Randomized Caching, Probabilistic Queuing, and
Denial of Service Attacks

Seth Voorhies! Hyunyoung Leef, and Andreas Klappenecker!

August 5, 2003

Abstract

We propose and analyze a randomized caching scheme in which an item is cached
only with a certain probability. We use such caches to build a probabilistic queuing
mechanism which can provide a fair share of resources to the users by discriminating
them based on the frequency of requests. We demonstrate that denial of service attacks
can be better sustained when this probabilistic queuing mechanism is employed.

Keywords: denial of service, randomization, caching, probabilitic queues.

1 Introduction

Denial of service attacks try to disrupt client-server computing by flooding the server with
numerous nonsensical requests or messages. The aim of the attackers is to consume a large
amount of the server’s resources such that benign clients are effectively denied service. The
communication protocols and applications of the server queue the incoming requests. The
attackers explore the fact that current queuing algorithms do not discriminate well between
requests from benign and malicious clients; hence, a server under heavy load will drop
many benign requests. We propose a new probabilistic queuing algorithm which attempts
to alleviate this problem.

A crucial part of our queuing algorithm is utilizing a randomized cache. An incoming
request is inserted with a certain probability « into the cache, and elements are evicted
with a least-recently-used strategy. We model the state of the cache by a Markov chain and
determine its stationary distribution. We derive the probability to find a client at position
m in the cache. If we assume that a malicious client sends more requests than a benign
client (which is reasonable, since otherwise the malicious client will hardly cause any harm),
then our results show that the malicious client is more likely to be found in the cache. If the
queue of incoming requests exceeds a certain length, meaning the load is too high, then our
probabilistic queuing algorithm deletes the requests from the queue, which belong to the
clients in the cache. The main theme of this strategy is to identify and penalize malicious
clients, thus providing better service to benign clients.

tDepartment of Computer Science, University of Denver, 2360 S. Gaylord St., Denver, CO 80208
iDepartment of Computer Science, Texas A&M University, College Station, TX 77843-3112

This paper is organized as follows. We introduce some notations and conventions in the
next section. The probabilistic queuing algorithm and the randomized caching algorithm
are given in Section 3. In Section 4, we give an analysis of the randomized caching algo-
rithm, focusing on aspects that are relevant for the performance of our queuing algorithm.
We demonstrate in Section 5 that denial of service attacks can be better sustained when
standard queuing algorithms are replaced by our probabilistic queuing algorithm.

2 Preliminaries

We abstract each incoming request or incoming packet by an item. We assume that each
item m has an identifier 4d which can be extracted by the function id(m). We assume that
the sender of the request is uniquely identified by this identifier. We call the process that
handles or serves the incoming items a server. We refer to a sending entity as a client or a
user.

The server maintains a queue) of incoming request items. The queue () can contain
a maximal number of items, called the allowable number of items. A queue () has two
operations: enqueue and dequeue. The operation @Q.enqueue(m) inserts m at the tail of Q.
The operation @.dequeue(id) removes every item with identifier 4d from @. The operation
Q.dequeue() without an argument removes the item from the head of Q.

The server also maintains a cache T of size t. We call the first element in T the top
element, and the last (i.e., t-th) element the bottom element. The cache T is associated
with the two operations: insert and delete. If T" does not contain the identifier id, then the
operation T.insert(id) inserts id at the top of T'; otherwise it moves the id to the top of T
When T contains ¢ elements (i.e., 7" is full) and a new item is going to be inserted, the item
at the bottom of T' will be evicted by the operation T.delete(). Each incoming item will be
inserted into 7" with some probability c.

3 The Algorithm

The probabilistic queuing algorithm enqueues each incoming item, unless the queue gets
too full. If the queue is full, then the content of the randomized cache determines which
items are deleted from the queue. The pseudocode is shown in Algorithm 1.

The randomized caching algorithm inserts the id of each incoming item m at the top of
the cache T with probability c. The function random put(«a) returns true with probability
« and false otherwise. The function id(m) returns the id of the request m. We omit
the straightforward implementation details of random put and id. The pseudocode of the
randomized caching algorithm is shown in Algorithm 2.

