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Permission Use Analysis for Vetting Undesirable
Behaviors in Android Apps
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Abstract— The android platform adopts permissions to protect
sensitive resources from untrusted apps. However, after permis-
sions are granted by users at install time, apps could use these
permissions (sensitive resources) with no further restrictions.
Thus, recent years have witnessed the explosion of undesirable
behaviors in Android apps. An important part in the defense
is the accurate analysis of Android apps. However, traditional
syscall-based analysis techniques are not well-suited for Android,
because they could not capture critical interactions between
the application and the Android system. This paper presents
VetDroid, a dynamic analysis platform for generally analyzing
sensitive behaviors in Android apps from a novel permission
use perspective. VetDroid proposes a systematic permission use
analysis technique to effectively construct permission use behav-
iors, i.e., how applications use permissions to access (sensitive)
system resources, and how these acquired permission-sensitive
resources are further utilized by the application. With permission
use behaviors, security analysts can easily examine the internal
sensitive behaviors of an app. Using real-world Android malware,
we show that VetDroid can clearly reconstruct fine-grained
malicious behaviors to ease malware analysis. We further apply
VetDroid to 1249 top free apps in Google Play. VetDroid can assist
in finding more information leaks than TaintDroid, a state-of-the-
art technique. In addition, we show how we can use VetDroid to
analyze fine-grained causes of information leaks that TaintDroid
cannot reveal. Finally, we show that VetDroid can help to identify
subtle vulnerabilities in some (top free) applications otherwise
hard to detect.

Index Terms— Android security, permission use analysis,
vetting undesirable behaviors, android behavior representation.

I. INTRODUCTION

SMARTPHONE platforms are becoming more and more
popular these days [2]. To protect sensitive resources in

the smartphones, permission-based isolation mechanism [3]
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Fig. 1. Limitations of syscall-based solutions on Android platform.

is used by modern smartphone systems to prevent untrusted
apps from unauthorized accesses. In Android, an app needs
to explicitly request a set of permissions when it is installed.
However, after permissions are granted to an app, there is
no way to inspect and restrict how these permissions are
used by the app to utilize sensitive resources. Unsurprisingly,
Android has attracted a huge number of attacks. According
to McAfee threat report of Q3 2012 [4], Android remains
the largest target for mobile malware and the number almost
doubled in Q4 2012. While these malware apps are clear
examples containing undesirable behaviors, unfortunately even
in supposedly benign apps, there could also be many hidden
undesirable behaviors such as privacy invasion.

An important part in the fight against these undesirable
behaviors is the analysis of sensitive behaviors in Android
apps. Traditional analysis techniques reconstruct program
behaviors from collected program execution traces. A rich
literature exists (see [5]–[11]) that focuses on solutions to
construct effective behavior representations. All these research
efforts have mostly used system calls to depict software behav-
iors because system calls capture the intrinsic characteristics
of the interactions between an application and the underlying
system. Previous studies differ from each other only in how to
structure the set of system calls made by the applications [12].
However, previous work is not readily applicable due to the
following unique features of Android.

A. Android Framework Managed Resources

As depicted in Figure 1, Android is an application frame-
work on top of Linux kernel [13] where applications do not
directly use system calls to access system resources. Instead,
most system resources in Android are managed and pro-
tected by the Android framework, and the application-system
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interactions occur at a higher semantic level (such as accessing
contacts, call history) than system calls at the Linux Kernel
level. Indeed, Android provides specific APIs for applications
to access system resources and regulates the access rules.
Using system calls to learn the interaction behaviors between
applications and Android will lose a semantic view of accesses
to Android resources, degrading the quality and precision of
the reconstructed behaviors.

B. Binder Inter-Process Communication (IPC)

In Android, system services are provided in separated
processes, with a convenient IPC mechanism (Binder) to facil-
itate the communication among system services and applica-
tions. Binder IPC is heavily used in Android and recommended
in the design of applications. Figure 1 demonstrates the prob-
lems brought by the wide use of IPC to traditional syscall-level
behavior reconstruction. First, traditional solutions would only
intercept a lot of system calls used to interact with the Binder
driver, hiding the real actions performed by the application.
Second, the use of IPC in Android apps breaks the execution
flow of an app into chains among multiple processes, making
the evasion of traditional syscall-based behavior monitoring
easier [14].

C. Event Triggers

Android employs an event trigger mechanism to notify
interested applications when certain (hardware) events occur.
In this model, for example, if an application wants to be
notified when the phone’s location changes, it just needs to
register a callback for such an event. When Android sniffs a
location change event from the location sensors, it notifies all
the interested applications of the latest location by invoking
their registered callbacks. Although the event notification is
proceeded via Binder IPC (sycall), this asynchronous resource
access model via system delivery is quite different from
the synchronous application-request access model in three
aspects. First, selecting privileged event notifications in a trace
of syscalls requires ad-hoc Binder IPC dissecting. Second,
intercepting event notification is far away from identifying the
callbacks because application may have its specific logic in
dispatching events to specific callbacks. Third, as showed in
Figure 1, we could find that application registered callbacks
are application code, so their executions cannot be captured
with syscalls. As a result, traditional behavior reconstruction
methods will lose such important behavior characteristics.

The above analysis indicates that a general method to
analyze sensitive behaviors of Android apps is highly desired.
Since Android does not use system calls as the main mech-
anism to isolate applications, system calls do not appear to
be a good vehicle for representing behaviors. Considering the
unique permission-based isolation mechanism in Android, we
propose Permission Use Analysis to analyze sensitive behav-
iors in Android apps from a novel permission use perspective.
We define a new concept, permission use behavior, which
captures what and how permissions are used to access system
resources, as well as how these resources are further utilized by
the application internally. For example, assume an application

requests both ACCESS_FINE_LOCATION and INTERNET
permissions during the installation time. The Permission Use
Analysis technique should track the explicit points where these
two permissions are requested and also all the implicit points
where the location and network resources are used inside the
application. In this case, any point where two permissions are
intertwined is of particular interest because it might indicate
possible location leakage to the network.

In this paper, we design a dynamic analysis system called
VetDroid to automatically perform permission use analysis on
Android apps. However, it is non-trivial to construct an effec-
tive permission use analysis technique. VetDroid overcomes
several key challenges to completely identify all permission-
sensitive behaviors with accurate permission use information
during the runtime. Such analysis is performed in two phases:
first, VetDroid identifies all sensitive interactions between the
Android system and apps with accurate permission use infor-
mation by intercepting all invocations to Android APIs and
sniffing exact permission check information from Android’s
permission enforcement system; second, based on the identi-
fied sensitive interactions, VetDroid tracks all potential sen-
sitive behaviors inside the apps, by recognizing the exact
delivery point in the application for each permission-sensitive
resource and locating all the use points of these resources
with permission-based tainting analysis. VetDroid also features
a driver to enlarge the scope of the dynamic analysis to
cover more application behaviors and a behavior profiler to
generate behavior graphs with highlighted sensitive behaviors
for analysts to examine.

