
Parallel Hashing Algorithms on BSP and QSM Models

Hyunyoung Lee
Department of Computer Science, University of Denver

Denver, CO 80208, U.S.A.
hlee@cs.du.edu

Abstract

We study two parallel computing models – the Bulk Syn-
chronous Parallel (BSP) and the Queued Shared Memory
(QSM) – as alternatives to the PRAM model to provide more
accurate performance predictions and analyses, and com-
pares the two models in detail. As a case study, we con-
sider a simple hashing problem, design the two versions –
the message passing version and the shared memory ver-
sion – of the algorithm, and compare their run time analyt-
ically. The message passing version of the algorithm is im-
plemented and the experiments are performed to display the
accuracy and the limitations of the predicted performance
analysis.

1. Introduction

In this paper, we study two parallel machine models
which have been proposed as alternatives to the PRAM:
the BSP and the QSM. The PRAM – the most influential
theoretical parallel machine model – allows algorithm de-
signers to concentrate on the inherent parallelism of their
algorithms without having to take machine details into ac-
count (e.g. [13]). However, the PRAM has received much
criticism because the run time analysis in the PRAM model
is often not a good indicator of an algorithm’s run time on
any existing parallel machine. This fact has led to the inven-
tion of a large number of alternative models. Their aim is to
allow accurate performance predictions for existing parallel
machines, while still offering a fairly abstract machine view
to algorithm designers.

In general, parallel machine models have two purposes.
Firstly, they should provide a simple and abstract basis for
the design of parallel algorithms. In particular, they should
free the algorithm designer from the need to take a large
set of machine details into consideration, and enable the de-
sign of algorithms which work on a broad class of parallel
machines.

A second goal is to allow a realistic analysis of the per-

formance of the designed algorithms. The term ‘realistic’
refers to the performance on existing or, at least, conceiv-
able parallel machines. For example, the model should
allow algorithm designers to estimate the running time of
their algorithm when implemented to run on a parallel ma-
chine.

The two goals are somewhat conflicting. While the first
goal appears to call for abstract models which ignore ma-
chine details, meeting the second goal appears to require
some information about current parallel machine architec-
ture in the model.

The large number of parallel machine models is, at least
in part, due to a lack of agreement on the appropriate level
of detail. Furthermore, the architecture of parallel machines
keeps changing. For example, there are significant differ-
ences between older machines like the CM2 or MassPar
(very large numbers of slow processors) and more modern
machines like the IBM SP2 or the CM5 (moderate numbers
of faster processors) or multiprocessors like the SGI Chal-
lenge or HP V-Class. These differences must be reflected in
performance models.

This paper studies the following questions:

� How precisely and accurately do the alternative models
present the run time analysis considering some degree
of machine details?

� What are the limitations that the alternative models
have?

� Which class of computing model – the message pass-
ing model or the shared memory model – represents
the algorithms run time analysis more accurately?

We have selected two of a large number of alternative
models in order to study and try to answer the above ques-
tions. They are the Bulk-Synchronous Parallel (BSP) model
[19] and the Queuing Shared Memory (QSM) model [8]. As
a case study, we consider a simple hashing problem. We de-
sign a parallel algorithm and analyze its run time in the BSP
model and in the QSM model. In order to evaluate the accu-
racy of the run time predictions for the BSP model, we have

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

implemented the parallel algorithm using MPI and run the
program on the parallel machine HP/Convex9000/V2200.
A shared memory implementation for the QSM model will
appear in the final version of the paper. While, overall,
the models appear to make accurate predictions, our exper-
iments also point out some limitations.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 studies the BSP model
and the QSM model. Two versions of a parallel hashing al-
gorithm are designed for the two models in Section 4. Sec-
tion 5 presents the implementation of the message passing
version of the algorithm, and discusses the experimental re-
sults. Section 6 concludes the paper with the future works.

2. Related Work

There has been a significant body of efforts to propose
and justify various parallel computation models, regarding
more realistic factors in parallel computation. It includes
the BSP model, the LogP model, and the QSM model.
There also have been numerous research results to compare
those models quantitatively.