If a process sends z requests, then the probability that its ¢d will end up in the cache
at some point in time is 1 — (1 — «)®. Thus, processes sending more requests are more
likely to be inserted into the cache. Our basic assumption for achieving fairness is that
a malicious client sends more requests than a benign client. Under this assumption, it is
intuitively clear that identifiers of malicious clients are more likely to reside in the cache

than identifiers of benign clients. We will show in the next section that this is indeed the
case.

Algorithm 1 Probabilistic Queuing.

ProbabilisticQueue(«, allowable)

/* a > 0 denotes the probability of an incoming request being put into T" */

/* allowable denotes the maximum possible number of pending incoming requests */
/* Data structures: a list 7' of maximum size ¢ realizing an LRU cache, */
/* a queue Q for pending requests of size allowable (t K allowable). */
Initialization:
1: pending := 0; T := empty list; @) := empty queue;
When a request item m arrives:
2: pending := pending + 1;
3: if (pending > allowable) then /* need to dequeue requests in @ */
4: if (T is empty) then
5: choose at most ¢ differing ids among the most recent requests and
put these ids in T
forall id in T do Q.dequeue(id);
pending := pending—(the number of dequeued requests);
@Q.enqueue(m);
RandomCaching(id(m),a);

Algorithm 2 Randomized Caching.
RandomCaching(id, «)

/* a > 0 denotes the probability of an incoming request being inserted into the cache T */
if (random_put(a) = true) then /* id will be inserted into T' */
if (id exists in T') then
move id to the top of T;
else /* id does not exist in T' */
if (T contains ¢ elements) then /* T is full */
evict the bottom element of 7" using 7'.delete();
create new element for id and put it at the top of T using T.insert(id);

4 Analysis

The list T realizes a randomized cache with least-recently-used update strategy. The pur-
pose of this cache is to discriminate between malicious and benign clients. We assume that
the clients submitting requests to the system are given by a finite set U containing n ele-
ments. We assume that the requests of the clients u € U are independent and identically
distributed with probability Pr[u] > 0, 3>, Pr[u] = 1. The cache is fairly small in an
actual system, typically much smaller than the length of the pending queue. Therefore, the
long term behavior of this cache is of particular interest.

We assume that the cache T is of size ¢ < n. Requests are inserted into the cache T
with probability a > 0. Since we are only interested in the long term behavior, we may
assume that the cache contains ¢ identifiers. Hence, a state of the cache can be described
by a string of ¢ letters over the alphabet U, which contains no repetitions. The set of all
possible states of the cache T' is denoted by S. We use a Markov chain M, to model the
behavior of the cache T'. The states of M, are given by the set S of all states of the cache.
We have (’;) selections of client identifiers in the cache, and ¢! possible orderings, which
gives a total of (})t! = n!/(n — t)! different states of the Markov chain.

The admissible transitions of the Markov chain reflect the move-to-front rule of the cache.
Several components contribute to the transition probabilities of the Markov chain M,: the
insertion probability «, and the probability Pr[u] that client u issues a request. A state
s = (u1,...,us) of the cache remains unchanged if a message is not included into the cache
or if a request of u; is selected for inclusion into T'; the transition probability P(s,s) is
therefore given by P(s,s) = 1 — a + aPrf[u;]. If a message by u € U is selected to be
included into the cache T' and wu is not contained in 7', then the Markov model makes a
transition from the current state s = (u1,...,u; 1,us) to the state s = (u,u1,...,us 1)
with probability P(s,s’) = aPr[u]. If a message by client u is selected, and u is already
in T, but not at the top of the cache, then the Markov model makes a transition from
the current state s = (u1,...,up, U, Upta, - .., u;) to the state s = (u, u1, ..., ug, Ugto,...,us)
with probability P(s,s’) = aPr[u].

In the Markov chain M, there is a nonzero probability to go from one state to any other
state (in ¢ steps), hence M, is irreducible. Since there is a nonzero probability to stay in
the same state, M, is aperiodic. It follows that there exists a limiting probability measure
7w on S, which satisfies

(m(s): s € S)P =(w(s) :s€8), (1)

where P = (P(s,s'))s,s7cs is the transition matrix of the Markov chain M. No matter in
which state the Markov chain is initially, the sequence of states will approach this probability
distribution [11].