To evaluate the effectiveness of permission use analysis
and VetDroid, we first use VetDroid to analyze real-world
Android malware. The results show that the permission use
behaviors reconstructed by VetDroid can significantly ease the
malware analysis. We further apply VetDroid to more than
one thousand top free apps in Google Play Store. VetDroid
finds more information leaks than the state-of-the-art leak
detection system TaintDroid [1], and shows its capability to
analyze the fine-grained incentives of information leaks among
the apps. Furthermore, VetDroid even detects subtle Account
Hijack Vulnerability in a top free Android app. The analysis
overhead caused by VetDroid is reasonably low for an offline
analysis tool.

This paper makes the following major contributions.
• We analyze the limitations of existing syscall-based

behavior analysis methods when applied to Android
platform and propose permission use analysis as a new
perspective to analyze Android apps.

• We present a systematic framework to reconstruct
permission use behaviors. Our automated solution is able
to completely identify all possible permission use points
with accurate permission information.

• We implement a prototype system, VetDroid, and eval-
uate its effectiveness in analyzing real-world Android
apps. VetDroid not only greatly eases the analysis of
malware behaviors, but also assists in identifying fine-
grained causes for information leakages and even subtle
vulnerabilities in benign Android apps otherwise hard to
detect.
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The rest of this paper is organized as follows. Section II
introduces some background information about Android and
the motivation for a new kind of behavior analysis technique.
Section III presents our key permission use analysis tech-
nique and Section IV describes two auxiliary components
necessary for an automated analysis system. After that, we
present our evaluation results in Section V and discuss the
paper in Section VI. Finally, Section VII presents the related
work and Section VIII concludes the paper.

II. PROBLEM STATEMENT

A. Android Background

Android is the most popular mobile operating system today.
To enhance the security, Android is designed to be a privilege-
separated operating system, in which each application runs
with a distinct system identity (Linux UID and GID). Android
employs a quite efficient and convenient IPC mechanism,
Binder, which is extensively used for interaction between
applications as well as for application-OS interfaces. Binder
is implemented as a kernel driver and user-level applications
could just interact with it through standard system calls, e.g.,
open(), ioctl(). Binder is the key infrastructure of Android
system and aggressively used to connect various parts of the
system together.

To facilitate resource accessing from isolated applications
and data sharing among applications and the system, Android
designs a permission-based security mechanism [15]. Each
application needs permissions to access system resources.
These permissions are granted from users at install time.
At runtime, each application is checked by Android before
accessing sensitive resources. Any access to resources without
granted permissions will be denied. The permission mecha-
nism in Android is fine-grained [16] which is different from
iOS [17]. In Android 4.2, there are 130 items of sensitive
resources that are protected with permissions [18]. Limited by
page space, we only introduce some basic knowledge about
Android here and the conference version [19] of this paper
includes more details.

B. Motivation

Existing work [5], [7]–[10] on behavior analysis has mostly
used system calls to depict application’s internal behav-
iors. However, previous work has problems when applied
to Android platform due to Android’s new security model.
As explained in Section I, these problems make traditional
solutions not well-suited for monitoring fine-grained Android
behaviors such as accesses to Android managed resources,
interactions with system services through Binder IPC, and
responses to privileged system events. Based on syscall-level
introspection, CopperDroid precisely reverses Android API
invocations. Compared with existing syscall-based work, it
could extract better Android-level semantics. However, only
recognizing all interactions between the Android system and
apps might not be enough for constructing an effective, fine-
grained, internal behavior analysis. CopperDroid still has lim-
itations in filtering out irrelevant interactions and examining
fine-grained internal behaviors inside apps.

TABLE I

CAPABILITIES ACHIEVED BY EXISTING WORK WHEN

COMPARED WITH VETDROID

TaintDroid [1] alerts information leaks inside an Android
app via dynamic taint tracking. AppIntent [20] redefines the
privacy leakage as user-unintended sensitive data transmission
and designs a new technique, event-space constraint symbolic
execution, to distinguish intended and unintended transmis-
sion. However the two tools could neither analyze other kinds
of undesirable behaviors such as stealthily sending SMS, nor
examine the internal logic of sensitive behaviors. Profile-
Droid [21] is a behavior profiling system for Android apps
which is also not suitable for analyzing internal behavior logic.
DroidScope [22] is an analysis platform designed for Android
that extends traditional techniques to cover Java semantics.
However, the problem of analyzing Android apps is not
simple as how to capture behaviors from different language
implementations. It is hard to conduct effective analysis
without considering Android’s specific security mechanism.
Permission Event Graph [23], which represents the temporal
order between Android events and permission requests, is
proposed to characterize unintended sensitive behaviors.
However, this technique could not capture the internal logic
of permission usage, especially when multiple permissions
are intertwined.

From the above short analysis of existing work, we find
that they do not take full consideration of permission-based
isolation mechanism in Android [3], which we believe to
be important to understand behaviors of these applications.
Thus, in this paper we propose Permission Use Analysis as
a new and complementary aspect in analyzing Android apps.
The proposed permission use analysis technique captures what
and how permissions are used to access system resources,
as well as how these resources are further utilized by the
application internally. We build a dynamic analysis platform,
named VetDroid, to automatically perform permission use
analysis on Android apps. As presented in Table I, compared
with existing work, VetDroid has the following capabilities in
analyzing sensitive behaviors in Android apps.

• Android-level Semantics. To ease the analysis of Android
apps, VetDroid extracts Android-level semantics dur-
ing the analysis, such as Android APIs, permission
usage.

• Analyze Generic Sensitive Behaviors. VetDroid supports
analyzing generic, high-risk behaviors by effectively
abstracting sensitive behaviors.
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Fig. 2. Overview of VetDroid to analyze Android apps with permission use analysis.

• Analyze Internal Behaviors. The internal behaviors inside
an Android app are crucial for analyzing Android apps.
VetDroid not only identifies sensitive interactions between
the Android system and apps, but also tracks sensitive
internal behaviors.

• Filter Irrelevant Behaviors. Not all behaviors exposed by
the app are valuable for security analysis. To highlight
sensitive behaviors, VetDroid automatically filters irrele-
vant behaviors from the permission perspective.

C. VetDroid Overview

Figure 2 shows the overview design of VetDroid. Sample
applications are first loaded into Application Driver, which
automatically executes the application in our sandbox (details
described in Section IV-A). During the execution, Permission
Use Analysis module (details described in Section III) identi-
fies all the permission use points and their relationships. These
behaviors are recorded by Log Tracer with runtime informa-
tion into a log file. The log file is offline processed by Behavior
Profiler to automatically construct behavior representations
(details described in Section IV-B). Next, this paper will detail
the design of main components of VetDroid system.

