
Effective Topology Tampering Attacks and
Defenses in Software-Defined Networks

Richard Skowyra∗, Lei Xu†, Guofei Gu†, Veer Dedhia∗, Thomas Hobson∗,
Hamed Okhravi∗, James Landry∗

∗MIT Lincoln Laboratory, Lexington, MA
Email: {richard.skowyra, veer.dedhia, thomas.hobson, hamed.okhravi, jwlandry}@ll.mit.edu

†Texas A&M University, College Station, TX
Email: x.rayyle@gmail.com, guofei@cse.tamu.edu

Abstract—As Software-Defined Networking has gained increas-
ing prominence, new attacks have been demonstrated which can
corrupt the SDN controller’s view of network topology. These
topology poisoning attacks, most notably host-location hijacking
and link fabrication attacks, enable adversaries to impersonate
end-hosts or inter-switch links in order to monitor, corrupt, or
drop network flows. In response, defenses have been developed
to detect such attacks and raise an alert. In this paper, we
analyze two such defenses, TopoGuard and Sphinx, and present
two new attacks, Port Probing and Port Amnesia, that can
successfully bypass them. We then develop and present extensions
to TopoGuard to make it resilient to such attacks.

I. INTRODUCTION

Software-Defined Networking (SDN) is a networking
paradigm that facilitates network management and administra-
tion by providing an interface to control network infrastructure
devices (e.g., switches). In this paradigm, the system respon-
sible for making traffic path decisions (the control plane) is
separated from the switches responsible for delivering the
traffic to the destination (the data plane). The SDN controller
is the centralized system that manages the switches, installs
forwarding rules, and present an abstract view of the network
to the SDN applications.

SDN provides flexibility, manageability, and programmabil-
ity for network administrators. Complex network management
tasks can be implemented using high-level SDN controller
abstractions and APIs without the need to deal with low-
level network functionalities. Moreover, the centralized model
can facilitate the reconstruction of important holistic network
properties, such as the network topology, without the need for
more sophisticated, distributed algorithms. These advantages
have resulted in the relatively rapid adoption of SDN. Open-
Flow [28] is one realization of SDN which has been widely
implemented in commercial devices [14].

Unfortunately, such flexibility presents new security chal-
lenges. The centralized model of SDN makes SDN controllers
an attractive target for attackers. Security concerns considered
to date include rule consistency [38], operator-error in con-
figuring SDN devices [6], and denial-of-service attacks [41].
Several proposed defenses have focused on mitigating such
weaknesses [43], [23], [25]. In addition, many new languages
have been proposed to specify SDN rules and configurations,
which can facilitate formal verification of such rules [42], [13],

[22], [32]. The focus of these language efforts has primarily
been on rule consistency or implementation bottlenecks that
can be abused by an attacker.

Another class of attacks against SDN are high-level protocol
attacks that seek to abuse SDN services to poison the con-
troller’s abstraction of the network and its properties. Topology
tampering attacks are a prominent example of high-level SDN
protocol attacks. In a topology tampering attack, an attacker
seeks to poison the controller’s view of the network topology,
convincing it to believe a false topology is present instead of
the actual physical topology. Through link-fabrication attacks,
a malicious actor can redirect traffic over forged network links
passing through compromised machines, enabling man-in-the-
middle or denial-of-service attacks. With host-location hijack-
ing attacks, an attacker can impersonate an end-host and cause
traffic bound for the victim to be re-directed to the attacker
[16]. By impersonating an important server, for example, an
attacker can hijack new and ongoing client sessions.

Two recent defenses, TopoGuard [16] and SPHINX [8],
attempt to detect these topology tampering attacks via monitor-
ing of switch-based sensors and packets sent to the SDN con-
troller. TopoGuard relies on behavioral profiling and invariant-
checking to detect false network links and spoofed end-hosts,
respectively. SPHINX uses an anomaly-detection approach,
relying on the inconsistencies in network state at different
sensors to detect attacks.