Theorem 1 The stationary distribution ™ on the state space S of the Markov chain M,,
with insertion probability o > 0, is given by

7(s) = Prlu] H t_P;:_[:ik]

k=2 (1 — Z Pr[ug])

=1

(2)

where s is the state s = (u1,...,ut).

Proof. We verify by direct calculation that the probability measure 7 given in (2) satisfies
the stationarity condition (1). According to (1) and the transition rules of the Markov

chain M, we find that m(s) = m(u1,...,u;) satisfies the equation

7T(’LL1,... 7ut) = (1 - O‘)ﬂ-(ula"' 7ut)

t
—|—OAPI‘[’U,1] Z W(“Q,"'aut,u)—i_ ZW(uZa"',umaulaum-l—l,'"aut)
m=1

UFAUTL ey Ut

The first term on the right hand side models the fact that the state remains unchanged if
an arriving item m of client u; is not included in T'. The last two terms model all possible
states of T', which lead to s after inclusion of m. Subtracting (1 — a)7(s) from both sides
and dividing by « yields

t
7r(ula cee aut) = Pr[ul] Z ﬂ-(u% cee ,Ut,u) + Z 7T(“Qa <oy Um, UL, U415 - - - ,Ut)
UZEUL 5., Ut m=1
(3)
Clearly, it suffices to check that (2) satisfies (3). It will be convenient to denote by d;(s)
the term

t—i+1
dz(s) =1- Z Pr[ue].
=1
Substituting (2) for m(ug, ..., us u) yields
Plr[u/c = Pr{ug41]
Z m(ug,...,up,u) = Z Pr{u] H LG) + Prjad] = Z Prlu H dk 7(5) T Prlo]

UFUL eyt UFEUL yernylUt UAUL Ut

Note that the sum 3_, ., . Pr[u] = di(s). Since the product term on the right hand side
does not depend on u, it follows that

PT[Uk+1
Z (U2, ..., U u) = H dk) + Prlui]

UFUL ..y Ut

Similarly,

t
. ‘ HPr[uk]
k=1
Z7r('u'2:---aumaulaum+17""ut):Z t 1
m=1

= dis) + Prfuy))
1=2

m

1=
Substituting the last two equations into equation (3) for m(s), we find that

[] Prlu] [Ldis) , Prfu] T dito) [] @i(s) + Prfur)
- m+1 i=1

3
—
VA
N—
Il
>~
-|E
-
|
—
<
Il
—
|
10
—
o~
Il
|

We can simplify this expression to

t t t t m—1
[Priwe] | [I]dits) + (Pr[ul] S I dits) T] (di(s) +Pr m]))
k=1 =1 m=11=m+1 =1

7T(S) = t t
[[T (di(s) + Prfur])
i=2 '

where we have used the fact that di(s) + Pr[ui] = 1. It turns out that the term in brackets
is equal to 1; this is a consequence of the polynomial identity

H:z:, H:vz-i-)\)\Z H (xx + A) H:L‘g

=1 =1 m=1k=m+1

It is not difficult to prove this identity. Indeed, expanding the right hand side yields

(T1+ XN (2 +A) - (e + N =A(z2 + N (23 +A) -+ (2 + A) - 1
“Mzs+A)(xa+A)--- (2 + A) - 21
“AMza+ X) (x5 +A) -+ (2 + A) - (z122)

—)\(.Z‘t +)\) . (331.’E2 s :L‘t_g)
—A . ($1x2 .. xt*l)

Combining the first two terms gives (z2 + A)---(x; + A) - 1. Likewise, we proceed by
subsequently combining the first two terms of the resulting expression. Repeating this
process t — 2 times yields (z; + A\)(z129---2¢-1) — A(x122--- x4—1). Simplifying this last
expression yields the desired product. [|

Suppose that Pr[u;] > Pr[ug] > --- > Pr[u,]. The preceeding theorem shows that
the most likely state in the limiting probability measure is the state (u1,...,u). Notice
that all Markov chains M, reach the same limiting probability measure 7, regardless of
the insertion probability . The main difference is that the process will converge more
slowly to this limiting distribution for small values of a. It is worth pointing out that it is
not recommended to have the value a = 1, since this would allow a malicious attacker to
orchestrate an attack which produces a maximal amount of cost in the cache update. The
randomization 0 < a < 1 makes this more difficult to achieve.