III. PERMISSION USE ANALYSIS

The key challenge in our approach is on the effectiveness of
Permission Use Analysis, i.e., how to completely identify all
the permission use points with accurate permission informa-
tion and precisely track their relationships. We define a new
concept, permission use behavior, to represent the extracted
behaviors in terms of permission use points. Specifically, we
distinguish two kinds of permission use points in permission
use behavior:

• Explicit Permission Use Points (E-PUP), which represent
sensitive interactions between the Android system and the
app that explicitly cause permission checks.

• Implicit Permission Use Points (I-PUP), which capture
sensitive internal behaviors inside an app that implic-
itly utilize permission-related resources with application-
specific logic.

Permission Use Analysis is proceeded in two phases. First,
it identifies all sensitive application-system interactions that
cause permission checks (aka E-PUPs), and marks these
interactions with accurate permission use information. Second,
it locates all the permission-sensitive resources that acquired
from the system and track all the sensitive internal use points
of these resources (aka I-PUPs). Since asynchronous resource

Fig. 3. An example about E-PUPs and I-PUPs.

delivery mechanism is commonly used in Android, Permission
Use Analysis carefully takes this mechanism into account by
precisely recognizing the resource delivery point, which means
the first place in the app that the sensitive data arrives.

Figure 3 gives an example of how Permission Use Analysis
works. This piece of code monitors the location change
event to send the latest location to a remote party via
SMS. At point 1, it registers a SmsLocationListener to
monitor the location change event by invoking the API
LocationManager.requestLocationUpdates. Permission Use
Analysis identifies this API invocation as a sensitive interaction
because it triggers a ACCESS_FINE_LOCATION permission
check. Since, LocationManager.requestLocationUpdates API
use asynchronous resource delivery mechanism to propagate
location resource, Permission Use Analysis further recognizes
its registered callback (point 2) as a resource delivery point.
When the location changes, point 2 is invoked to acquire the
latest location. At point 3, the acquired location is transformed
into a String which is sent to the number “12345” via
SMS. Similarly, Permission Use Analysis would identify it
as a E-PUP of SEND_SMS permission. Meanwhile, Permis-
sion Use Analysis would also treat this point as an I-PUP
of ACCESS_FINE_LOCATION permission for utilizing the
acquired location resource.

According to the two phases in Permission Use Analysis,
it is implemented by two main components: E-PUP Iden-
tifier, which identifies all E-PUPs with accurate permission
information (details described in Section III-A); and I-PUP
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Tracker, which keeps tracking of the resources requested
at each E-PUP to trace all I-PUPs (details described in
Section III-B).

A. E-PUP Identifier

During the execution, applications may request system
resources that are protected by some permissions. E-PUPs
represent such behaviors in the application. The key feature
of an E-PUP is that it’s a callsite that invokes an Android
API, and a permission check occurs during the execution of
this API. To reconstruct effective permission use behaviors,
the E-PUP Identifier should meet two properties.

• Completeness. It should completely identify all the call-
sites that invoke privileged Android APIs.

• Accuracy. It should catch accurate information about the
permission checked by Android during the execution of
an API; otherwise the correctness and preciseness of the
reconstructed behaviors cannot be guaranteed.

Existing work [24] and [25] has built privileged API lists
with required permissions. It seems that our E-PUP Identifier
could leverage such API-permission lists to identify E-PUPs
by intercepting all APIs during the execution, and then
looking up the permissions that would be checked in an
API-permission list by matching API signatures. Unfortu-
nately, existing API-permission lists are either incomplete [24]
or inaccurate [25]. Stowaway [24] uses Java reflection to
execute Android APIs and monitors what permissions are
checked by the system. To create appropriate arguments for
each API, Stowaway uses API fuzzing to automatically gen-
erate test cases. Although Stowaway’s API-permission list is
accurate, it is quite incomplete due to the fuzzer’s inability to
generate complete inputs for all Android APIs. To achieve a
good coverage, PScout [25] adopts static analysis to extract
API-permission lists from Android source code. Although
PScout’s API-permission list is relatively complete, it is not
accurate enough, because an Android API could use different
permissions at runtime according to its arguments, which is
also acknowledged by its authors [25]. To implement a both
complete and accurate E-PUP Identifier, we need to design a
new technique, as described below.

1) E-PUP Identification Strategy: Based on our defini-
tion of E-PUP, we propose a straightforward identification
strategy. First, our technique identifies the application-system
interface, which is a code boundary between application code
and system code. Based on the application-system interface,
E-PUP Identifier intercepts all calls to Android APIs. Then,
by monitoring permission check events in Android’s permis-
sion enforcement system during the execution of an API
and propagating the exact permission check information to
the application side, E-PUP Identifier completely identifies
all the E-PUPs with accurate permission use information.
Since the permission check information is sniffed from the
permission enforcement system, this strategy also works when
an Android API is invoked through Java reflection or Java
Native Interface.

The application-system interface is recognized at every
function call site by checking whether the caller is applica-
tion code and the callee is system code. As Android apps

Fig. 4. Two kinds of permission checks in Android’s permission enforcement
system.

are mostly developed in the Java language and run on the
Dalvik virtual machine, we instrument Dalvik to monitor all
function calls. The algorithm to perform code origin checks
should be very efficient, otherwise a huge performance penalty
would be introduced. Fortunately, we find an efficient way to
differentiate application code from system code by checking
their class loader, because system code is loaded by a distinct
class loader in Dalvik to ensure the VM integrity.

2) Acquire Permission Check Information: The complete
identification of permission checks is the key to identify
E-PUPs. With the permission check information, it’s easy to
judge whether an application-system interface is an E-PUP or
a normal call site.

Android’s permission system is enforced by two modules:
Android system services and Linux kernel. According to the
different permission enforcing techniques, we differentiate two
kinds of permission checks in Android’s permission enforce-
ment system: Android Permission Check (AndPermChk) which
is performed by Android system services to protect framework
layer resources, and Kernel Permission Check (KerPermChk)
which is enforced by Linux kernel to protect file system
and network. For the two types of permission checks, the
permission check information is propagated differently:

a) Propagate android permission check event: As
Figure 4 shows, AndPermChk is performed in a separate
Android process. The application side has no idea about what
permission is checked by what system service. It is difficult
to automatically propagate the permission check information
from a separate service process to the application. Since
Android apps employ Binder to invoke remote interfaces of
a service process and the result is also returned via Binder,
we choose to extend the Binder driver and its communication
protocol to propagate the permission check information during
the IPC procedure. As all AndPermChks are finally handled by
ActivityManagerService, we instrument its permission check
logic to convey the permission check information to the Binder
driver. With the extended Binder driver, this permission check
information can be propagated back to the application side.

b) Propagate kernel permission check event: With a
unique GID assigned to every kernel-enforced permission,
KerPermChk is enforced by the GID isolation mechanism.
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We instrument the GID isolation logic to record the checked
GID into a kernel thread-local storage. The checked permis-
sion can be recognized by mapping the checked GID to the
corresponding permission reversely. To acquire the permission
check information from the kernel at the application-system
interface, two system calls are added to access and clear the
checked GID in the kernel thread-local storage. There may
be some concerns that whether attackers would escape/attack
the permission use identification by actively utilizing the two
system calls. Actually, it would not. Since these two system
calls are invoked just before or after the Android API, attackers
could not tamper the execution flow during the API execution
to invoke the two system calls.

