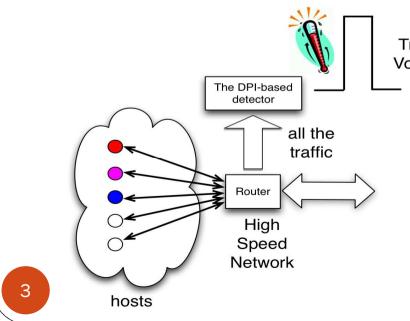

Outline

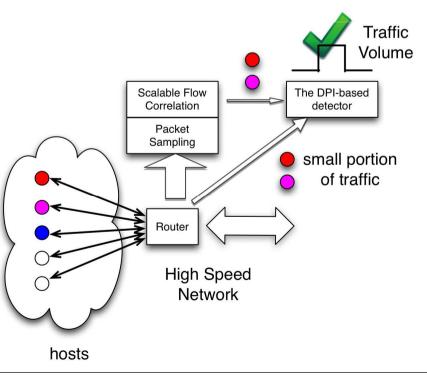
- Motivation
- Our System
- Evaluation
- Conclusion

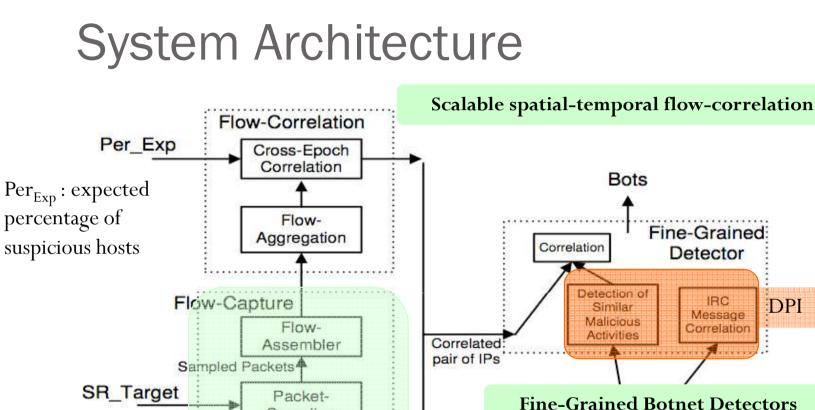

Botnet

- A botnet is a collection of bots controlled by a botmaster via a command and control (C&C) channel
 - Centralized C&C, P2P-based C&C
- Botnets serve as the infrastructures for a variety of attacks
 - Exploiting, scanning, spamming, phishing, DDoS, etc.
- Botnet detection is of great importance

Motivation

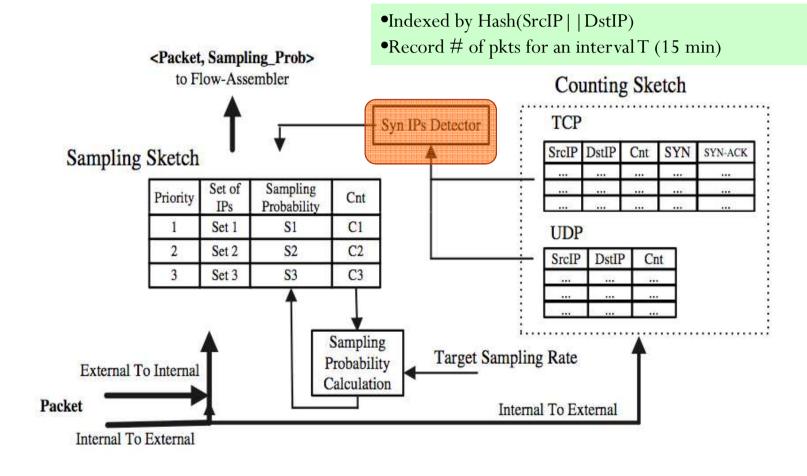
- Current detection approaches are based on Deep Packet Inspection (DPI)
 - BotHunter [Security 07]
 - BotSniffer [NDSS 07]
 - BotMiner [Security 08] (malicious activity plane)
 - TAMD [DIMVA 08]




Not Scalable for high-speed Traffic Volume and high-volume networks!