Maggs et al. [16] justify the objectives of having differ-
ent models in parallel computation, comparing to sequential
computation. Matias [17] addresses the issue of choosing a
suitable model for parallel algorithm design and provides
a high level overview of numerous models including the
PRAM, the BSP, and the QSM.

The BSP model was first introduced by Valiant [19], that
emphasized the separation of communication from com-
putation by incorporating the bulk-synchrony with a dis-
tributed memory model over message passing. The idea
was arrived by seeing the Von Neumann model of sequen-
tial computation as an efficient bridge between software and
hardware, and by trying to adopt an analogous unifying
bridging model for parallel computation, aiming to provide
a general purpose parallel computing model.

The BSP* model was proposed by Bäumker et al. [3]
as an extension of the BSP model, considering the signifi-
cance of the set-up time for a message, by adding one more
parameter�, which indicates the minimum message size in
order to fully utilize the bandwidth of the router. Götz [10]
provides a survey of algorithms in several models such as
the BSP, the BSP*, and so on.

The E-BSP model by Juurlink and Wijshoff [14] is an
extension of the BSP model, which takes unbalanced com-
munication patterns and locality of memory access into ac-
count. In [15], Juurlink and Wijshoff compare quantita-
tively the BSP model, the E-BSP model, and the Message-
Passing Block PRAM model that is a restrictive version
of [1].

In [12], Hill and Skillicorn address some misconcep-
tions on poor performance and expensiveness of the syn-

chronization operations in parallel computation in general,
and show how the BSP model can provide improved per-
formance based on their implementation experience of the
BSP model.

The LogP model was proposed by Culler et al. in [6],
having the BSP model as a starting point to address the re-
alistic factors of a parallel model, yet trying to provide as
simple a view of the machine as possible to algorithm de-
signers. Alexandrov et al. [2] proposed the LogGP model as
an extension of the LogP model, by incorporating long mes-
sages into the LogP model, with an additional parameter,�,
which represents the bandwidth for the long messages. Var-
ious parallel sorting algorithms are extensively analyzed on
the LogP model in [7].

Bilardi et al. [4] show a quantitative comparison of the
BSP and LogP models through cross simulations between
the two models.

The QSM model was first introduced by Gibbons et al.
[8], serving as a bridging model with the shared memory
paradigm. Adopting the QSM model as a general-purpose
parallel computing model has been proposed by Grayson et
al. [11, 18].

The uniqueness of our work compared to those previ-
ous works is that we designed the two versions of a parallel
hashing algorithm, for the two models (BSP and QSM) and
tried to predict their performance analytically. Such analy-
sis allows us to justify the usage of the parameters of each
model and the structure of each algorithm designed for each
model. The similarities and differences between the esti-
mates of the two models were also observed, based on the
analysis.

Employing a simple application of parallel hashing in
Section 4 was inspired by [9] in which a sophisticated the-
oretical work on a fast parallel hashing is described.

3. Parallel Machine Models

This section describes the two parallel machine models
considered in this paper. The BSP model appears to be
the most influential distributed memory model. The QSM
model is an interesting shared memory model.

3.1. The BSP Model

In bulk-synchronous computing models, processors
compute asynchronously between synchronization barriers.
The BSP model was introduced by Valiant [19] in 1990.
It views a parallel machine as a collection of � proces-
sor/memory modules which are linked by a fast intercon-
nection network. The processor/memory modules can be
viewed as independent workstations which are connected
to a fast network. Architectures of this kind can be found in
modern distributed memory machines such as the IBM SP2

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

whose processor/memory modules are essentially RS/6000
workstations.

The communication network or router is described by
only two parameters: The message latency � and the band-
width factor �. The latency is the time needed by a short
message to travel across the network to its destination pro-
cessor. The parameter � corresponds to a capacity constraint
on the network. More precisely, it is defined as the ratio
of local operations performed by all processors in one time
unit to the total number of messages delivered by the router
in the same time unit.

Beyond the parameters �, � and �, the BSP model does
not take any other properties of the network into account.
In particular, the interconnection topology of the network is
ignored. This abstract view and omission of machine de-
tails makes BSP algorithms and their analysis applicable
to a wide range of parallel machines. At the same time,
the performance predictions made by the BSP model ap-
pear fairly accurate for existing parallel machines [12]. It
has been argued extensively (e.g. [6]) that parameters like
� and � are sufficient to model modern parallel machines
such as the CM5 or the IBM SP2.