Thus, with permission check information propagated to the
application side, E-PUP Identifier could identify all E-PUPs
with accurate permission use information.

B. I-PUP Tracker

While E-PUPs represent the behaviors of how an applica-
tion use permissions to request sensitive resources, I-PUPs
capture the internal behaviors of how the application manip-
ulates these protected resources. To track the resources use
points inside an app, I-PUP Tracker first needs to recog-
nize the delivery point for each requested resource in the
application.

1) Recognize Resource Delivery Point: Android’s program-
ming model complicates the identification of resource deliv-
ery points in the application. Callbacks are heavily used in
Android to monitor privileged system events, such as location
change events and phone state change events. There are
three types of callbacks in Android that can be registered to
deliver system resources: BroadcastReceiver, PendingIntent,
and Listener. BroadcastReceiver is one of the four types of
components defined in the Android application model, as
described in Section II. PendingIntent [26] is a special Intent
that can be sent back from a separate process on behalf of its
creator. According to the ways of instantiating, a PendingIntent
can be sent to an Activity, a Service or a BroadcastReceiver.
Listener is a specialized class to handle callbacks that can be
triggered remotely.

For most cases, BroadcastReceivers are declared in the
app’s manifest file and registered to the system when the
app is installed. Android also provides APIs to register
BroadcastReceivers at runtime. PendingIntents and Listeners
are registered via specific Android APIs. Since callbacks are
used by a small number of Android APIs, we choose to
recognize the resource delivery point by monitoring those APIs
that may register callbacks.

Although PScout’s privileged API list [25] is not accurate
enough for E-PUP Identifier, it provides a complete list for
picking out APIs that register callbacks. However, there are
more than 10,000 distinct APIs in PScout’s API list for every
Android version, so it is hard to manually check every API.
Thus, we use an automatic method to filter out most APIs
that definitely cannot register callbacks, and manually check
a small number of remaining APIs.

Since only one specific API can register BroadcastReceivers
at runtime, our automatic filtering method mainly selects APIs

TABLE II

CALLBACK APIs SELECTED IN POPULAR ANDROID VERSIONS

that register PendingIntents or Listeners. Our selection strategy
is to find all potential APIs whose arguments may contain
a PendingIntent or a Listener. We observe that Listeners
can be invoked from a separate/remote process, so they are
Binder objects. Firstly, our selection algorithm finds all the
subclasses that extend android.os.Binder. Secondly, as an API
may declare an interface as the argument type, our algorithm
further collects a list for the interfaces that each Binder
subclass implements. At last, our filtering method looks up
PScout’s API list to select those APIs with an argument type
contained in the subclass list or the interface list.

Table II lists the callback APIs that are selected by the
filtering method in several Android versions. For Android 2.3,
our filtering method finds 232 APIs that may register Listeners.
PendingIntent is easy to handle, because it is defined as
a final class in Android. After a search on PScout’s API
list, our method finds 58 APIs whose arguments contain a
PendingIntent. Then we manually verify the total 286 APIs
(4 APIs register both PendingIntents and Listeners), and even-
tually we confirm 89 APIs register PendingIntents or Listeners
to acquire protected system resources. For Android 4.0, there
are 319 callback APIs selected. Compared with version 2.3,
there are 65 newer callback APIs. For these new APIs, we
need manually verify them to find whether they would register
PendingIntents or Listeners for resource delivery. Actually, not
all new APIs need to be manually verified, because many of
them are just variants of old APIs in newer versions. Indeed,
we just need to check 33 APIs for Android 4.0, and additional
20 APIs for Android 4.1. In this procedure, our automatic
API filtering method greatly reduces the manual efforts and
requires only small efforts to keep pace with the Android
version.

For our selected APIs that register callbacks, the resource
delivery point is the registered callback. While for other
APIs, the E-PUP is also the resource delivery point. Since
BroadcastReceiver can be registered by the manifest file,
we parse the manifest file of each analyzed app to col-
lect declared BroadcastReceivers and mark their onReceive()
functions as the resource delivery points. After the resource
delivery points are recognized, the I-PUPs can be tracked by
following the resource usage inside the app.

2) Permission-Based Taint Analysis: After the resource is
delivered to the application, it can be used in different ways
with application-specific logic that makes the identification
of I-PUPs quite difficult. To solve this problem, dynamic
taint tracking can be used to capture the resource usage
inside the application. However, traditional taint analysis relied
on manually specified taint sources and annotated tags [1],
thus it cannot be applied directly. The key challenge is to
automatically taint related data for each delivered resource
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with permission information. We propose permission-based
taint analysis to address this problem. It works in the following
steps.

a) Tag allocation: A taint tag is allocated at each E-PUP
to mark the requested resource with corresponding permission
check information. The taint tag is represented as a 32-bit
integer. Each bit of the tag corresponds to a unique E-PUP.
Our tag allocation is context-sensitive, which means the same
tag will be assigned to E-PUPs with the same calling context.
The reason for this strategy is to prevent the explosion of tag
bits while different E-PUPs are still distinguishable.

b) Automatic data tainting: After a taint bit is allocated
for an E-PUP, the corresponding acquired system resource
needs to be automatically tainted with the tag. The automatic
data tainting occurs at the resource delivery point for each
E-PUP. For APIs that register callbacks, a wrapper is added
around each registered callback to taint the delivered protected
data according to the concrete type of the callback so that the
related data gets tainted only when the callback is triggered.
For other APIs, two kinds of data are automatically tainted
according to the signature of the API: 1) The return value of
the API at each E-PUP should be tainted with the correspond-
ing tag. 2) As Java is an object-oriented language, the state of
an object may be modified by instance methods. For instance
APIs, we also taint the invoked object with the tag allocated
at the E-PUP.

c) Identify I-PUPs: Dynamic taint tracking is employed
to follow the propagation of tainted resource data. I-PUP is
identified by recognizing the use point of tainted data. The
granularity of the identification is quite important to the quality
and efficiency of the I-PUP Tracker. It could be performed
at the instruction-level, but a single instruction is too fine-
grained to depict a meaningful action. Thus, we choose to
identify I-PUP at the function-level. We intercept all function
invocations in the Dalvik virtual machine and compute a taint
tag for each function. The tag for a function is calculated
by a bitwise OR operation on the taint tags of its parameter
values. If the tag is non-zero, the function is an I-PUP for the
permission represented by the tag.