Our system

- A layered traffic analysis approach
 - 1. Identify suspicious hosts from high speed network through flow-correlation
 - Botnet-aware packet sampling algorithm (B-Sampling)
 - Scalable spatial-temporal flow-correlation algorithm
 - 2. Apply Fine-grained DPI-based detectors to suspicious hosts

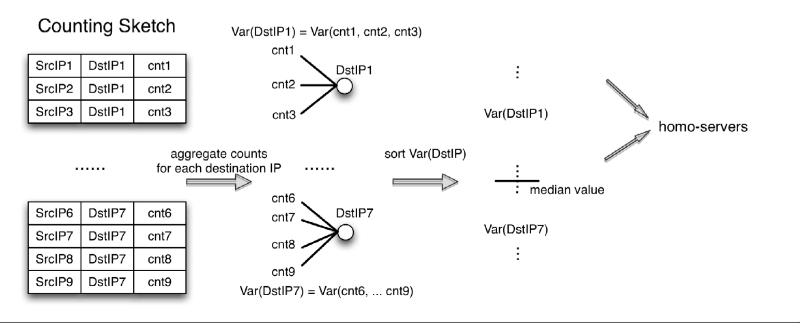


DPI

Sampling SR_{T} : target sampling 4 Suspicious IPs Traffic Filter Watch List •Flow Capture: 1.B-Sampling: Botnet-Aware Adaptive Packet Sampling 2.Flow-Assembler

rate

Flow Capture

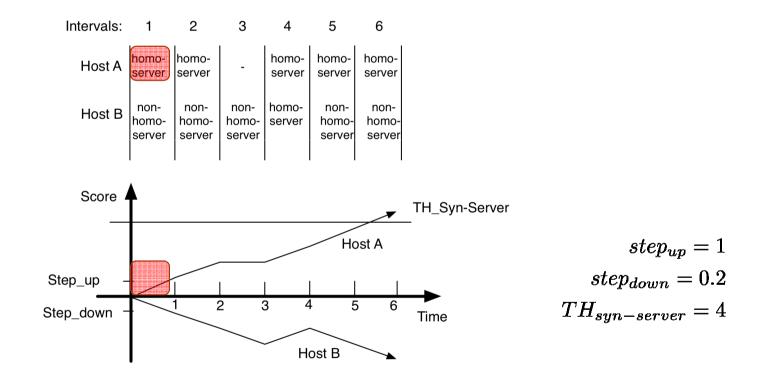

Flow Capture: Synchronized IPs Detector

• homo-servers

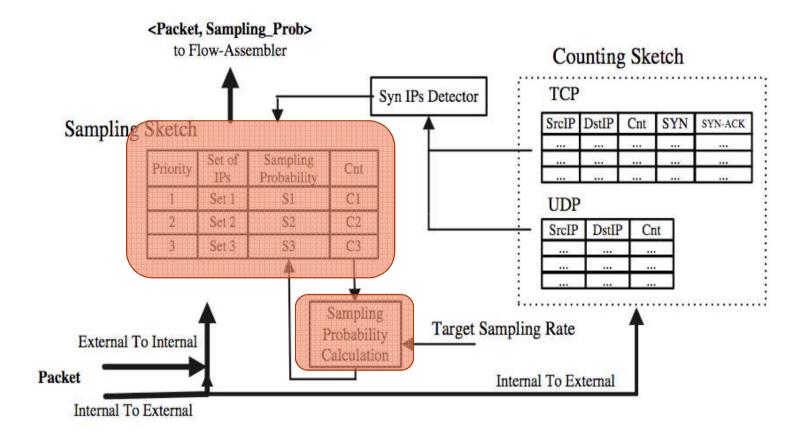
 Hosts outside the monitored networks whose clients show small variance of connections in a time interval (T=15 min)

similar-clients

• Hosts within the monitored networks that generate similar connections to a large number of destination IPs in a time interval (T=15 min)