In this paper, we systematically evaluate the effectiveness
of these defenses and demonstrate that they can be bypassed
generically. We present two novel attacks which we call Port
Amnesia and Port Probing. They can be used as precursors
to link fabrication and host location hijacking by attackers to
avoid detection. Through port amnesia, an attacker can force
a reset in the port type which is used by the defenses to detect
anomalous link advertisements. After mounting port amnesia,
link fabrication can succeed without being detected by To-
poGuard or SPHINX. Through port probing, an attacker sends
a fake message bringing a port up at a wrong location after
the port goes down for routine migrations or maintenance. We
build generic port amnesia and port probing attacks followed
by link fabrication and host-location hijacking attacks that suc-
ceed undetected even when both TopoGuard and SPHINX are
present, without requiring per-defense customization. Through



analysis of these attacks, we argue that not only are these
defenses insufficient to prevent topology tampering, but that
approaches which rely solely on passive monitoring of network
events could be vulnerable to the same attacks. Furthermore,
even when passive monitoring can detect certain attacks, we
argue that it is often hard for the controller to distinguish
between the attacker and the victim. This provides attackers
the opportunity to use the defense system itself as a mechanism
for denial-of-service attacks.

Using the insights gained from these attacks, we then
develop and implement TOPOGUARD+, an extension to To-
poGuard built on top of its open-source version [45], which
prevents in-band LLDP port amnesia attacks through monitor-
ing of characteristic control plane message patterns generated
as part of the attack. We also develop a defense against
out-of-band port amneisa attacks. These attacks rely on an
attacker having access to a secret channel used to relay LLDP
packets outside of the network. The defense takes advantage
of this, and detects unavoidable latency additions introduced
by processing packets over the external channel. Both defenses
are evaluated on a testbed network, and are found to introduce
negligible overhead on dataplane flows.

The contributions of this paper are as follows:
• We construct two new topology tampering attacks, port

amnesia and port probing, that can bypass state-of-the-
art SDN defenses, TopoGuard and SPHINX. We show
that these attacks can successfully poison the controller’s
view of the network topology even when TopoGuard
and SPHINX are both deployed, without requiring per-
defense customization.

• We implement and evaluate our attacks on an SDN
network and measure their parameters and properties.

• We discuss the generality of our attacks and their appli-
cability to passive monitoring defenses.

• We design, implement, and evaluate countermeasures
against all forms of Port Amnesia, and argue that active,
dynamic defenses will be necessary to mitigate topology
tampering attacks in SDN networks.

The remainder of the paper is laid out as follows. In Section
II we provide an overview of Software-Defined Networking
and the OpenFlow architecture. Classes of topology tampering
attacks, TopoGuard, and SPHINX are discussed in Section III.
We provide the details of our attacks in Section IV. Analysis
of their effectiveness and implementation details are presented
in Section V. TOPOGUARD+ is presented in Section VI and
evaluated in Section VII. Related work is discussed in Section
IX and we conclude in Section X.

II. SDN OVERVIEW

Software-Defined Networking (SDN) is a networking
paradigm that separates the control plane from the data plane
and provides a logically centralized controller, facilitating
faster and easier network monitoring and management [11].
The control plane (i.e., the controller) decides how packets
should be handled while the data plane (i.e., the switches) is

responsible for the forwarding of packets in accordance with
those decisions.

The OpenFlow standard [33] an architecture that relies on
a logically centralized, software-based controller, which com-
municates over a secure control plane to OpenFlow-enabled
network switches. An OpenFlow switch routes network dat-
aplane packets based on flow tables, which are ordered lists
of rules where each rule consists of a guard, a set of actions
to trigger, and a time to expiration. The actions are activated
and the packet processed only if the packet’s header pattern-
matches successfully against the guard for that rule. If a packet
does not match any rules in a flow table, it is forwarded to
the OpenFlow controller as a Packet-In event.

Common open-source controllers include NOX/POX [15],
[36], Beacon [10], Floodlight [12], and Ryu [39]. Throughout
this paper, without loss of generality, we refer to the Floodlight
controller in our discussions of attack details defenses, but our
discussions are equally applicable to other controllers as well.

III. EXISTING ATTACKS AND DEFENSES

In this section, we discuss existing attacks and defenses
designed to corrupt an OpenFlow controller’s internal repre-
sentation of end-host locations and network topology. These
are protocol-based attacks which do not require an attacker
to have control-plane access or knowledge of any software
vulnerability in the controller or switches. Both attacks were
first discussed by Hond, et al. [16] and Dhawan, et al. [8],
who also proposed the TopoGuard and SPHINX defenses,
respectively. We summarize each defense below, but refer the
readers to the respective papers for a full overview.