After identifying resource delivery points and performing
the permission-based taint analysis, I-PUP Tracker could
trace all the use points of resources with accurate permission
information.

IV. AUXILIARY COMPONENTS

A. Application Driver

Unlike traditional applications, there is no single entry
point for an Android app. It brings problems to automatically
executing Android apps. Considering the programming model
of Android apps, our Application Driver adopts a component-
based testing strategy. By parsing the manifest file of each
Android app, it automatically extracts Activities and Services
from the application and runs each component in the sandbox
for a while (the time depends on the concrete hardware
platform). Additionally, for each Activity, Monkey [27] is used
to inject random UI events to exercise the user interface.

Furthermore, some behaviors of Android apps are triggered
by events. Our Application Driver also injects fake events

Fig. 5. An example of injecting location change event.

(such as the arrival of new SMS, location change) during the
execution of each component. As described in Section III-B,
we extract a list of privileged APIs which are used to register
callbacks. Based on this API list, we also instrument each API
to notify the Application Driver module to inject related events
when certain callbacks are registered through the API. Figure 5
shows an example about automatically injecting fake location
change events when the corresponding callbacks are registered
through the LocationManager._requestLocationUpdates() API.
At Line 8, the location change monitoring request is delegated
to LocationManagerService via the Binder protocol. Line 10
is our instrumentations logic which notifies LocationMan-
agerService immediately to fake a location change event.
Thus, the registered callback could be triggered for execution
to enlarge the analysis scope. Compared with existing event
injection technique, such as [28], our technique could perform
in-time event injection at the most appropriate time, for not
only callbacks listed in the Manifest but also API callbacks
that invoked at runtime. With the runtime injected events,
Permission Use Analysis module could reconstruct more per-
mission use behaviors from the application.

Though many techniques are introduced to drive the appli-
cation execution, it is worth noting that our Application Driver
could not guarantee a complete coverage over all possible
behaviors. In fact, this is generally a difficult problem for
all dynamic analysis work. This paper tries to design a
better behavior approximation for analyzing Android apps, and
leaves the coverage problem as our future work.

B. Behavior Profiler

During the execution of the application in VetDroid sand-
box, Log Tracer collects the behaviors reported by Permission
Use Analysis module with runtime information to a log file.
Behavior Profiler analyzes the log file offline to automatically
generate permission use graphs for further analysis.

Behavior Profiler first identifies all the E-PUPs from the
log file. For each E-PUP, Behavior Profiler further collects all
I-PUPs for the requested permission by tracking the same tag
bit. By connecting these permission use points according to the
execution orders, Behavior Profiler could draw a permission
use graph for each permission.

As Android adopts a fine-grained permission model [16]
to protect system resources, our insight is that applications
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usually need to use multiple permissions together to accom-
plish a meaningful behavior. Based on this observation, Behav-
ior Profiler searches all the permission use graphs to connect
those graphs with an overlapped node (which uses at least
two permissions) to form a new permission use graph. The
permission use graph with multiple permissions captures inter-
esting behaviors for analysis, as will be demonstrated later
in the evaluation. Behavior Profiler automatically discards
permission use graphs that use only a single (less interesting)
permission with the exception of those graphs using a high-
risk permission such as SEND_SMS, CALL_PHONE. The
profiled permission use graphs capture the behaviors of using
permissions inside an application, especially when multiple
permissions are intertwined. With such permission use graphs,
experts could inspect the internal logic of Android apps to
analyze suspicious behaviors, verify programming logic, etc.

V. PROTOTYPE & EVALUATION

We implement prototypes of VetDroid based on Android
version 2.3 and version 4.1. Currently, VetDroid supports
running on Samsung Nexus S phones, Samsung Galaxy Nexus
phones and emulators. Note that our techniques are not limited
to any specific version. Most of our enhancements to Android
lie in the Dalvik virtual machine and the Linux Kernel, whose
architectures are quite stable. The prototype can be easily
ported to a higher version. For example, we spent only 4 hours
in updating VetDroid from version 2.3 to version 4.1.

A. Implementation Summary

E-PUP Identifier instruments the Dalvik virtual machine to
intercept all API invocations, and enhances the Linux kernel as
well as the Binder driver to acquire accurate permission use
information at the application side. I-PUP Tracker modifies
the Android framework to monitor registrations and invoca-
tions of application callbacks, and extends the taint tracking
logic in TaintDroid [1] to implement the permission-based
taint analysis (as described before). The Application Driver
and Behavior Profiler are implemented in Python. In all,
VetDroid modifies and enhances several main components in
Android including the Linux kernel, the Binder driver, the
Dalvik virtual machine, to implement a systematic permission
use analysis framework.

We evaluate VetDroid from three aspects. We first apply
VetDroid to real-world Android malware and analyze their
internal malicious behaviors with permission use graphs. Next,
we report our findings on vetting more than one thousand top
free apps in Google Play with VetDroid. Finally, we measure
the runtime overhead of VetDroid and the efficiency of tag
allocation used in the taint analysis.

B. Real-World Malware Study

We have used VetDroid to analyze 600 Android
malware samples that we have collected from Malware
Genome Project [29]. To efficiently construct permission use
behaviors, Application Driver runs these samples in 10 emu-
lators and each component is executed for 120 seconds.

TABLE III

EXAMPLE BEHAVIORS ANALYZED BY VETDROID

Our hardware platform is an AMD server with 4*4 cores
(2GHz) and 16GB memory. In all, 5,990 components are
executed, which last totally about 22 hours (i.e., 2.2 minutes
per sample). The reconstructed behaviors are automatically
classified by their E-PUPs and further manually confirmed and
categorized.

Table III lists six example categories of interesting malicious
behaviors [29] captured by VetDroid. We can find that these
malware either steals users’ sensitive data or incurs financial
charge. We also compare the analysis results with those
reported by Malware Genome Project [29]. Unfortunately, the
Command and Control (C&C) servers [30] used by some
samples were not available during the analysis and some
malicious behaviors are only triggered under certain contexts,
so some behaviors reported in [29] were not observed. In all,
VetDroid successfully analyzed 21 malware families and more
importantly reconstructed their detailed behaviors, demon-
strating its effectiveness in aiding malware analysis. More
interestingly, VetDroid captured some previously unreported
behaviors in dissected malware samples. For example, we
found 38 BaseBridge samples exhibit SMS Stealing behavior
and 1 Zitmo sample has SMS Blocking behavior, which have
not been reported by Malware Genome Project yet.1

In the following, we present two interesting case studies
of using VetDroidto analyze GGTracker and SMSReplicator
samples. The permission use graphs capture the complete
execution flow related to the malicious behaviors.2 The nodes
with filled colors represent E-PUPs, while other nodes repre-
sent I-PUPs. The edges in the graph depict the flow among
permission use points.