Flow Capture: Synchronized IPs Detector

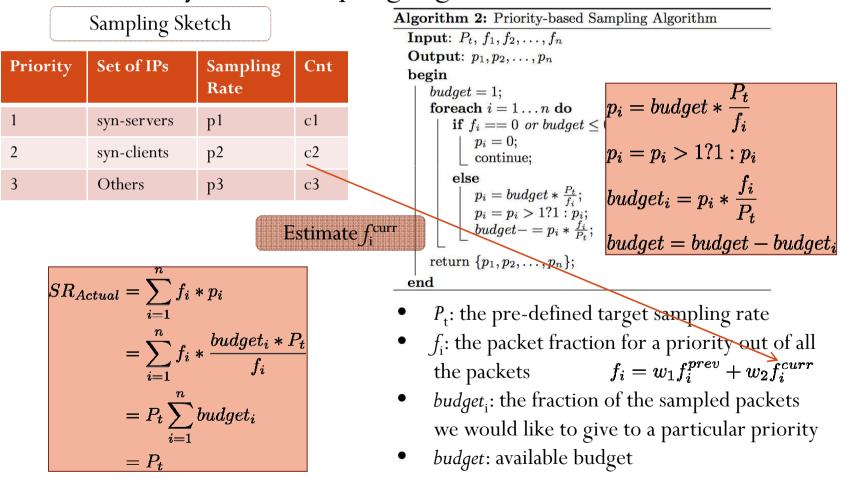
- From homo-servers and similar-clients, we identify:
 - syn-servers
 - C&C servers for centralized-based botnets
 - syn-clients
 - Bots of P2P-based botnets


Intervals: 2 3 4 1 homohomohomohomo-Host A syn-server server server server server similarsimilar- similar- similarsyn-client Host B client client client client

Flow Capture: Synchronized IPs Detector

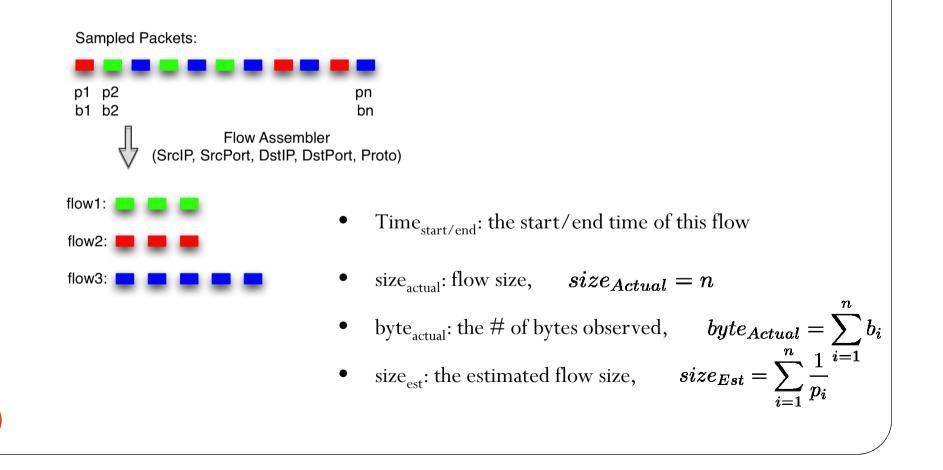
• Identify syn-server/client based on home-server/similar-client

Flow Capture: Sampling Probability Calculation

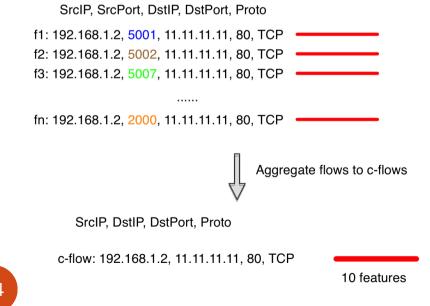


Why we need a new sampling algorithm?