A BSP program is a sequence of supersteps. During each
superstep, the processors (processor/memory modules) per-
form arbitrary local computations. At the end of each super-
step, the processors synchronize and communicate by send-
ing messages over the network (router). The router realizes
supersteps in which each processor sends and receives at
most � messages (�-relation). This pattern of independent
computations followed by synchronization and communi-
cation steps is called bulk-synchronous.

The cost (time) of a superstep is defined to be

������ � � ��� � � ��� �� � (1)

where � is the maximum time spent by any processor per-
forming local computations, and ��, �� are the maximum
numbers of messages sent or received by any processor, re-
spectively.

The basic BSP model has been extended in many direc-
tions by introducing additional parameters (e.g. the E-BSP
model of [14] or the ��� 	�-BSP model of [5]). Furthermore,
there is a close similarity between the BSP model and the
LogP model of [6]. The only two differences are an ad-
ditional parameter (overhead
) in the LogP model (which
is often ignored) and the omission of required synchroniza-
tion steps in the LogP model. The LogP model allows fully
asynchronous behavior of the processors rather than bulk-
synchrony. The close relationship between the two models
is formally analyzed in [4].

3.2. The QSM Model

Most of the models which were designed as more re-
alistic alternatives to the PRAM are based on some form
of message passing. The purpose of the QSM model is to
present an alternative to these models: a shared memory
model whose performance predictions are realistic.

Like the BSP model, the QSM model views a parallel
machine as a collection of isolated processor/memory mod-
ules. However, the concept of a router is replaced by shared
memory. That is, processors communicate by writing to and
reading from shared memory.

QSM algorithms, like BSP algorithms, are bulk syn-
chronous. The supersteps are called phases in the QSM
model. During each phase, the processors can perform ar-
bitrary local computations and arbitrary number of shared
memory access. However, two important restrictions dis-
tinguish the QSM shared memory from that of a PRAM:
The results of shared memory reads are available only af-
ter the end of the current phase (i.e. after the end of the
phase in which the read operation is performed). Further-
more, there cannot be both read and write operations to the
same shared memory location within a single phase. Mul-
tiple read or multiple write operations within one phase are
allowed. These read or write requests are queued and exe-
cuted sequentially.

The cost (time) of a phase is defined as

������ � � ��� � � ��� �� � (2)

where � and � are defined as in the previous section (BSP
model), � – the maximum contention – is the maximum
number of accesses to any shared memory location, and ��,
�� are the maximum numbers of shared memory read or
write operations executed by any processor, respectively.

4. The Algorithms

This section describes a simple application which we use
to compare quantitatively the performance predictions of
the two models (BSP and QSM): parallel hashing. In par-
ticular, we consider the parallel batch insertion of a large
number of keys into a hash table which is distributed over �
processor/memory modules.

Hashing is a fundamental search and data storage tech-
nique. It is used throughout computer science. It is one
of the main implementation methods for abstract data types
like dictionaries. It is also used extensively in the imple-
mentation of data base systems. Distributed database en-
gines are concrete examples of applications of parallel hash-
ing. Hashing is also a popular technique in the implementa-
tion of shared memory [8].

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

In this paper, we consider only standard forms of hash-
ing. More sophisticated theoretical work on parallel hash-
ing is described in [9]. The goal is to achieve constant ac-
cess time on average. Quadratic probing is used for colli-
sion resolution. However, the analysis described in this sec-
tion does not depend on any particular collision resolution
method.

Given a large number � of keys, the task is to store the
keys such that each key can be retrieved, on average, in con-
stant time. In the sequential case, the algorithm uses a large
array of size approximately ��. A random hash function

 is used to map keys to array indices. If the correspond-
ing array position is empty, the key is stored there. If the
array position is already occupied by another key, a colli-
sion has occurred. A different array index must be found.
Quadratic probing tries array index
�	� � �� in the �-th
attempt, where 	 is the key to be stored.