1) Analysis of GGTracker: GGTracker is known for its
intent to automatically sign up infected users to premium
services. Due to the second-confirmation policy required in
some countries, GGTracker needs to stealthily reply to an
acknowledge SMS message sent from the service provider to
sign up a premium-rate service. This behavior is critical to
understand the internal logic of this malware.

We observe two kinds of behaviors in GGTracker
with VetDroid. The first is the SMS blocking behavior.
Figure 6 presents this behavior. We find t4t.power.
management.activity.SmsReceiver is used to intercept any new
SMS message. Then getOriginatingAddress is invoked to get

1Some of these behaviors have been mentioned in other places, see [31]
has mentioned the SMS Blocking behavior in Zitmo samples.

2In this paper we only present partial permission use graphs.
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Fig. 6. SMS blocking behavior in GGTracker.

Fig. 7. SMS Auto Reply behavior in GGTracker.

the sender’s number of the message. The permission use graph
clearly shows that the malware would check whether the
sender’s number is “99735”. By manually faking a SMS from
“99735”, we find this malware invokes abortBroadcast(). This
API would suppress the broadcasting of the event about the
arrival of a new SMS. Since GGTracker registers its Broadcas-
tReceiver with the highest priority, this SMS is hidden from
the user. Similarly, by checking the constraints on the sender’s
number from the graph, we can direct the Application Driver
to inject faked SMS from other numbers (this can be easily
implemented with an emulator [32]) to cover more interested
behaviors. At last, we confirm GGTracker also blocks SMS
from “46621”, “96512”, “33335”, “36397”, etc.

Besides, we also observe SMS Auto Reply behavior during
iteratively changing the sender’s number of the faked SMS.
From Figure 7, we find when the malware intercepts a SMS
from “41001”, it automatically replies an SMS to “41001”
with the content “YES” using the sendTextMessage API. The
SMS Auto Reply behavior is critical in this kind of malware
that stealthily signs up infected users to premium services.
With VetDroid, this behavior is clearly revealed, enabling the
detection and prevention of such attacks.

Fig. 8. System call list for SMS Auto Reply behavior.

a) Comparison with strace: To have a brief comparison
with syscall-based analysis, we use strace to collect system
call trace during the execution of SMS Auto Reply behavior
(as listed in Figure 8). From the total 33 system calls, it’s
hard to recognize them as SMS Auto Reply behavior due to
the loss of Android-level semantics and context information,
while VetDroid can clearly reconstruct such behavior with the
analysis of permission use points and behaviors.

b) Comparison with CopperDroid: CopperDroid [28]
recovers Android-level semantics by dissecting Binder IPC.
From the behavior report generated by CopperDroid for
GGTracker [33], we could find SMS send behavior. However,
we could not easily tell whether this behavior is an immediate
result caused by the arrival of a new SMS message or not, nor
can we easily understand the purpose of this malware.

2) Analysis of SMSReplicator: SMSReplicator [34] is
a spyware app targeting infected users’ incoming short
messages. This malware protects itself by hiding its icon.
SMSReplicator not only leaks SMS messages, but also incurs
additional financial charge. From the permission use graph
(Figure 9), we find that all the incoming SMS messages
are intercepted by this malware using a BroadcastReceiver
(com.dlp.SMSReplicatorSecret.SMSReceiver). Furthermore,
SMSReplicator queries the contacts to find the sender of the
intercepted message. Finally, the name of the sender and the
message body is concatenated to send to a number specified
by the attacker via SMS.

It is relatively easy to recognize this behavior as SMS
Forwarding.

Similarly, we also check the behavior analyzed by
CopperDroid on SMSReplicator. From [35], we could find
CopperDroid detects the SMS interception and SMS Send
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Fig. 9. SMS Forwarding behavior in SMSReplicator.

behavior. However, with this report, we could not fur-
ther identify fine-grained dynamics in malicious intents, i.e.
whether it is SMS Auto Reply behavior or SMS Forward-
ing behavior. Meanwhile, with the reconstructed permission
use behaviors which track the internal application logic,
their divergent malicious intents are clearly differentiated
by VetDroid.

C. Vetting Market Apps

Next, we use VetDroid to vet 1,249 top (benign) apps
crawled from Google Play official store. These apps are
top free apps crawled from 32 different categories such as
games, education, entertainment, finance, social, sports, tools.
We also use multiple emulators to parallelize the process of
reconstructing permission use behaviors for these apps. There
are several interesting findings.

Finding 1 (VetDroid Can Assist in Finding More
Information Leaks Than TaintDroid): Based on the recon-
structed permission use behaviors, we implement a simple
permission-based filter that selects permission use graphs with
at least one permission to read system resource and one
permission to exfiltrate data to a remote party. The selected
graphs are further classified with regard to E-PUPs. We
manually check these classified behaviors and confirm four
kinds of information leaks, as listed in Table IV.

We also use TaintDroid [1] to run these apps with the
exact same inputs to the Application Driver. The results
are also presented in Table IV. We can see that VetDroid
detects 7 more location leaks than TaintDroid. After a further
investigation on these cases, we find that the cell location
(acquired through TelephonyManager.getCellLocation() API)
is leaked in these cases while TaintDroid does not treat this
kind of location as sensitive data. Since an app needs to
use ACCESS_COARSE_LOCATION permission to get the cell
location, VetDroid could automatically tracks the behaviors
of leaking such kind of sensitive resource by following the

TABLE IV

INFORMATION LEAKAGE RESULTS

TABLE V

INFORMATION LEAK ANALYSIS RESULTS

permission usage. VetDroid also detects 28 cases that leak the
device’s network state to a remote party while TaintDroid’s
current implementation does not support detecting leaks of
such sensitive resource.

It is worth noting that TaintDroid might be possibly
improved to detect these leaks if we proactively and manually
add ad-hoc logic to taint these sources. However, different
from TaintDroid, Permission Use Analysis can automatically
track such resources from the permission perspective. This
experiment clearly demonstrates the necessity of adopting
permissions to generally analyze sensitive behaviors.

Finding 2 (VetDroid Can Inspect the Fine-Grained Causes
of Information Leakage): Permission Use Analysis captures
the internal logic of permission usages inside an app, thus
enables us to analyze the fine-grained procedure of information
leakage. We manually analyze the permission use behaviors of
several information leaks reported by VetDroid to investigate
the contexts of reading and leaking sensitive information.
In this experiment, we mainly focus on Phone Number and
Location leakage cases because they are relatively interesting.

