changed boundary

of topological features to the medial axis nodes, which then adjust the position of medial axis by

transferring the duty of the medial axis node to some other sensors accordingly. All the adjustments

to the medial axis are performed using only local knowledge with limited global information and are

communicated through a small portion of sensor nodes.

The medial axis is represented by a medial axis graph (MAG); a graph of a size proportional to

the number of geometric features. This MAG is compact and is known to every medial axis sensors.

Figure 2 shows the MAG of Figure 1, which has two vertices, one edge, and one self-loop. The graph

is dynamically updated along with medial axis adjustments. For each medial axis node u, we define a

chord as the shortest path from u to one of its closest sensor nodes on the boundary. The sensors on

the chord keep record of its distances to the corresponding medial axis node and boundary node. The

medial axis nodes together with the chords provide a backbone communication and route system.

The goal of our path planning scheme is to find an approximate shortest path that avoids the

changing obstacle regions. Our scheme supports localized routing with only the knowledge of the

source and destination locations. It runs in two phases, first a global planning phase on the MAG, and

then the execution of routing on each medial axis node. In the first phase an approximate shortest

safe path from source to destination is found. The actual routing is taken place as each sensor node

guides the mobile agent on a safe and short path. The maintenance of the medial axis infrastructure
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and the path planning and execution are all performed in a localized manner, therefore our schemes

are scalable.

Our contributions. First, our dynamic medial axis based infrastructure captures the continuous

geometric and topological changes of a sensor field. Second, the medial axis can be represented by

a graph of a size proportional to the complexity of geometric and topological features. Third, the

construction and dynamic adjustment of the medial axis is lightweight. Fourth, our medial axis based

path planning algorithm is efficient, localized, and scalable.

2 Properties of Dynamic Medial Axis

Let M denote a bounded open set in R
2 and ∂M the boundary curve of M .

Property 1: For any spatial variation of the boundary curve of M , there is a temporal representation

of the variation. For any point p of ∂M , at time ti, the location is ri, with the change δr being ri−ri−1.

Lemma 2.1. No two chords intersect except at the medial axis points.

Proof. Suppose two chords b and c intersect at point z that is not on medial axis. For any point that

is not on medial axis, it has only one closest point on ∂M . But z is on two chords b and c, therefore

z has two closest points on ∂M , a contradiction.

Lemma 2.2. A change to the boundary results in a change to the medial axis that remains a continuous

line segment.

Proof. To prove this, we show that for any changed medial axis point a′
1
, we can find another changed

medial axis point a′
2

within distance εa for any εa > 0. Suppose two points b1 and b2 on ∂M . The

distance d(b1, b2) = ε. Suppose b1 moves distance δ1 to b′
1
, and b2 moves distance δ2 to b′

2
. Let δ be

the difference between δ1 and δ2 (δ = d(δ1, δ2)). Let d(b′
1
, b′

2
) = εa, then εa ≥

√
ε2 + δ2.

Let b′
1

be the tangent point of maximal disk centered at a′
1
. Suppose, for any point b′ on the new

boundary between b′
1

and b′
2
, the corresponding medial axis point a′ is not within distance εa to a′

1
.
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Figure 3: Illustration for the proof of Lemma 2.2

Suppose point c1 on ∂M is another tangent point of maximal disk centered at a′
1
, and point c′ on ∂M

is another tangent point of maximal disk centered at a′. Then for any point c on ∂M , inbetween c1

and c′, let a be the center of the maximal disk tangent at c. If a is not inbetween a′
1

and a′, then chord

ac intersects chord a′
1
c1 or a′c′. This is a contradiction to Lemma 2.1. Therefore a must be inbetween

a′
1

and a′. Then since the other tangent point of maximal disk centered at a must be outside of b′
1

and

b′
2
, the chord through the tangent point and a causes an intersection with a′

1
b′
1

or a′b′, a contradiction

to Lemma 2.1. Therefore, we conclude that there must be some medial axis point within distance εa

from a′
1
. This is illustrated in Figure 3.

Lemma 2.2 provides the proof for the following theorem.

Theorem 2.3. The property of the (static) medial axis holds true in the dynamic medial axis.
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