The parallel algorithm is based on the idea of mapping
each key to some processor/memory module, and letting
each processor execute a hashing algorithm locally for the
keys it is assigned. Figure 1 (a) shows the message pass-
ing version of the algorithm. Figure 1 (b) shows the shared
memory version of the algorithm. Each processor is given �
hash keys. These keys are processed in ��� rounds, where
� is a parameter of the algorithm. Each round processes �
keys. For simplicity, we assume that � divides �.

Each key is obtained from the function nextKey()
which hides the input representation. The functionkeyTo-
Processor maps a given key into the range ��� � � � � ��.
This function should behave like a uniformly distributed
random function in the sense that the input key sequence
should, with high probability, have approximately the same
number of images � for any � � ��� � � � � ��. The key is put
into the local buffer which stores all keys destined for the
same processor. This procedure is repeated for all � keys
processed in the current round.

In the message passing version, the next step is to send
the buffers to the processors which have to store the keys in
them. That is, the �th buffer is sent to processor � for � �
��� � � � � ��. Similarly, each processor receives all buffers
that was sent by other processors. The last step is to execute
a standard sequential hash algorithm on each processor, to
extract each key from the buffers, and to store it in the local
hash table.

In the shared memory version, the �th buffer is writ-
ten to the shared memory location for processor � (��) for
� � ��� � � � � ��. And each processor � reads from its shared
memory location �� to read all the keys that were written
by other processors, into the local buffer. In the algorithm
of Figure 1 (b), queue operations (dequeue and enqueue)
with shared queues are used instead of read and write op-
erations on individual shared memory location, in order for
a simpler presentation. The last step is to extract each key

from the local buffer and store it in the local hash table.

4.1. The BSP Version

The supersteps of the BSP model are delimited by the
send and receive operations of each round. Thus, each su-
perstep consists of (a) the local hashing step of the previous
phase, (b) the key to processor assignment step of the cur-
rent phase, and (c) the communication step of the current
phase.

The next step is to estimate the running time of the al-
gorithm in the BSP model. Let �� be the local computation
time needed to process a single key. This time includes the
times taken up in steps (a) and (b).

Note that, even if each processor sends exactly � keys,
it will, in general, receive not exactly � keys, because

may not partition the input sequence equally among the �
buffers. However, if
 is chosen appropriately, it will be-
have essentially like a random function. For random func-
tions, it is assumed that large load imbalances are extremely
unlikely as long as � is sufficiently large compared to �. In
other words, with high probability no processor will receive
significantly more than � keys, if � is sufficiently large. For
simplicity, we will ignore the remaining minor imbalances.

The exact number of messages sent by each processor in
each round is not �, but only ���� ���� since one of the �
buffers on each processor is destined for the processor itself
and does not have to be sent. This leads to the following
time estimate, based on (1):

���������� � �������� ����� ����� ��

There are ��� rounds. Thus, the total running time of the
algorithm is

���	��� �� �
�

��
�������� ����� ����� ��

�

�
������� if � � �������� ��
������������ ���� ����� otherwise

where � � �� is the total number of hash keys processed
on all processors.

4.2. The QSM Version

It is straightforward to convert the message passing al-
gorithm of Figure 1 (a) into a shared memory algorithm.
We only need to replace the message send and receive op-
erations by write and read operations to shared memory, re-
spectively. In the simplest case, shared memory will contain
space for ��� � �� buffers, so that each of the � proces-
sors can write its � � � buffers, before it reads the � � �
buffers destined for it. Note that the required amount of

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

(a) Message passing version

Algorithm for Processor ��
FOR �
��� FROM � TO ��� DO

FOR � FROM � TO � DO
key = nextKey();
buf[keyToProcessor(key)].insert(key);

/* message send */
FOR � FROM 1 TO � DO

IF � �� � THEN
send buf[�] to processor �;

/* message receive */
FOR � FROM 1 TO � DO

IF � �� � THEN
receive message from processor � into buf[�];

insert keys in buf[1], . . . , buf[�] into local hash table

(b) Shared memory version

Algorithm for Processor ��
/* �� : shared memory (queue) for processor � */
FOR �
��� FROM � TO ��� DO

