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Abstract

Sets and multisets are fundamental data struc-
tures which are used in numerous distributed al-
gorithms. We investigate randomized versions of
sets and multisets and show that our probabilistic
approach can improve the performance of systems
using our distributed shared data structures. We
give algorithms for basic set and multiset opera-
tions and prove a number of fundamental prop-
erties. We illustrate the use of randomized mul-
tisets in a location tracking application of mobile
ad hoc networks.

1 Introduction

Recall that a multiset is an unordered collec-
tion of elements that can occur multiple times;
whereas a set is an unordered collection of dis-
tinct elements. Many algorithms use these ba-
sic data structures. In fact, they are so common
that many programming languages support sets
and multisets either directly or through standard
libraries (for example, the STL of C++).

This paper is concerned with distributed
shared data structures for sets and multisets. As-
sume that we have a set of n servers that we num-
ber, for simplicity, from 1 to n. We represent a
set (or multiset) M by replicas Mr on server r for
r ∈ {1, . . . , n}. To give an idea how this is tradi-
tionally done, let’s have a look at a small example
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with five servers:

Server 1 : M1 =
{

,
}

,

Server 2 : M2 =
{

, ,
}

,

Server 3 : M3 =
{

,
}

,

Server 4 : M4 =
{

, ,
}

,

Server 5 : M5 =
{

,
}

.

The five replicas represent the set

M =

5
⋃

r=1

Mr =
{

, , ,
}

.

You will notice that each element of M is con-
tained in exactly three replicas. This means that
whenever a client process requests the replicas
from 3 servers, then the client can reconstruct
M by taking the union of the three sets. This
scheme is based on a traditional quorum system
where each client process is supposed to accesses
k > n/2 replica servers to read a set or write an
element.

The drawback of this scheme is that it is fairly
rigid and it might even be undesirable for a client
process to contact such a large number of servers.
Imagine for instance a mobile ad-hoc network,
where some servers are not available at all times.
A large quorum Q of k > n/2 replica servers is
likely to contain some servers that are not reach-
able, and this can be a considerable bottleneck.

A possible remedy was suggested by Malkhi,
Reiter, Wool, and Wright [7], who proposed to re-
place traditional quorum systems by probabilistic
quorum systems. In this case, the clients select
quorum of, say, size k = Ω(n1/2+ε). Clearly, we
can find two quorums that are disjoint. However,



if the clients choose the two quorums uniformly
at random, then the two quorums are likely to
share at least one server thanks to the birthday
paradox.

A concrete numerical example might help the
reader to appreciate this property. Suppose that
we have n = 50 servers. A traditional quorum
system chooses quorums of size k ≥ 26. If we as-
sume that the clients select merely k = 16 servers
per quorum, then two quorums that are chosen
uniformly at random will be disjoint with proba-
bility less than ε < 0.000448.

We explore the possibility to build random-

ized set and multiset operations using probabilis-
tic quorum constructions. An advantage of the
smaller quorum size is a significantly reduced
message complexity – a client has to communi-
cate with considerably fewer servers to execute
the operations. On the downside, all operations
on randomized sets or multisets involve a certain
(controllable) amount of error ε. The situation
is comparable with floating point or fixed-point
arithmetic where the operations also introduce in-
accuracies.

We introduce in Section 2 read and write op-
erations for randomized sets and multisets and
analyze the behavior of these operations. We de-
rive in Section 3 other set and multiset operations
that are mostly based on these primitives. We
find that the price that we have to pay for the sig-
nificantly reduced quorum sizes is a small loss of
values in most primitive operations. In Section 4,
we give an application of randomized multisets to
the mobile location tracking problem.

Notations. If n is a positive integer, then we
denote by [n] the set {1, 2, . . . , n}. The family of

all k-subsets of the set [n] is denoted by
([n]

k

)

.

2 Read and Write Operations

We describe in this section the most fundamen-
tal operations to create, write, and read a ran-
domized set or multiset. We analyze several key
properties of these operations; in particular, we
determine the expected size of the set returned
by the read operation. The first operation con-
cerns the genesis of sets:

• Create. We can create a set or multiset M
by

create(M).

This operation creates the replica Mi = ∅ on each
server i in the range 1 ≤ i ≤ n.

The read and write operations have the follow-
ing behavior:

• Add. The write operation

add(x,M)

chooses uniformly at random a k-subset W of
[n] := {1, . . . , n} and adds the element x to the
replicas Mw for all w in W . In other words, the
operation has the effect

Mw := Mw ∪ {x} for all w in W.