A. Attacks

1) Link Fabrication: Modern SDN controllers provide a
Link Discovery Service which infers the existence of links
between switches. While the specific implementation varies
by controller, link discovery in general consists of three
phases. The controller first emits crafted Link Layer Discov-
ery Protocol (LLDP) packets to switches via Packet-Out
events. Next, each switch broadcasts the LLDP packet over
all dataplane ports. Finally, all switches that receive an LLDP
packet forward it to the controller via a Packet-In event,
containing the switch identifier and port on which the packet
was received. Thus, the controller can infer the existence of
a link between two switch ports by observing that an LLDP
packet sent by the controller to one switch was sent to the
controller by the other.

Link Fabrication attacks corrupt the controller’s view of
network topology, allowing the attacker to act as a virtual link
between two switches. In these attacks, the host captures a
legitimate LLDP packet broadcast from a switch and relays
it to another point in the network. When the packet is re-
introduced to the network, the controller infers the existence
of a link from the switch the packet was captured on, to the
switch on which the relayed packet was reintroduced. This
effectively allows an attacker to act as a man-in-the-middle
for all traffic flowing over the virtual link, as well as allowing



denial of service attacks via the creation of network blackholes
or forwarding loops.

2) Host Location Hijacking: Many OpenFlow controllers
also maintain a Host Tracking Service (HTS) that maps each
host’s addressing information (e.g., IP and MAC addresses) to
a network location defined by the switch and port to which the
host is connected. The HTS is kept up-to-date by OpenFlow’s
default flow rule handling: when a packet is received whose
header does not match an existing flow rule, it is forwarded
to the controller via a Packet-In event. The HTS logs
the source address data contained in the packet header and
binds (or, in the case of movement, updates) it to the switch’s
identifier and port at which the packet was originated.

Host Location Hijacking (HLH) attacks rely on corrupting
the HTS by spoofing the victim’s addressing information
from an attacker-controlled network location. This causes the
HTS to register a migration from the victim’s actual location
to the attacker’s location, prompting the installation of flow
rules that will redirect traffic to the attacker. HLH has some
similarities to conventional to ARP spoofing, but differs in
two key aspects. First, HLH attacks the MAC-to-Port binding
while ARP spoofing attacks the IP-to-MAC binding. Second,
HLH uses arbitrary packets while ARP spoofing targets ARP
specifically. This makes defenses to ARP attacks ineffective
against HLH.

B. TopoGuard

TopoGuard [16] is a recently proposed SDN security com-
ponent implemented for the Floodlight controller. It provides
detection capabilities against both Host-Location Hijacking
and Link Fabrication attacks. TopoGuard consists of two broad
components: a behavioral profiler and a policy enforcer. The
former infers the type of device connected to a switch port.
Devices may be classified as a HOST, a SWITCH, or ANY. All
devices begin as type ANY. If the controller receives dataplane
traffic whose source address has not been seen before from a
port, it is marked as a HOST. If the controller instead receives
LLDP packets from a port, it is marked as a SWITCH. On
detection of a Port-Down event, the type is reset to ANY.

The latter enforces a policy designed to detect each at-
tack. TopoGuard addresses Host Location Hijacking via a
Host Migration Verification policy that checks pre- and post-
conditions whenever migration is detected. The pre-condition
is that a host has disconnected from its original location via a
Port-Down event. The post-condition is that a host must be
unreachable at its previous location. This is checked by a ping
from the controller. If either is violated, an alert is raised.

TopoGuard addresses Link Fabrication attacks using two
techniques: authenticated LLDP packets and Port Property
verification. Authenticated LLDP packets are digitally signed
by the controller, preventing forgery or corruption by an
adversary. Port property verification uses behavioral profiling
to raise an alarm when either an LLDP packet is received from
a HOST port, or first-hop traffic is received from a SWITCH
port.

C. SPHINX

While TopoGuard is designed to detect specific protocol
violations, SPHINX is a more generic anomaly detector for
OpenFlow networks [8].

SPHINX uses flow graphs to detect anomalous dataplane
behavior. Flow graphs track the current and past routes taken
between two end-hosts, and are annotated with meta-data
(e.g., flow volume) gleaned from switch counters and packet
headers.

SPHINX does not explicitly check for either host location
hijacking or link fabrication. Rather, it attempts to detect diver-
gences between what the SDN controller intends network state
to be, a set of accepted invariants, and what the network state
actually is. Specifically, SPHINX assumes that Flow-Mod
messages emitted by the controller are trustworthy, as are
the majority of switches. It compares per-flow counter data
maintained by each switch with the expected values gleaned
from Flow-Mod messages and sanity invariants (e.g., ingress
and egress bytes per flow should be equal).