Denote by Pr[u;, m] the probability to find the identifier of client u; at position m in the
cache in the stationary distribution. The following theorem gives a precise analytic result
for this probability:

Theorem 2 If the requests of the clients are independent and identically distributed, then
the probability Pr[u;,m| to find the identifier of client u; at position m in the cache in a
stationary state is given by

m—1
Priug, m] = Prlu] Y (=1)™ 17 (::L__ll__i) > 1-Qz™, 1<m<t, (4
2=0 |Z|=2
w; ¢Z

for any inclusion probability a > 0. The inner sum is taken over all subsets Z of the set of

clients U, and Qz =), c , Prlu].

Proof. Suppose that the cache is in a stationary state. Let the history of past requests,
which have been selected for inclusion in the cache, be given by

(' e ’ujS’ujZ’ujl)'

If the most recent request of client u; is request jx1, then w; is at position m in the cache if
and only if the set X}, = {u;,,...,u; } has cardinality m —1. We use this simple observation
to determine the probability for client u; to be at position m in the cache.

It follows from our assumptions that the requests u;, , which are included in the cache, are
independent, and identically distributed. The request u;, occurs with probability Prlu;,].
According to our previous observation, client u; is at position m in the cache if and only
if for some k > 0, w;,,, = u;, and the random subset X}, of the past k requests does not
contain u;, and |X;| = m — 1. This allows us to express the probability Pr[u;, m] in the
form

o0
Prlu;, m] = ZPI‘[u]'kJrl = uj,u; ¢ X, | Xk| =m — 1],

because the events in the brackets are disjoint for different values of k. We can state the
right hand side more explicitly in terms of subsets Y of cardinality m — 1 of the universe U
of clients:

Priuj,m] =Y Prlu] Y PrXpy=Y] =Priu]d Y PrX;=Y]
k=0 [Y|=m—1 k=0 |Y|=m—1

U1¢Y uig_fY
The inclusion-exclusion principle yields

Pr[X, =Y]= > (-1)Y?IPr[X; C Z].
ZCY

In other words,

PriX, =Y]= Y (-1)Y " Prlu;, € Z,...,uj, € Zu;, € 2] = Y (-1)¥ 7@z,
ZCY ZCY

where Qz = >, ., Pr[u]. Combining this expression for Pr[X} = Y] with our previous
formula for Pr[u;, m] yields, after exchanging sums,

Pr[u;, m| = Prfu] Z Z 1)Y= Z|2Qk.

Y|=m—-1 ZCY

A straightforward reformulation of this expression gives

Prlu;, m] = Prfu;] §: §: (—)Y=2111—Qy7t,
|Z|<m—1 ZCY
w;, €7 |Y[=m-1
uigY

which can be simplified to

m—1
- 1=
Priui,m] = Pru]» Y (-1)™ ' (::L . _Z) [1—Qy"
2=0 IuZZI;Zz
! n—1-—z
_ , _1ym—1— — 1= _ -1
= Pl (P TTY) Sn-ed
2=0 |Z|=2
w; €7
which concludes the proof. [|

Equation (4) shows, for instance, that client u; is found at the top of the cache with
probability Pr[u;, 1] = Pr[u;]. Hence the client sending most requests has the highest chance
to be at the top of the cache.

For the application to denial of service attacks, we are particularly interested in the
probability that a malicious client can be found ahead of a benign client in the cache.

Theorem 3 In the stationary distribution, the probability to find client u; ahead of client
uj in the cache is given by

Pr[ui]

Prlui is ahead of uj] = 5o s= 5 m .
1 J

regardless of the cache inclusion probability o > 0.