In other words, the multiplicity of x is increased
by one in the case of multisets; and the replica
contains x in the case of sets.

• Read. Similarly, the read operation

read(M)

chooses uniformly at random a k-subset R of [n]
and returns the union of the replicas Mr with r
in R; in other words, the read operation returns
the set

⋃

r∈R Mr.

The replicas Mr with 1 ≤ r ≤ n represent a set
M if and only if M =

⋃

r∈[n] Mr.

Lemma 1. Suppose that we choose two quorums

R and W in
([n]

k

)

uniformly at random. Then

Pr[R ∩ W = ∅] =

(

n − k

k

)

/

(

n

k

)

.

In the terminology of Malkhi, Reiter, Wool
and Wright [7], our operations are based on a
probabilistic ε-intersecting quorum system Qk =
([n]

k

)

of all k-subsets of the set [n] = {1, . . . , n}
with a uniform access strategy. The previous
lemma simply records the fact that two quorums
in Qk intersect with probability 1 − ε, where
ε =

(

n−k
k

)(

n
k

)

−1
. If we are conservative and choose



k ≥ n/2, then we recover a traditional, deter-
ministic quorum system in which any two quo-
rums intersect. An advantage of probabilistic
quorum systems is that one can choose consid-
erably smaller quorum sizes [7]. In our applica-
tion, the benefit is a considerably reduced mes-
sage complexity to access the distributed data
structures.

If we choose quorums of size k < n/2, then a
read quorum can fail to intersect with a previous
write quorum, and thus a set returned by the read
operation might have smaller cardinality than it
should have. Fortunately, it is possible to choose
the quorum size k such that the probability of
such an undesired event becomes neglibile.

Let us first investigate the consequences of a
particular quorum size selection before we make
recommendations on the choice of k. Clearly, a
crucial figure is the expected size of the set re-
turned by a read operation.

Proposition 2. Suppose that the read and write

quorums use the quorum system Qk =
([n]

k

)

with

uniform access probability. If the replica sets rep-

resent a set M of cardinality m = |M |, then the

expected value of the size X of the set returned by

read(M) is at least

E[X] ≥ m(1 − ε) with ε =

(

n − k

k

)

/

(

n

k

)

.

Equality holds if and only if each element of M
is represented by exactly k replicas.

Proof. Denote by Mr the replica at server r,
where 1 ≤ r ≤ n. It is clear from the defini-
tion of a write operation that an element x of
M is contained in at least k replicas. It follows
that the set Wx = { r | 1 ≤ r ≤ n, x ∈ Mr} has
cardinality sx = |Wx| ≥ k. Let R denote a read
quorum of size k and denote by Yx the indicator
random variable for the event Wx ∩R 6= ∅. Then
the probability Pr[Yk = 1] = Pr[Wx ∩ R 6= ∅] is
given by

Pr[Yx = 1] = 1 −

(

n − sx

k

)

/

(

n

k

)

≥ 1 − ε. (1)

We have X =
∑

x∈M Yx. By linearity of expecta-
tion, we obtain

E[X] = E
[

∑

x∈M

Yx

]

=
∑

x∈M

Pr[Yx = 1] ≥ m(1−ε),

which proves our claim.

We would like to choose the quorum size k such
that E[X] is close to the cardinality |M | and such
that it is unlikely that a particular read operation
returns a set of size X that deviates much from
the expected value E[X]. Let us first derive a
bound on var[X].

Lemma 3. We keep the notation of the previous

proposition. If the quorum size k is chosen1 such

that ε ≤ 1/2, then var[X] ≤ mε(1 − ε).

Proof. Recall that X is the sum of independent
random variables Yk; therefore, the variance sum
theorem yields

var[X] = var[Y1] + var[Y2] + · · · + var[Ym]. (2)

The random variable Yk is a Bernoulli random
variable with probability of success given in (1).
Recall that the function x(1 − x) is monotoni-
cally descreasing on the interval [1/2, 1], as is il-
lustrated by the function plot:

0 0.5 1.0
0

0.25

0.50
f(x) = x(1 − x)

Let pk := Pr[Yk = 1]. Then pk ≥ 1 − ε ≥ 1/2, we
obtain that the variance var[Yk] = pk(1 − pk) is
bounded from above by

var[Yk] = f(pk) ≤ f(1 − ε) = ε(1 − ε).

Therefore, we can conclude from equation (2)
that var[X] ≤ mε(1 − ε), as claimed.

1Actually, we will of course choose k such that ε � 1/2.