Based on the internal context of information leakage, we
find that many such information leaks are actually not caused
by the app itself. Table V shows our analysis results. From
this table, we could find that 15 out of 24 location leaks are
actually caused by mobiles Ads and payments. There is also
one case that sends the phone number to a mobile promotion
and publishing company (Mobile Public). Cell locations that
are not tracked by TaintDroid are also used by Vserv and
Handmark for better advertising.

With this experiment, we can see that VetDroid is capable
of inspecting the fine-grained causes of sensitive information
leakage by tracing internal permission use behaviors, while
TaintDroid could only alert information leaks.

Finding 3 (VetDroid Can Help Detect Subtle Application
Vulnerabilities): Since SMS service is unique and quite
important for smartphones, we analyze 33 apps that request
both RECEIVE_SMS and SEND_SMS permissions by running
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Fig. 10. SMS Activation behavior in Viber.

these apps in VetDroid. By carefully examining the permission
use behaviors, we find that the Viber application is vulnerable
to Account Hijack attack.

According to the website of Google Play, Viber is a free
VoIP app that has been downloaded nearly 100 million times
in recent 30 days worldwide. Viber provides users with free
calls and messages to other Viber users. It also requests its
user to bind his/her phone number which is used as his/her
identity. When a call/message arrives, Viber will look up the
sender’s profile in the contact with the sender’s phone number
for a friendly notification.

To prevent a user from binding others’ phone numbers,
Viber server sends an activation SMS to the phone number.
By verifying the activation code in the SMS, Viber can confirm
whether the user owns the phone number or not. The activation
phase is quite important for a popular communication app such
as Viber. Otherwise, an attacker could bind a victim’s phone
number and send fake messages/calls to the victim’s friends
on behalf of the victim.

We use VetDroid to reconstruct the permission use behavior
of the activation process. As Figure 10 shows, Viber inter-
cepts incoming SMS messages in ActivationSmsReceiver, and
extracts the activation code from the message body using
a regular expression. Once an activation code is matched,
the activation process is proceeded in the RegistrationActiv-
ity.activationCodeReceived() function.

By carefully examining the whole permission use behavior,
we find that Viber does not check the origin of an activation
SMS. Thus, an attacker could pass the activation by intercept-
ing the activation SMS from the victim and sending it to the
attacker’s Viber client, causing the victim’s account hijacked.
It is not hard to steal an SMS from a victim, especially
when the Account Hijack attack on the victim could lead to
a reasonable profit. SMS stealing could be possibly imple-
mented by malware such as SMSReplicator [34], Zitmo [36]
or social engineering. To further confirm this vulnerability,
we perform an experiment to hijack the Viber account of a

TABLE VI

RESULTS OF EXECUTION TIME AND MEMORY FOOTPRINT

OVERHEAD ON CAFFEINEMARK BENCHMARK

Fig. 11. Tag bit count distribution over the analyzed log files.

volunteer in our group. By stealthily replacing an app in his
smartphone into our repackaged version (which has the similar
SMS Blocking and Stealing behavior as Zitmo), the activation
SMS from Viber server is forwarded by our repackaged app
to the attacker’s device. After binding the volunteer’s phone
number to the attacker’s device, free calls and messages
are successfully initiated to his friends on behalf of his
identity.

D. Performance Overhead Evaluation

Due to the inline instrumentation on Android, our analy-
sis tool incurs some extra runtime overhead. We perform
experiments on our Nexus S to measure the overhead from
two aspects: execution speed and memory footprint. Table VI
shows the results on CaffeineMark, a standard performance
benchmark. Compared with the original Android system,
VetDroid slows down the entire execution of the application by
32.294%, while increases the memory footprint by 14.110%.
The main overhead of I-PUP Tracker is caused by our
permission-based taint analysis which inherits the overhead
of TaintDroid [1]. We believe this is a very reasonable and
acceptable overhead for an offline analysis tool.

E. Tag Allocation in Permission-Based Taint Analysis

In the permission-based taint analysis, each bit in a
32-bit integer is used to represent a permission use point.
Obviously, this raises concerns about whether 32 bits are
enough for permission use point representation. We collect
the tags allocated in 11,500 log files which are generated by
VetDroid during the above analysis of malware and market
apps, and present the results in Figure 11. This figure shows
the percent of log files (vertical line) which need a number
of tag bits specified by the horizontal line. From Figure 11,
we could find that a 32-bit integer is sufficient for E-PUP
identification. After a search over the 11,500 log files, we find
there are totally 83,881 E-PUPs. By taking calling context



ZHANG et al.: PERMISSION USE ANALYSIS FOR VETTING UNDESIRABLE BEHAVIORS IN ANDROID APPS 1839

of E-PUP into account, 34,328 E-PUPs (which means more
than 40 percent) do not need to be assigned with new tags.
It means that the context-sensitive tag bit allocation strategy
used in our technique greatly helps to prevent the explosion of
tag bits.

VI. DISCUSSION AND LIMITATIONS

To effectively analyze Android apps, this paper proposes a
new technique, called Permission Use Analysis. This technique
adopts permission use perspective to identify sensitive interac-
tions between the Android system and apps, and retrofits taint
analysis for tracking sensitive application-specific behaviors
in utilizing protected system resources. While taint tracking is
an important part in our technique, Permission Use Analysis
is more than a new kind of revised taint tracking. Permission
Use Analysis solves the difficulties in completely identify-
ing permission use points with accurate permission informa-
tion and automatically attaching permission information with
application-internal data before taint tracking.

By effectively abstracting sensitive behaviors in Android
apps, VetDroid aims to be an effective offline analysis tool,
instead of a malware detector or an Anti-Virus scanner.
VetDroid could be very beneficial to security researchers
and malware analysts with dissected fine-grained application
behaviors. As our evaluation shows, VetDroid is not limited to
analyze malicious apps, but also capable of analyzing benign
apps. A key advantage of our approach is that it captures the
application’s sensitive behaviors with permission use graphs,
which can significantly reduce irrelevant/uninteresting actions
and let analysts focus on the critical behaviors when inspecting
an app’s internal logic. In practice, analysts can use VetDroid
to automatically analyze a batch of apps and write simple
scripts to select interested cases for further analysis (as demon-
strated in our evaluation).

Compared with existing work, Permission Use Analysis
provides a better approximation of sensitive behaviors inside
an Android app. However, it bears limitations in the following
aspects.