- Uniform sampling or periodic sampling
 - Prune to capturing packets in large flows and missing small flows (e.g. netflow)
- FlexSample [IMC 08]
 - Samples more packets from specific traffic subpopulations based on programmable conditions (e.g. small and medium flows)
 - The diversity of C&C communications of different botnets makes it challenging to set conditions for FlexSample to sample packets from a wide range of botnets.
- Requirement
 - Let the real sampling rate be close to target sampling rate.
 - Sample more packets from C&C communication flows.


Flow Capture: Sampling Probability Calculation

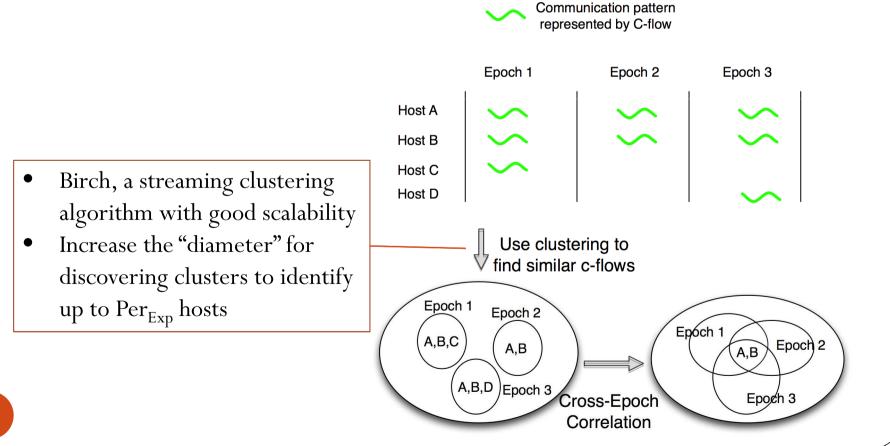
• The Priority-based Sampling Algorithm


Flow Capture: Flow Assembler

 Assemble each sample packet, together with its sampling rate (p_i), to 5tuple flows identified by (SrcIP, SrcPort, DstIP, DstPort, Proto)

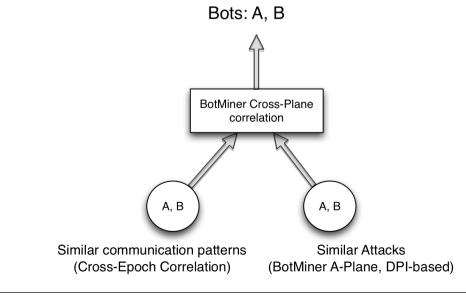
Flow Correlation: Get C-flows

- C-flow
 - Aggregates a set of 5-tuple flows sharing the same tuple of (SrcIP, DstIP, DstPort, Proto) in a certain epoch (12 hours).
 - Represents the communication pattern from a host to a remote host and port in a certain epoch.


10 feature-vector to represent a C-flow•the means and variances of

- "# of flows per hour"
- "# of packets per flow"
- "# of packets per second"
- "# of bytes per packet"

•fph_{max}: the maximum number of flows per hour
•time_m: the median time interval of two consecutive flows