Tail Estimates. We have shown that the size
X of a set returned by the read operation read(M)

has expectation value E[X] ≥ m(1 − ε). We can
select the quorum size k such that ε becomes as
small as we please, as we will show in the next
paragraph. We will demonstrate now that it is
unlikely that the value X deviates much from
E[X].

Lemma 4. If X denotes the size of a set returned

by read(M) and m is the cardinality of M , then

Pr
[

|X − E[X]| ≥ ε1/2 E[X]
]

≤
1

(1 − ε)m
.

Proof. Recall that Chebychev’s inequality states
that the probability Pr[ |X−E[X]| ≥ λ] is at most
var[X]/λ2. Thus, if we set λ = ε1/2 E[X], then we
obtain the claim with the help of Proposition 2
and Lemma 3.

Lemma 5. If X denotes the size of a set returned

by read(M) and the cardinality of M is m, then

Pr
[

|X − E[X]| > d
]

< 2e−2d2/m.

In particular, if we set d = ε1/2 E[X], then

Pr
[

|X − E[X]| > ε1/2 E[X]
]

< 2e−2ε(1−ε)2m.

Proof. Recall that the random variable X is given
by the sum of indicator random variables X =
∑

x∈M Yx. Define new random variables Zx :=
Yx − px with px = Pr[Yx = 1] for all x ∈ M . We
have Pr[Zx = 1 − px] = px and Pr[Zx = −px] =
1 − px. The main point of this definition is that
the sum of the random variables Zx is given by
X − E[X] =

∑

x∈M Zx, and we can estimate the
tails of the right hand side by

Pr[|X−E[X]| > d]=Pr[|
∑

x∈M

Zx| > d] ≤ 2e−2d2/m,

where the last inequality is a bound of Chernoff,
see [2] or [1, Lemma A.4].

Quorum Size. Suppose that we have n servers
and select a quorum of size k < n/2, then we can
estimate

ε =

(

n − k

k

)(

n

k

)

−1

≤ e−k2/n,

see, for instance, Jukna [3, p. 21]. Therefore, the
probability ε = ε(k) that two quorums of size k
fail to intersect decreases rapidly, especially for
quorum sizes larger than n1/2. The next figure
illustrates the bound for n = 50 servers and a
range of quorum sizes:

0 4 8 12 16 20 24
0

0.5

1.0
b(k) = exp(−k2/50)

k

Recall that the size X of a set returned by a
read operation read(M) is the sum of m inde-
pendent random variables X = Y1 + · · · + Ym

provided that the set M has cardinality m. If
m is large, then the central limit theorem tells us
that we can approximate X by the normal distri-
bution N(E[X], var[X]), see [6]. Thus, as a rule
of thumb, the value X will lie within the range
m(1−ε)±4

√

mε(1 − ε) about 99.99% of the time.

We bolster this claim by giving some experi-
mental results of a randomized set with m = 300
elements which is realized with n = 50 replica
servers. We plot the quorum size k in the range
8 ≤ k ≤ 23 against the number of elements that
have been returned by a read operation. The solid
red curve shows the expected number of elements
300(1−ε), with ε =

(50−k
k

)

/
(50

k

)

, that are returned
by a read when the quorum size is k. The gray
curves show 300(1−ε)±4

√

300ε(1 − ε). The blue
dots represent the measured number of elements.
For each quorum size k we have repeated the ex-
periment 10 times.
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The graph illustrates that for a quorum size of
k ≥ 17 all 300 elements were returned in each
run. Moreover, it illustrates that all experimental
results are within the region that we predicted
with our theoretical considerations.

3 Further Operations

We describe in this section further operations on
randomized sets, most of which are based on the
primitives that we have introduced and analyzed
in the previous section.

• Cardinality. We can obtain an estimate for
the cardinality of the set M by

X := size(read(M)).

Due to the probabilistic nature of the read opera-
tion, we cannot expect to get a precise answer and
need to be contend with an estimate. It follows
from Proposition 2 and Lemma 3 that X ≈ m
assuming that the quorum size k is chosen such
that ε � 1.

• Union. We can obtain a union of two sets (or
multisets) B and C by

read(B) union read(C). (3)

We expect that read(B) and read(C) will fail
to return at most ε |B| and ε |C| elements, respec-
tively. Therefore, we can expect that the opera-
tion (3) yields at least |B∪C|(1−ε) elements. Fur-
thermore, the result of (3) is contained in B ∪C.