Our I-PUP Tracker is built upon TaintDroid, thus inheriting
similar limitations of TaintDroid such as incapable of tracking
implicit flows and native code. DTA++ [37] proposed targeted
control-flow propagation to selectively track tainted control
dependencies. However, this technique only applies to benign
programs, and could not solve the problems of taint analysis
depicted in [38]. Sarwar et al. [39] elaborate ways to evade
TaintDroid such as control dependencies, side channels. It is
still an open problem of handling implicit flows, so we leave it
as future work. A possible way to solve the native code prob-
lem is to perform taint tracking at the binary level. However, it
would incur a high overhead [22]. One possible way to solve
this problem is to build a taint analysis system for mixed-
language executions in which taint tracking of Java code is
performed by Java virtual machine while native code is tracked
by an emulator. Thus, the overhead of pure taint tracking at the
binary level can be reduced. Furthermore, our E-PUP Identi-
fier relies on the Android permission system for permission
check identification. Thus our current implementation could

not catch those behaviors that do not cause permission
checks [40].

To enlarge the analysis scope, our Application Driver
utilizes several key features of Android, such as component-
based programming model, event triggers. However, our
technique alone could not guarantee all possible behaviors are
captured within the short time an app is executed. The Applica-
tion Driver could be enhanced with an automatic input genera-
tion system such as AppsPlayground [41], AppInspector [42],
Dynodroid [43], or guided analysis technique such as multi-
path exploration [44], forced/informed execution [45], [46].

As a dynamic analysis technique, VetDroid has to observe
the running of sensitive behaviors, which could be relatively
slow compared with static solutions. To analyze apps at
market-scale, Chakradeo et al. [47] proposed app triage to
efficiently allocate malware analysis resources. VetDroid can
be benefited by combining this technique into a practical
market-scale application analysis solution.

VII. RELATED WORK

We structure the related work from two aspects: tradi-
tional techniques for analyzing malware and permission-
related analysis techniques.

A. Malware Analysis

Plenty of studies have focused on analyzing malware at
the level of system call [12]. In [5], sequenced system calls
with arguments were translated into actions that capture the
sample’s behaviors, such as changes to file system, modifying
registries. Crowdroid [6] used system call vectors to represent
the signature of malicious behaviors. The temporal pattern
of system calls [7] was proposed to depict the application
behavior for Symbian platform. Lanzi et al. [8] pointed out the
limitation of reconstructing behaviors using linear system calls
with a large-scale study. They reconstructed resource access
behaviors by considering read/write system calls to identify
malicious intents with the observation that most benign pro-
grams access their own files and registries. Dependency graphs
of system calls were firstly proposed in [9] to represent behav-
iors. It captures the intrinsic application-system interactions
and seems to be a good solution for behavior representation.
In [9] and [10], researchers reconstructed dependencies among
system calls by matching the types of their arguments and
return values. Comparetti et al. [11] employed dynamic taint
analysis to track the dependencies among system calls.

However, syscall-based techniques are not well-suited for
the Android platform due to the inability of monitoring
Android-specific behaviors. DroidScope [22] seems to notice
these problems by seamlessly reconstructing the semantics
from system calls and Java. However, it only refines existing
work, leaving the root problems of Android’s special permis-
sion mechanism and programming model untouched. A survey
on current Android malware characteristics was presented
in [29] and [48]. DroidRanger [49] and RiskRanker [50]
were two Android malware detectors that relied on existing
knowledge about malicious symptoms. Although they were
reported to detect known and unknown malware samples, they
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do not analyze the fine-grained internal behaviors of malware
samples, which is the focus of VetDroid.

B. Permission Analysis

Felt et al. [16] studied the effectiveness of the time-of-use
and install-time permission grant mechanism. This work was
extended in [51] to provide guidelines for platform design-
ers in determining the most appropriate permission-granting
mechanism for a given permission. Permission-based security
rules were used by Kirin [52] to design a lightweight certifi-
cation framework that could mitigate malware at install time.
Apex [53] and Saint [54] were two extensions to the Android’s
permission system by introducing runtime constraints on the
granted permissions. MobileIFC [55] introduced context-aware
policies for permission enforcement. In this permission model,
permissions are granted depending on the device state, such as
the GPS location or time of the day. This mechanism brings
a new kind of flexibility and interesting security applications.

To help end users understand application behaviors at install
time, AppProfiler [56] devised a two-step translation technique
which maps API calls to high-level behavior profiles. While
VetDroid also tries to provide better behavior understanding,
it is a tool provided for different users (security analysts) and
it uses a different new technique/perspective (permission use
behavior) to precisely capture application-system interactions
and sensitive behaviors inside an app. WHYPER [57] novelly
leveraged Natural Language Processing (NLP) techniques to
assess the risks of application by measuring whether the
developers have explicitly explained the reasons for requiring
permission-sensitive resources in its functional descriptions.

Barrera et al. [3] performed an empirical analysis on the
expressiveness of Android’s permission sets and discussed
some potential improvements for Android’s permission model.
Felt et al. [24] proposed the first solution to systematically
detect overprivileged permissions in Android apps and one-
third of the applications in this study were found to be
overprivileged. Probabilistic models of permission request
patterns [58] or permission request sets [59] were also used to
indicate the risk of new applications. To extract permission
specifications for Android, Stowaway [24] used API fuzz
testing while PScout [25] adopted static analysis on Android
source code. However, these two permission specifications
were limited in either completeness or preciseness, making
them not well-suited for implementing E-PUP Identifier.

Permission re-delegation attack in Android was first intro-
duced in [60] and [61]. Grace et al. [40] empirically evaluated
the re-delegated permission leaks in pre-installed apps of stock
Android smartphones. CHEX [62] and DroidChecker [63]
were two tools that could detect such kind of capabil-
ity leaks. Bugiel et al. [64] proposed system-centric and
policy-driven runtime monitoring of communication channels
between applications at both Android-level and kernel-level,
which could prevent not only re-delegation attacks but also
collusion attacks. Chen et al. [23] adopted static analysis to
extract permission event graphs and examined the constraint
conditions on events for each privileged API using model
checking. However, it could not capture the internal logic of

using permissions, especially when multiple permissions are
intertwined.

CopperDroid [28] was an analysis tool to reconstruct
Android-specific behaviors with syscall-level introspection.
It might be more suited for large-scale automated analy-
sis, while VetDroid to help a human analyst to understand
much better internal behaviors of the analyzed malware. Our
VetDroid differs from all existing work in that it provides
the first systematic framework to analyze permission use
behaviors.

VIII. CONCLUSION

This paper presents VetDroid, the first approach to perform
accurate permission use analysis to vet undesirable behaviors.
To construct permission use behaviors, this paper proposes
a systematic framework that completely identifies explicit
and implicit permission use points with accurate permis-
sion information. VetDroid is shown to be able to clearly
reconstruct malicious behaviors of real-world apps to ease
malware analysis. It can also assist in finding information
leaks, analyzing fine-grained causes of information leaks, and
detecting subtle vulnerabilities in regular apps. In all, VetDroid
provides a better vehicle for analyzing and examining Android
apps, which brings benefits to malware analysis/detection,
vulnerability analysis, and other related fields.
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