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Threats to Network ServicesThreats to Network Services

• Server receives (multiple) flows of requests from both 
malicious and legitimate users
– Crash-based Denial-of-Service (DoS) attacks

– Buffer overflow attacks



3

Traditional Solutions for Lost ServicesTraditional Solutions for Lost Services

• Take service off-line and wait for patches

• Termination-reboot 

- Expensive and slow

- Cant handle DoS exploits (continue crash)

- Loss of user data

• Intrusion detection and Firewall 

- Identify the source of an attack is non-trivial (IP spoof)
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• High Availability, Reliability, and Survivability.

• Explore new programming and usage model of the 
emerging Multi-core processor or Chip Multiprocessor 
(CMP)

• Provide “architectural support” for network services to be
– Autonomic

– Remote-attack survivable 
– Self-recoverable

• High Performance

Objectives
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Why Chip Multiprocessor?Why Chip Multiprocessor?

• Everyone is making it.  Why?

• Insulation: Each core
of a CMP can be programmed 
to run at different privilege 
levels with different OSes. 

• Integrated fine-grained processor state monitoring. 

• Concurrent monitoring and efficient state backup and 
recovery.

• Massive multi-core will have many idle cores.

IBM POWER5IBM POWER5
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Asymmetric Security Enhanced CMPAsymmetric Security Enhanced CMP
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Monitor and Recover Network ApplicationsMonitor and Recover Network Applications

• Network service is request-response oriented

• Monitor core inspects well-being of applications 
concurrently with application execution

• Rollback application state when corruption/intrusion 
is discovered

• Continue execution from rollbacked state 
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Monitor Core: InspectionMonitor Core: Inspection

• Verify “Code Origin”
– only execute code originally loaded from hard drive 
– detect injected code in data pages

• Verify “Control Flow”
– computed function call matched against valid function entry points
– detect overflow of function pointers

• Signify “Illegal Operations”
– monitor handles memory exceptions (bus error, seg fault) first before 

application OS
– detect memory corruption

Code Page

Data Page

Code Page Code Origin

Exceptions
Control Flow
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Server Core: Instant RecoveryServer Core: Instant Recovery

• Maintain memory state, system resources (file 
handles, locks, semaphore, etc) between 
processing each network request.

• Upon detection of intrusion/memory 
corruption/illegal operation, monitor core
– triggers recovery process 
– rolls back to a known good state (before 

processing the bad request)

• Continue to handle the next network request. 

• Support multiple “backup” states and iterative 
rollback.

Issue log/monitor
request

Issue log/monitor
request

Read network request
from Socket

Read network request
from Socket

Process network
request 

Abstraction of Server Application
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Monitor Core: Incremental Memory LogMonitor Core: Incremental Memory Log

• Monitor core maintains separate logs of memory 
updates triggered by each network request.

• Snoop memory interface

• Can be very fast
- temporary data on stack does not require backup
- group memory updates in registers (XMMX) and write them 
back to RAM directly bypassing caches

• Only backup memory updates to a limit (e.g., a few 
million most recent updates) 

• No source code instrumentation required.
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Monitor and Recover Server OS from Monitor and Recover Server OS from RootkitsRootkits

• How do they work?
- Patch server OS’s interrupt handler table with malicious 

code pointer
- Redirect server OS’s system call table

• Why are they bad?
- Hide hacker’s traces
- Give a false well-being image of the system 
- Provide backdoor for the hacker to come back in future

• Rootkits are hard to remove and recover (often need 
completely reinstallation of the system)
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Monitor Core: Backup and InspectionMonitor Core: Backup and Inspection

• Backup. Monitor core maintains
- a clean version of server core’s system call table, 

interrupt handler table in its private space
- a clean copy of server core’s ktext (kernel text)

• Inspection
- modification to important kernel table structures
- modification to ktext 
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Monitor Core: RecoveryMonitor Core: Recovery

• Patch system call table/interrupt handler table without 
reboot (use the same technique against the hackers)

• Perform live patch of maliciously altered ktext with 
the original clean ktext copy

• Must support legitimate system upgrade. Initiate 
recovery process from a separate management 
channel by administrators.
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TestbedTestbed

• CMP Architecture/System Co-design.

• A x86 system emulation (Bochs) + cycle-
based architecture simulator (TAXI)

• Run real OS with real service 
applications, httpd, ftpd, bind, sendmail, 
etc. 

• Recoverability evaluated by applying real 
x86 remote exploits from hacker and 
security websites. 
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RecoveryRecovery

• Apply real-world attacks to the emulated server

• Recover from logged states through rollback 

• Recovered applications are able to continue responding to 
new requests

• Related studies done by other schools also show 
recoverability on per-request basis

• Currently work on robustness evaluation and fault injection
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PerformancePerformance

• Popular server apps. HTTPd, Bind, Sendmail, FTPd 

• Tolerable overhead

• 10%-25% slow down of response time 
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Conclusion
• Combing real-time remote exploit monitor and instant 

autonomic recovery can enhance service survivability and 
availability.

• Emerging CMP technique provides redundancy, 
computing power, and opportunity for new type of 
autonomic system.

• Non-symmetric CMP  with security enhancement can 
provide improved reliability and availability in the face of 
remote exploits. 

• More research is required to explore the trade-off 
between availability, performance, architecture design, 
and cost.
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Questions