Flow Correlation: Cross-Epoch Correlation

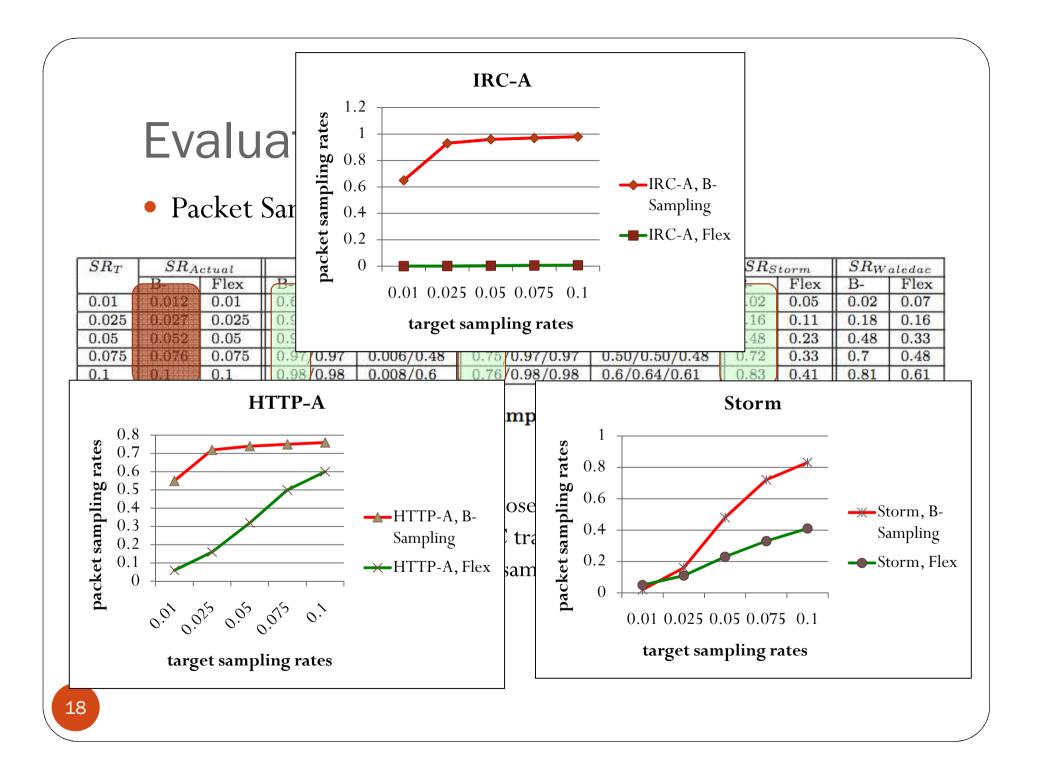
• If a pair of hosts share similar communication patterns for at least M out of N epochs (M<=N), they are suspicious.

Fine-Grained Detectors

- Fine-Grained detectors only focus on traffic of Per_{Exp} hosts for deep packet inspection
 - If a pair of hosts share persistently similar communication patterns and commit similar attacks, they are identified as bots.(a modified version of BotMiner)
 - BotSniffer's IRC-based C&C detection component

• Experimental Data

Trace	# of Pkts	Dur	Info
Mar25	205,079,914	12h	header
Mar26	280,853,924	24h	header
Mar27	318,796,703	24h	header
Mar28	444,260,179	24h	header
Mar31	102,487,409	1.5h	full

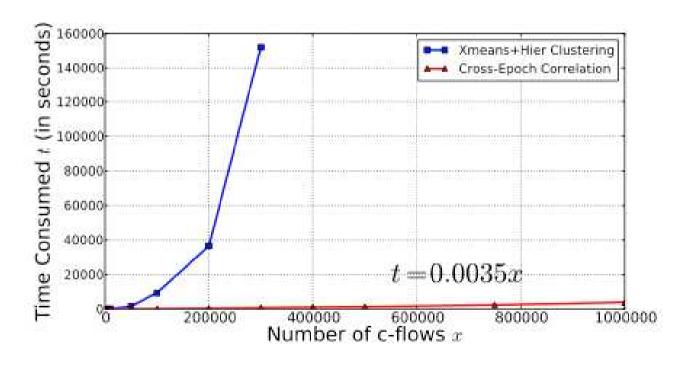

Table 1: Background Traces

0		
Trace	Dur	Bots
i Biolei ROPA	4days	3
Bot-IRC-B	4 days	4
	4days	3
Bot-HTTP-B	4 days	4
Bot-HTTP-C	4 days	4
Bot-P2P-Storm	4days	2
Bot. 22R - Waledac	4days	3

Table 2: Botnet traces

- Experimental Setup
 - 12 hours for each epoch; totally 7 epochs
 - If a pair of hosts share similar communication patterns 3 epochs out of 7 epochs, they are identified to share "persistently similar communication patterns".