Proof. Let us assume that all clients are initially in some total order. The move-to-front

rule is applied when a client is included in the cache, introducing a new order. This way, the

first ¢ clients represent the state of our randomized LRU cache, and the new order ensures

that a client which is evicted from the cache will be ahead of all clients outside the cache.
The probability to find client u; ahead of client u; after k requests is

Pr[u; is ahead of u; after k requests]

k
= %(1 — aPrlu;] — ozPr[uj])]c + Z (1 — aPrlu;] — aPr[uj])k_ma Pr{u;],

m=1

where the first term on the right hand side describes the case that u; was initially ahead of u;
and neither were included in the cache during these k requests; the second term represents

the case that u; is included in the cache at time m > 1, and u; was not included after
time m. A straightforward proof by induction shows that

Pr[u; is ahead of u; after k requests]

Priv 54 Prlu;] — o Prlu;])

N CO N k_Prluj] — Priui]
Pr[u;] + Prlu;]

2(Prfu;] + Prlu,])’

In the limit £ — oo, we get

Pr{u;]

Prlus is ahead of uj] = 5 rorsm 5 e -
1 J

This proves the claim, since we assumed that u; and u; are in the cache. [|

If a malicious client wu,, sends ¢ > 1 times more requests than a benign client up, then
Pr[u,, is ahead of up] = ¢/(1 + ¢), whereas Pr[uy is ahead of u,,] = 1/(1 + ¢). This shows
that malicious clients are more likely to be near the top of the cache, and benign clients are
more likely to be evicted from the cache or to be outside the cache.

Remark. There exists an extensive literature on the move-to-front rule for sorting [1,2,
5,12,15], which corresponds to the case & =1 and n = ¢t. More general deterministic LRU
caches, with a = 1, have been studied in [3,9]. Although the goal of these papers is usually
to estimate the expected computational cost or the expected cache miss ratio, one can learn
valuable lessons from these classical works.

5 Application: A Defense Mechanism Against Denial of Service Attacks

Our probabilistic queuing algorithm was designed to provide a server with the ability to bet-
ter sustain a denial of service attack. We compare our algorithm to five standard queueing
algorithms which are typically used in communication protocols. We confirm experimen-
tally that our algorithm allows to discriminate well between malicious and benign clients,
as predicted by our theoretical considerations.

Background. Denial of service attacks are among the most prolific threats to client-
server computing. A typical denial of serivce attack is orchestrated as follows: A malicious
attacker subverts a number of machines, known as zombies, and launches an attack on the
server of the victim by sending numerous packets from the zombies. The general idea is
that processing the flood of messages will consume resources of the victim, and will disrupt
service to benign clients; see [6,8,10,13,14] for details and variations.

An attacker has a variety of tools available, such as Trinoo, TFN, TFN2K, Shaft, and
Stacheldraht, which help to coordinate and execute a denial of service attack. Even an
unsophisticated individual can launch a devastating attack with the help of these tools;
see [10] and the references therein.

There are a number of policies that can be used to mitigate a denial of service attack. A
consequent employment of ingress and egress packet filtering in routers can greatly reduce
the number of packets with forged source IP addresses in a network [4]. Disabling unused

ports and services is an easy way to reduce the computational load of the server, particularly
when under attack. However, none of the aforementioned methods works perfectly. A
final defense involves the ability of a server to distinguish between legitimate traffic and
illegitimate traffic, so that it can still provide service to benign users. For instance, Huang
and Pullen [7] suggest a random early detection based packet filtering scheme for this
purpose.

Ezperimental Comparison. The main strategy of a denial of service attack is to consume
resources of the victim server by sending many messages. The flood of requests or messages
will inevitably have the effect that queues of the server handling the incoming requests will
reach their maximum allowed length, causing the server to drop requests to reduce the load.
It was observed in [10] that the choice of the queuing algorithm largely influences the ability
of a server to sustain a denial of service attack; this observation motivated our work.

We compared our probabilistic queuing algorithm to the following five queuing algo-
rithms: DropTail which implements a FIFO queue, Fair Queuing (FQ) which attempts to
fairly share bandwidth among all queues, Stochastic Fair Queuing (SFQ) which uses hash
functions to map flows to a queue, Random Early Detection (RED) which randomly dis-
cards packets to avoid congestion, and Class Based Queuing (CBQ) which queues packets
according to specifiable rules.