FOR � FROM � TO � DO
key = nextKey();
buf[keyToProcessor(key)].insert(key);

/* shared memory write */
FOR � FROM 1 TO � DO

IF � �� � THEN
enqueue buf[�] to �� ;

/* shared memory read */
bufForLocalKeys.insert(dequeue(��));
bufForLocalKeys.insert(buf[�]);

insert keys in bufForLocalKeys into local hash table

Figure 1. Message passing version and
shared memory version of parallel hashing
algorithm.

shared memory could be reduced to only � buffers by in-
terleaving read and write operations. However, this would
lead to a more complicated description of the algorithm and
to an increase in the number of phases in the QSM model
by a factor of �. In the algorithm of Figure 1 (b), queues are
used instead of shared memory buffers to present the algo-
rithm more precisely. The enqueue operation corresponds
to many write operations for each element in each buffer,
and the dequeue operation corresponds to many read opera-
tions for each element in the buffers which are destined for
the processor.

The restrictions on shared memory accesses imposed by
the QSM model force us to split each round of the algorithm
into two phases. The first separation between phases takes
place immediately after the shared memory write operations
and right before the shared memory read operations. This
separation is necessary because read and write accesses to
the same shared memory location within one phase are not
allowed in the QSM model. The next phase separation takes
place between the last shared memory read operation and
the beginning of the local hashing step. This separation is
necessary because the results of shared memory read op-
erations are not available in the phase which executed the
shared memory read. We call the phase spanning the local
hashing step of the previous round, the assignment of keys
to buffers and the shared memory write operations of the
current round, phase A. The phase comprising the shared
memory read operations is called phase B.

Making the same assumptions about load imbalances as
for the BSP algorithm and using (2), we arrive at the fol-
lowing estimates for the cost of each phase:

��
���� � �������� ���� �����

��
���� � ����� ����

This leads to a total running time for all ��� rounds of

�
�� �
�

��
���
���� � ��
�����

�
�

�
����� ������������ ���� ������ �

It is interesting to observe the similarities and differences
between the estimates for ���	 and �
��. The latter does
not depend on � at all, whereas the former does. The rea-
son is the absence of a latency term in the QSM model.
Indeed, the comparisons between the QSM model and the
BSP model in [8] are done for the special case� � 	. If� is
set to zero in ���	, the estimates for ���	 and �
�� become
almost identical. The only remaining difference is the addi-
tional term �. This term is an artifact of the shared memory
restrictions in the QSM model, which make it necessary to
partition each round of the algorithm into two phases.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

5. Implementation and Experiments of the
BSP Model

The goal of this section is to validate the run time pre-
dictions of the previous section by time measurements on
an existing parallel machine. Based on some of these mea-
surements, we have tried to estimate the machine parame-
ters � and �. For this purpose, we have implemented the
message passing algorithm of Figure 1 (a). The program is
written in C++ and uses the MPI message passing library
for the send and receive operations. In particular, the send
operations call MPI Send, and the receive operations call
MPI Recv.

The implementation deviates from the BSP specification
in one important aspect. Rather than sending each key in
a separate small message – as suggested by the BSP model
– all keys in a given buffer are sent together in one large
message. Thus, sending each buffer requires only two mes-
sages: a short message which specifies the number of keys
in the buffer followed by a long message containing the keys
themselves.

The experimental platform was a
HP/Convex9000/V2200 with 16 200 MHz PA-8200
CPUs running in 4GB of physical memory. We have
performed two kinds of experiments. The purpose of the
first set of experiments was to measure the influence of
� (number of keys per round) on the total running time.
The data from this experiment are also used to estimate the
machine parameters � and �. The goal of the second set of
experiments was to investigate how the run time scales as
the number of processors increases.

Experiment 1: Varying the number of keys per round.
In this set of experiments, the number of processors � and
the total number of hash keys were fixed (� � �
, �� �
���). The number of keys per round was varied from �
to �				, and the running times were measured. The results
are displayed in Figure 2 (a). The number of keys per round
is log-scaled base �, and shown up to only ��			 to display
more clearly the change of the total running times at the
beginning.