• Intersection. The intersection

read(B) intersection read(C) (4)

of two randomized sets (or multisets) has an ex-
pected value of at least (1−ε)|B∩C| elements, be-
cause the operation read(B) is expected to omit
at most ε|B| elements. And the result of (4) is
contained in B ∩ C, so one can boost the proba-
bility of success by several repetitions.

• Difference. The most subtle behavior has the
operation

read(B) minus read(C).

We expected number of elements returned by this
operations is between (1−ε)|B\C| and (1+ε)|B\
C|; the potential increase of elements is a result
of the fact that read(C) might return too few
elements. We suggest to use a larger read quorum
for read(C) to remedy this effect.

• Delete. The operation

delete(x,M)

removes the element x once from each replica. For
instance, if M is a multiset with M = {x, x, y},
then after delete(x,M) the multiset is M =
{x, y}.

• Containment. The operation

x in M (5)

is realized by sending the request 〈 is x in M?〉 to
a quorum of servers that is selected uniformly at
random from

([n]
k

)

. If at least one server replies
with true then the result is true, otherwise it is
false.

The answer has one-sided error. If x is not
an element of M , then (5) will always correctly
return false. If x is an element of M , then we
get the incorrect answer false with probability
≤ ε.



4 Application

In this section, we illustrate how to use our ran-
domized multisets for location tracking in mobile
ad hoc networks. Recall that the location track-
ing problem in a mobile ad hoc network is to pro-
vide location information of mobile nodes as part
of a name resolution protocol. Such a location
service is important because a simple name res-
olution protocol does not work in a mobile envi-
ronment without static infrastructure.

Lee, Welch and Vaidya [5] proposed a scheme
based on replicated location tracking servers.
Each server has a replica of the location database
containing the most recent location information
of the mobile nodes. Each mobile node is respon-
sible to periodically update its location.

Here we sketch a location tracking scheme us-
ing our randomized multisets in implementing the
location information database M . The basic idea

of the new scheme is that we keep a “history” of

movement of mobile nodes rather than the single

most recent location information. We conjecture
that this scheme works well because movement is
continuous and it is always better to have some
outdated information than having no information
at all. Consequently, the errors due to our ran-
domized multiset have less impact in a system
keeping the location history.

Each element of M is a tuple

〈location data, process id, timestamp〉.

Each mobile node (client process) is uniquely
identified by the process id. Furthermore, each
client process has a local timestamp which is in-
cremented by one for each add operation it per-
forms.

• Add Location. Whenever a client process i
wants to record its new location information loc,
it increments its timestamp t by one and invokes
add(x,M), where the element x is of the form
〈loc, i, t〉. The implementation of the add opera-
tion is given in Section 2.

Each replica server r keeps a replica Mr of M .
When a replica server r receives 〈add x〉 message,
it adds x to Mr. There is a system parameter

expire that serves as a threshold of how long the
old information should be kept. For example, if
expire = 5, then each server will keep at most
the five most recent location entries of each client
process. Thus, the server will check after each add

operation whether it should remove old location
data of the client.

• Lookup. When a mobile node i wants to
know the location of mobile node j, it performs
lookup(j,M). As a result of the lookup opera-
tion, process i will receive a list of location data
of process j.

To implement the lookup operation, the client
process does the following. It chooses a ran-
dom quorum Q of replicas and sends the mes-
sage 〈lookup j〉 to the replica server r in Q. The
servers reply with lists of the location data of j,
which the client merges and sorts according to in-
creasing timestamps. Then it returns the sorted
list of location data of j to the application.

When a server receives 〈lookup j〉 message
from client i, it creates a list (that is ordered by
timestamp values) of j’s location data in Mr and
sends the list back to i. If no such data exists
in Mr, it sends i the list with a single value ⊥,
indicating that it does not have information on j.

5 Conclusions

We introduced distributed shared data structures
for randomized sets and multisets. We described
basic operations for the manipulation of these
data structures. We will make a generic C++
implementation available that illustrates the fun-
damental principles of randomized sets. Our pro-
gram is specified in Knuth’s literate programming

style so that it is readable for humans [4]. The
documentation contains a self-contained explana-
tion of all implementation details. The reader
can experiment with our program to explore the
practical consequences of quorum size choices and
other details.

We showed that randomized multisets can be
used to implement a location tracking service for
mobile ad hoc networks. A little loss in location
data is tolerable in this application, especially



since the message complexity is significantly re-
duced so that more frequent location updates are
feasible. Other applications in mobile comput-
ing, such as group communication, can benefit
from such properties as well. As another type of
application, we note that it is possible to modify
Rabin’s Byzantine agreement algorithm [9, 8] to
take advantage of randomized multisets.
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