
1

An IntrusionAn Intrusion--Tolerant and SelfTolerant and Self--Recoverable Recoverable
Network Service System Using A Security Network Service System Using A Security

Enhanced Chip MultiprocessorEnhanced Chip Multiprocessor

WeidongWeidong ShiShi ((GaTechGaTech))
HsienHsien--HsinHsin (Sean) Lee ((Sean) Lee (GaTechGaTech))
Guofei Gu Guofei Gu ((GaTechGaTech))
Laura Falk (Michigan)Laura Falk (Michigan)
Trevor N. Trevor N. MudgeMudge (Michigan)(Michigan)
Mrinmoy Ghosh Mrinmoy Ghosh ((GaTechGaTech))

2

Threats to Network ServicesThreats to Network Services

• Server receives (multiple) flows of requests from both
malicious and legitimate users
– Crash-based Denial-of-Service (DoS) attacks

– Buffer overflow attacks

3

Traditional Solutions for Lost ServicesTraditional Solutions for Lost Services

• Take service off-line and wait for patches

• Termination-reboot

- Expensive and slow

- Cant handle DoS exploits (continue crash)

- Loss of user data

• Intrusion detection and Firewall

- Identify the source of an attack is non-trivial (IP spoof)

4

• High Availability, Reliability, and Survivability.

• Explore new programming and usage model of the
emerging Multi-core processor or Chip Multiprocessor
(CMP)

• Provide “architectural support” for network services to be
– Autonomic

– Remote-attack survivable
– Self-recoverable

• High Performance

Objectives

5

Why Chip Multiprocessor?Why Chip Multiprocessor?

• Everyone is making it. Why?

• Insulation: Each core
of a CMP can be programmed
to run at different privilege
levels with different OSes.

• Integrated fine-grained processor state monitoring.

• Concurrent monitoring and efficient state backup and
recovery.

• Massive multi-core will have many idle cores.

IBM POWER5IBM POWER5

6

Asymmetric Security Enhanced CMPAsymmetric Security Enhanced CMP
Monitor CoreMonitor Core

L2 CacheL2 CacheL2 Cache

IL1
Cache

IL1
Cache

DL1
Cache
DL1

Cache

Memory Interface
Watch Dog

Memory Interface
Watch Dog

Physical Memory Space
(used by service OS and applications)

Protected Memory Space
(monitor BIOS, OS, and SW)

Cores Are Managed by Privilege Levels. No SW bypass (hardware
insulation)

Server Core
(issue state backup,
simple self-check)

Server Core
(issue state backup,
simple self-check)

IL1
Cache

IL1
Cache

DL1
Cache
DL1

Cache

Trace
Filter

Trace
Filter

CFG check
Trace
FIFO
Trace
FIFO

Code origin check

rollback

6

Asymmetric Security Enhanced CMPAsymmetric Security Enhanced CMP
Monitor CoreMonitor Core

L2 CacheL2 CacheL2 Cache

IL1
Cache

IL1
Cache

DL1
Cache
DL1

Cache

Memory Interface
Watch Dog

Memory Interface
Watch Dog

Physical Memory Space
(used by service OS and applications)

Protected Memory Space
(monitor BIOS, OS, and SW)

Cores Are Managed by Privilege Levels. No SW bypass (hardware
insulation)

Server Core
(issue state backup,
simple self-check)

Server Core
(issue state backup,
simple self-check)

IL1
Cache

IL1
Cache

DL1
Cache
DL1

Cache

Trace
Filter

Trace
Filter

CFG check
Trace
FIFO
Trace
FIFO

Code origin check

rollback

Monitor

Insulation

Issue Recovery

Control

7

Monitor and Recover Network ApplicationsMonitor and Recover Network Applications

• Network service is request-response oriented

• Monitor core inspects well-being of applications
concurrently with application execution

• Rollback application state when corruption/intrusion
is discovered

• Continue execution from rollbacked state

8

Monitor Core: InspectionMonitor Core: Inspection

• Verify “Code Origin”
– only execute code originally loaded from hard drive
– detect injected code in data pages

• Verify “Control Flow”
– computed function call matched against valid function entry points
– detect overflow of function pointers

• Signify “Illegal Operations”
– monitor handles memory exceptions (bus error, seg fault) first before

application OS
– detect memory corruption

Code Page

Data Page

Code Page Code Origin

Exceptions
Control Flow

9

Server Core: Instant RecoveryServer Core: Instant Recovery

• Maintain memory state, system resources (file
handles, locks, semaphore, etc) between
processing each network request.

• Upon detection of intrusion/memory
corruption/illegal operation, monitor core
– triggers recovery process
– rolls back to a known good state (before

processing the bad request)

• Continue to handle the next network request.

• Support multiple “backup” states and iterative
rollback.

Issue log/monitor
request

Issue log/monitor
request

Read network request
from Socket

Read network request
from Socket

Process network
request

Abstraction of Server Application

10

Monitor Core: Incremental Memory LogMonitor Core: Incremental Memory Log

• Monitor core maintains separate logs of memory
updates triggered by each network request.

• Snoop memory interface

• Can be very fast
- temporary data on stack does not require backup
- group memory updates in registers (XMMX) and write them
back to RAM directly bypassing caches

• Only backup memory updates to a limit (e.g., a few
million most recent updates)

• No source code instrumentation required.

11

Monitor and Recover Server OS from Monitor and Recover Server OS from RootkitsRootkits

• How do they work?
- Patch server OS’s interrupt handler table with malicious

code pointer
- Redirect server OS’s system call table

• Why are they bad?
- Hide hacker’s traces
- Give a false well-being image of the system
- Provide backdoor for the hacker to come back in future

• Rootkits are hard to remove and recover (often need
completely reinstallation of the system)

12

Monitor Core: Backup and InspectionMonitor Core: Backup and Inspection

• Backup. Monitor core maintains
- a clean version of server core’s system call table,

interrupt handler table in its private space
- a clean copy of server core’s ktext (kernel text)

• Inspection
- modification to important kernel table structures
- modification to ktext

13

Monitor Core: RecoveryMonitor Core: Recovery

• Patch system call table/interrupt handler table without
reboot (use the same technique against the hackers)

• Perform live patch of maliciously altered ktext with
the original clean ktext copy

• Must support legitimate system upgrade. Initiate
recovery process from a separate management
channel by administrators.

14

TestbedTestbed

• CMP Architecture/System Co-design.

• A x86 system emulation (Bochs) + cycle-
based architecture simulator (TAXI)

• Run real OS with real service
applications, httpd, ftpd, bind, sendmail,
etc.

• Recoverability evaluated by applying real
x86 remote exploits from hacker and
security websites.

15

RecoveryRecovery

• Apply real-world attacks to the emulated server

• Recover from logged states through rollback

• Recovered applications are able to continue responding to
new requests

• Related studies done by other schools also show
recoverability on per-request basis

• Currently work on robustness evaluation and fault injection

16

PerformancePerformance

• Popular server apps. HTTPd, Bind, Sendmail, FTPd

• Tolerable overhead

• 10%-25% slow down of response time

�
� � �

�
� � �

�� � �
�� � � �	
 � �

� �
� � �

 �
� � �

� � � � � � � � � �

17

Conclusion
• Combing real-time remote exploit monitor and instant

autonomic recovery can enhance service survivability and
availability.

• Emerging CMP technique provides redundancy,
computing power, and opportunity for new type of
autonomic system.

• Non-symmetric CMP with security enhancement can
provide improved reliability and availability in the face of
remote exploits.

• More research is required to explore the trade-off
between availability, performance, architecture design,
and cost.

18

Questions