The predicted and measured times show roughly similar
behavior: they decrease in �. The predicted time ���	 de-
creases initially, as the latency � is amortized over a larger
number � of keys (messages). After the point at which the
amortized latency becomes smaller than the time taken up
by local computations (�) or sending messages, ���	 is con-
stant. Similarly, for � �
	, the measured time decreases
only insignificantly.

We have used these measurements to obtain a rough es-
timate of the machine parameters. If � �
	 is taken as the
point at which the running time becomes constant, we have,

0

5

10

15

20

25

30

35

1 4 16 64 256 1024 4096 16384
T

ot
al

 R
un

ni
ng

 T
im

e
(s

ec
)

Number of Keys Per Round

measured
predicted

(a) Experiment 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 4 6 8 10 12 14 16

T
ot

al
 R

un
ni

ng
 T

im
e

(s
ec

)

Number of Processors

measured
predicted

(b) Experiment 2

Figure 2. Experiments 1 & 2: Measured and
predicted running time.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

based on the estimate for ���	,

��������� � ������� for � �
	

and

��������� � ������������ ���� �����

� ��������� ���� for � �
	,

since �� is sufficiently small. The two equations can be
solved for � and �. The results are � � �		�� and
� �
��������.

However, the result for � does not appear to account for
the true machine latency. It is derived from the formula for
���	 which is based on the BSP estimate (1). Equation (1),
charges only one latency term � for sending � messages,
assuming that the � messages can be perfectly pipelined.
However, this is not the case in our implementation, which
uses MPI Send – a blocking send operation. Thus, our
implementation takes one latency term � for each of the
��� � �� messages it sends per round. Hence, we should
use the following equation to estimate �:

��������� � ���� ��������� for � �
	�

We obtain the following estimates for the machine parame-
ters:

� � �
���� � �
����

These estimates are used to plot the predicted curves in fig-
ures 2 (a) and 2 (b).

Experiment 2: Varying the number of processors. For
this set of experiments, � (the number of hash keys per pro-
cessor) was set to �				, and � (the number of processors)
was varied from � to �
. For each value of �, the total run-
ning time was measured. We took care to ensure that there
was no other load on the machine in order to avoid mea-
surement errors.

The results are plotted in Figure 2 (b). Because of the
way � and � were estimated, the measured and predicted
curves coincide at � � �
. However, they differ for smaller
values of �. The estimate ���	 predicts an increase in the
running time of less than a factor of �, as � is increased from
� to �
. However, the measured times increase by more than
a factor of �.

This discrepancy can have several reasons. Firstly, the
BSP model assumes that � (the per processor bandwidth pa-
rameter) is constant, i.e. independent of �. It is not clear if
the HP Convex 9000 has this property. The total amount of
data which need to pass through the router (network) is pro-
portional to the number of processors. It appears possible
that an increase by a factor of
 in the number of proces-
sors – and, thus, in the total data volume – could result in
an increased communication time. While � is near constant

in certain high-performance machines like the CM5 or the
IBM SP2, it is clearly not constant for simple bus architec-
tures (e.g. workstations connected by an Ethernet).

A second reason could be the fact that our implementa-
tion sends all keys in a given buffer together in a single long
message, rather than sending each key in a separate short
message. Bundling messages in this way leads to a much
more efficient program. However, the basic BSP model
does not foresee the possibility of increasing efficiency by
sending long messages.

Several authors have suggested ways to incorporate long
messages into parallel machine models [2]. The basic ob-
servation is that, for most parallel machines, the bandwidth
factor � is not constant, but that it depends on the message
length. In most machines, the de facto bandwidth for long
messages is much higher than for short messages. A simple
example of a model which accounts for this phenomenon is
the LogGP model [2]. It adds a second bandwidth param-
eter � to the basic LogP model, such that � specifies the
bandwidth for long messages and � specifies the bandwidth
for short messages. Clearly, similar parameters could be in-
troduced to the BSP model. The details of such extensions
would require further work.

6. Conclusions

Two models were selected for comparison in this re-
search: the BSP model and the QSM model. As a case
study, we have selected a parallel hashing problem and for-
mulated and analyzed parallel algorithms in the two models.
In order to validate the run time predictions made by the
models, we have implemented the BSP version of the al-
gorithm and measured its run time on the parallel machine,
HP/Convex9000/V2200. While the predictions were qual-
itatively correct, the experiments also show a limitation of
the model which makes its prediction somewhat imprecise.