Both-IRC-A:TR/Agent.1199508.A Bot-HTTP-A: Swizzor.gen.c Bot-P2P-Storm: storm Bot-P2P-Waledac: waledac Others from RuBot


• Cross-Epoch Correlation

SR_T	For each Per_{Exp} , TP(bots/23), FP(noises/1460)									
	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
0.01	48%, 0.1%	83%, 0.5%	96%, 1%	96%, 2%	100%, 3%	100%, 4%	100%, 5%	100%, 6%	100%, 6%	100%, 8%
0.025	52%, 0%	87%, 0.5%	100%, 1%	100%, 2%	100%, 3%	100%, 4%		100%, 6%	100%, 7%	100%, 8%
0.05	48%, 0.1%	100%, 0.3%	100%, 1%	100%, 2%	100%, 3%	100%, 4%	100%, 5%	100%, 5%	100%, 7%	100%, 7%
0.075	48%, 0.2%		100%, 1%	100%, 2%	100%, 3%	100%, 4%	· · · · ·	100%, 6%	100%, 7%	100%, 8%
0.1	39%, 0.3%		100%, 1%	100%, 2%	100%, 3%	100%, 3%	100%, 5%	,	100%, 7%	100%, 8%
1	30%, 0.5%	65%, 0.8%	96%, 1%	100%, 2%	100%, 3%	100%, 4%	100%, 5%	100%, 5%	100%, 7%	100%, 8%

Table 4: Detection Rates of Cross-Epoch Correlation using B-Sampling

• Cross-epoch correlation together with B-Sampling can detect all the bots for most of the combinations of SR_T (target sampling rate) and Per_{Exp} (expected percentage of suspicious hosts)

- Cross-Epoch Correlation
 - Time consumption of cross-epoch correlation compared to BotMiner's clustering algorithm (X-means + hierarchical clustering)

Cross-epoch correlation has great scalability

• Fine-Grained Detectors

• Detection Results

SR_T			Fo	or each Per	$r_{Exp}, TP(b)$	ots/23), FI	P(noises/14)	60)		
	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
0.01	48%, 0	83%, 0	96%, 0	96%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0
0.025	52%, 0	87%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0
0.05	48%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0
0.075	48%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0
0.1	39%, 0	78%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0
1	30%, 0	65%, 0	96%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0	100%, 0

- Eliminate all the false positives
- Achieve high detection

SR_T	With Flow-Corr ($Per_E = 5\%, M = 3$)						direct
	0.01	0.025	0.05	0.075	0.1		
Per of Pkts	1.7%	2.9%	2.1%	3%	4.3%	2%	100%
Time	33s	39s	35s	40s	49s	33s	858s

with our approach

direct deployment

• Fine-grained detectors only need to investigated less than 5% traffic and use much less time.

Discussion

- High-Speed Networks
 - Given 2 hr process time of cross-epoch correlation and t=0.0035 * "# of c-flows", our system can process 2M c-flows (i.e., "# of c-flows")
 - College network: 200K c-flows extracted from 200Mbps traffic
 - 2M c-flows would result from 2Gbps, indicating that the cross-epoch correlation can be used in 2 Gbps networks

Evasion

• Randomize communication patterns to decrease the packet sampling rates and evade cross-epoch correlation

Conclusion

- A botnet-aware adaptive sampling algorithm
 - Keep the actual packet sampling rate close to the target sampling rate
 - High sampling rates for botnet C&C related packets compared
- Cross-epoch correlation
 - Effectively and efficiently identify bots by investigating their persistently similar communication patterns
- A new botnet detection system employing layered traffic analysis approach

Thanks! Questions?