We tested the ability of servers utilizing the above queuing algorithms to sustain a denial
of service attack. We used the ns-2 network simulator to generate denial of service attacks
using the network topology shown in Figure 1. Our main goal in testing these different
algorithms was to see which would drop the least number of packets from the benign users
and the largest number of packets from the attackers, in other words, which algorithm would
provide the most bandwidth to the benign users and the least bandwidth to the attackers.

--]:: — E -~.___f_‘£ ’E. SERVER
| N 5 — "'/,/' \BE|
=

Figure 1: A typical denial of service attack scenario is shown on the left, where one attacker remotely controls
numerous zombie machines. The network topology used in our simulations is shown on the right.

Each algorithm used a queue of length 50 and the simulators defaults. For FQ and
CBQ we used an underlying RED queue. In our probabilistic queuing algorithm, we used
in all simulations a cache of size 10. We simulated denial of service attacks using a topology
with 100 clients reaching one server through one router, as shown in Figure 1. In the first
simulation, the clients 1-50 are malicious (attackers), and clients 51-100 are benign. In the
second simulation, the clients 1-75 are malicious, and clients 76-100 are benign.

Each simulation was run for 5 seconds during which each client in the simulation sent

10

UDP packets at a constant bit rate to the target web server. Every packet is of size 500
bytes. The benign clients sent packets at an interval of 0.1 seconds, while the attackers sent
packets at an interval of 0.01 seconds. The target web server had a bandwidth of 2 Mbps
and a delay of 5ms, while all network links had a 1 Mbps bandwidth with a 10 ms delay.

In the first simulation, with 50 malicious clients, DropTail, FQ, CBQ, RED and SFQ
all provided only an average of 6% of the requested service to the benign clients, with SFQ
providing no service to 13 of the 50 benign clients. Our probabilistic queuing algorithm was
able to provide approximately 70% of the requested service to the benign clients, as shown
in Figure 2 (a). The second simulation with 75 attacking nodes showed similar results
(Figure 2 (b)).

100 100

T T T T T T T T T T T T T T T T T T
) H
MT CBQ —— 0 @ —T CBQ —— ol
DropTail ——- 5 3 DropTail - .
80 - FQ oox-o L@ E 80 - FQ -ooxeo T
ProbQueue & - o @ ProbQueue & LHEN o
RED —-=—- 0% m o BomEge RED --#-- ap ¥

3 SFQ --e-- ;0 e ET- IR] kS SFQ --o-- LI
S 60 IR} g 60t ¢ ® a4
e 5% 2
3 gy w 3 ‘
2 £ o
[} ()
S 40 @ e 1
[5) [
o a

®

i

20 t Y
a | pa———_ ot
. Lo o7, © . I e e
W 2] =] 5. m " h g
0 EEDD%E{:: mD:E‘DE Bo B gty . iat

10 20 30 40 50 60 70 80 90 100
Client ID Client ID

(a) (b)
Figure 2: The graphs show for each client the percentage of packets serviced. Results for a system with 100
clients: (a) The first 50 (on the left) are malicious clients, and the last 50 (on the right) are benign clients.
(b) The first 75 are malicious, and the last 25 are benign clients. Our probabilistic queuing algorithm is the
only queuing algorithm providing significant service to benign clients.

It should be noted that with the probabilistic queuing algorithm, the gap between the
amount of service received by the attackers and the amount of service received by the benign
clients actually grew in favor of the benign clients as the number of attackers increased.
However, with all of the other algorithms, the gap remained constant or increased in favor
of the attackers, as the number of attackers increased.

Cache Inclusion Probability. The cache inclusion probability « of the probabilistic queu-
ing algorithm determines the computational cost. At the same time, it affects the frequency
of cache updates. For instance, a smaller value of « is computationally more efficient, but
also yields less frequent cache updates so that the cache may not reflect correctly the distri-
bution of items in the queue. We performed experiments to determine a value of «, which
is reasonably small but can still guarantee a fair service to benign clients.