The work of this paper can be extended in several ways.
A more detailed validation of the QSM model and, in par-
ticular, a special shared memory implementation is an on-
going work. Furthermore, it would be interesting to study
ways to extend the models in order to account for different
message sizes.

Acknowledgments: We thank Nancy Amato for helpful
direction of this research and Jennifer Welch for valuable
comments.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir. On communica-
tion latency in pram computations. Proceedings of Sympo-
sium on Parallel Algorithms and Architectures, ACM, pages
11–21, 1989.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating long messages into the
LogP model. Proceedings of the 7th Symposium on Parallel
Algorithms and Architectures, ACM, pages 95–105, 1995.

[3] A. Bäumker, W. Dittrich, and F. M. auf der Heide. Truly
efficient parallel algorithms: �-optimal multisearch for an
extension of the bsp model. Proceedings of European Sym-
posium on Algorithms, pages 17–30, 1995.

[4] G. Bilardi, K. Herley, A. Pietracaprina, G. Pucci, and P. Spi-
rakis. Bsp vs. logp. Proceedings of the 8th Annual Sympo-
sium on Parallel Algorithms and Architectures, ACM, pages
25–32, 1996.

[5] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha.
Accounting for memory bank contention and delay in high-
bandwidth multiprocessors. Proceedings of the 7th Sympo-
sium on Parallel Algorithms and Architectures, ACM, pages
84–94, July 1995.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, R. S.
K. Schauser, E. Santos, and T. von Eicken. LogP: Towards a
realistic model of parallel computation. Proceedings of the
fourth ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming, pages 1–12, 1993.

[7] A. C. Dusseau. Modeling parallel sorts with LogP on
the CM-5. Technical Report: UCB//CSD-94-829, Dept of
EECS, University of California, Berkeley, 1994.

[8] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a
shared-memory model serve as a bridging model for par-
allel computation? Proceedings of the 9th Symposium on
Parallel Algorithms and Architectures, ACM, pages 72–83,
1997.

[9] J. Gil and Y. Matias. Simple fast parallel hashing by obliv-
ious execution. SIAM Journal on Computing, pages 1348–
1375, 1998.

[10] S. Götz. Algorithms in CGM, BSP and BSP* model. Project
Report 95.574 Parallel Algorithms and their VLSI Imple-
mentation, Carleton University, Fall 1996.

[11] B. Grayson, M. Dahlin, and V. Ramachandran. Experi-
mental evaluation of qsm, a simple shared-memory model.
Technical Report: CS-TR-98-21, University of Texas, Austin,
November 1998.

[12] J. Hill and D. Skillicorn. Lessons learned from implement-
ing bsp. High-Performance Computing and Networking,
Lecture Notes in Computer Science 1225, Springer-Verlag,
1997.

[13] J. JáJá. An Introduction to Parallel Algorithms. Addison-
Wesley, Reading, MA, 1992.

[14] B. H. H. Juurlink and H. A. G. Wijshoff. The E-BSP model:
Incorporating general locality and unbalanced communica-
tion into the BSP model. Proceedings of the second Inter-
national Euro-Par Conference, 11, 1996.

[15] B. H. H. Juurlink and H. A. G. Wijshoff. A quantitative com-
parison of parallel computation models. ACM Transactions
on Computer Systems, 16(3):271–318, August 1998.

[16] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of
parallel computation: A survey and synthesis. Proceedings
of the 28th Annual Hawaii Int. Conf. on System Sciences,
IEEE Computer Society Press, II: Software Technology:61–
70, 1994.

[17] Y. Matias. Parallel algorithms column: On the search for
suitable models. SIGACT News, September 1997.

[18] V. Ramachandran, B. Grayson, and M. Dahlin. Emula-
tions between qsm, bsp and logp: A framework for general-
purpose parallel algorithm design. Technical Report: CS-
TR-98-22, University of Texas, Austin, December 1998.

[19] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33:103–111, 1990.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