We ran tests based on the same two simulations as above: one with 50 malicious clients
and 50 benign clients, and the other with 75 malicious and 25 benign clients. We varied the
cache inclusion probability a over the range of 2%-20%. In each case, we calculated the
standard deviation of the service for the benign clients. We found that a value of « around
10% provided about the same low standard deviation as in the case of a = 20%, whereas

11

smaller values of o < 10% resulted in a larger standard deviation, hence a less fair service
among the benign clients.

6 Conclusions

Protecting a server against denial of service attacks is a nontrivial task. We introduced
a randomized caching and probabilistic queuing algorithm that can help to better sustain
flooding attacks, especially when used in combination with consequent filtering mechanisms.
The simplicity of the scheme allows to replace existing queuing mechanisms in servers or
routers without much effort. This yields improved service without significant increase of
costs.

We analyzed our randomized caching algorithm using a Markov chain model and derived
a closed form for its stationary distribution. We computed, in closed form, the probability
that a client resides at a certain position in the cache. Furthermore, we calculated the prob-
ability that a client is ahead of another client in the cache. Our results show that malicious
clients are more likely to reside in the cache. Furthermore, we experimentally demonstrated
that our algorithm is superior to other queuing algorithms in servicing requests of benign
clients.

Acknowledgements. We thank Narasimha Reddy for introducing us to the concept of
his partial state router [16]. The research of A.K. is supported in part by NSF grant ETA
0218582, and a Texas A&M TITF grant.

References

[1] J.R. Bitner. Heuristics that dynamically organize data structures. SIAM J. Comput.,
8(1):82-110, 1979.

[2] P.J. Burville and J.F.C. Kingman. On a model for storage and search. J. Appl. Prob.,
10(3):697-701, 1973.

[3] E.G. Coffman, Jr. and P.J. Denning. Operating Systems Theory. Prentice Hall, Engle-
wood Cliffs, NJ, 1973.

[4] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial of service attacks
which employ IP source address spoofing. Network Working Group, RFC 2827, 2000.

[5] W.J. Hendricks. The stationary distribution of an interesting Markov chain. J. Appl.
Prob., 9(1):231-233, 1972.

[6] J.D. Howard. An analysis of security incidents on the Internet. Phd thesis, Carnegie
Mellon University, 1998.

[7] Y. Huang and J.M. Pullen. Countering denial-of-service attacks using congestion trig-
gered packet sampling and filtering. In Tenth Intl. Conf. Computer Communications
and Networks, 2001. Proceedings., pages 490-494. TEEE, 2001.

12

[8] F. Kargl, J. Maier, and M. Weber. Protecting web servers from distributed denial of

service attacks. In Proc. 10th Intl. WWW Conference, pages 514-524, 2001.

[9] W.F. King, ITI. Analysis of demand paging algorithms. In Information Processing 71

[10]

[11]

[12]

[13]

[14]
[15]

[16]

(IFIP Congress, Ljubljana, Yugoslavia, 1971), pages 485-490. North-Holland, 1972.

F. Lau, S.H. Rubin, M.H. Smith, and L. Trajkovic. Distributed denial of service
attacks. In Proc. 2000 IEEE Int. Conf. on Systems, Man, and Cybernetics, Nashuville,
TN, volume 3, pages 2275-2280. IEEE Press, 2000.

G.F. Lawler and L.N. Coyle. Lectures on Contemporary Probability. Student Mathe-
matical Library, IAS/Park City Mathematical Subseries. AMS, 1999.

J. McCabe. On serial files with relocatable records. Operations Research, 13:609-618,
1965.

J. Mirkovic, J. Martin, and P. Reiher. A taxonomy of DDoS attacks and DDoS defense
mechanisms. Technical report, Computer Science Department, UCLA, 2002.

R.M. Needham. Denial of service: An example. Comm. ACM, 37(11):42-46, 1994.

R. Rivest. On self-organizing sequential search heuristics. Comm. ACM, 19(2):63-67,
1976.

Smitha and A.L.N. Reddy. LRU-RED: An active queue management scheme to contain
high bandwidth flows at congested routers. In Global Telecommunications Conference,
2001. GLOBECOM ’01, volume 4, pages 2311-2315. IEEE, 2001.

13