IV. TOPOLOGY TAMPERING ATTACKS

In this section, we present two new attacks, port amnesia
and port probing, that enable traditional link fabrication and
host-location hijacking attacks to succeed undetected even
when TopoGuard or SPHINX are deployed. Our attacks were
conducted within virtual machines running 64-bit Ubuntu
14.04, and are implemented via Bash scripts. We obtained
the TopoGuard [16] prototype system from the public Git
repository. We were unable to obtain a prototype for SPHINX
from the developers. As a surrogate, we implemented checks
for all of the invariants specified in Table 3 and Table 4 of
the SPHINX paper, as well as all automatically generated
flow-specific topological and forwarding constraints. While
it is possible that the authors’ version of SPHINX includes
additional checks, the attacks presented here do not exploit
flaws in SPHINX’ coverage. They instead rely on implicitly
trusted dataplane messages and unavoidable race conditions to
cause inconsistent network topologies.

A. Port Amnesia

Modern SDN defenses, such as TopoGuard and SPHINX,
attempt to prevent LLDP relaying via behavioral profiling.
TopoGuard, for example, uses a simple classifier based on
first-seen traffic. A node starts as ANY, and is either marked
as a SWITCH if an LLDP packet is seen or as HOST if other
first-hop traffic is generated.

However, LLDP exists because network topology may be
dynamic: a host could be unplugged and replaced by a switch,
and the network should be able to rapidly adapt accordingly.
This requires a behavioral profile to be able to be ‘forgotten’
in response to such a change, in order to avoid false positives.
Without access to out-of-band information on network state,
these changes in port usage must be inferred from OpenFlow
events logged by the controller.
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Fig. 1: Port Amnesia Attack

TopoGuard relies on Port-Down events to infer a potential
change in port usage. These messages are generated by Open-
Flow switches whenever a port is disabled (e.g., by unplugging
a cable or disabling a network interface). When the controller
receives a Port-Down, TopoGuard resets the classification
of that port to ANY.

The port amnesia attack relies on the fact that behavioral
profiling can be cleared by attacker-controllable OpenFlow
messages. In TopoGuard an attacker is able to cause their
classification to be reset at will by briefly disabling its network
port, generating a Port-Down event. We name this technique
port amnesia, since the attacker is able to make the controller
forget the previous classification of that port. Note that while
Port-Down messages are specific to TopoGuard, any defense
which both uses a per-port profile, and clears that profile
based on OpenFlow messages generated by the dataplane, is
vulnerable to the port amnesia attack.

Port amnesia can be used to enable traditional link fabrica-
tion attacks while TopoGuard is deployed, as we show using
two different scenarios. In Figure 1, two malicious machines
are connected to an OpenFlow network with TopoGuard
deployed. These hosts communicate out-of-band with one an-
other via a wireless link. (Alternatively, a multi-homed single
host could be used.) The behavioral profiles maintained for
the attacker’s network ports are depicted above the controller.

The attacker first waits until an LLDP packet is sent by
the controller to switch 0x2 and received by host A (1). At
this point, both links are classified as HOSTS. The attacker
sends this packet to B over their shared wireless link (2). It
then conducts a port amnesia attack by bringing down the
on interface host B, resetting its state to ANY (3). Finally, the
interface is brought back up and the LLDP packet is forwarded
over host B’s link (4). This causes TopoGuard to classify port
1 on 0x2 a SWITCH, and causes the controller to infer a link
from port 1 of 0x1 to port 1 of 0x2. The same attack can
be performed in order to classify interface A as a SWITCH
by waiting for an LLDP packet sent to switch 0x1. Once
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Fig. 2: Port Probing Attack

both interfaces are considered to be switches, traffic can be
forwarded through the forged link without causing any alerts
to be raised.

Even if an out-of-band communications channel is unavail-
able, port amnesia can be also used to construct a weaker in-
band channel by ‘context-switching’ between being classified
as a HOST and a SWITCH. The attack proceeds as in the
out-of-band case, but with an added complication. Once the
controller infers a link between switch 0x1 and 0x2, the
colluding hosts must be seen as switches while originating
packets sent over the inferred link, but also be seen as hosts
while sending packets over their secure channel. Otherwise,
ports flagged SWITCH would appear to originate first-hop
traffic every time the secure channel is used. This context-
switching introduces added latency to the fabricated link (as
discussed in Section V) and is detectable at the controller (but
does not currently raise any alerts) given the number of profile
resets required.

B. Port Probing

In addition to LLDP relaying, modern SDN defenses aim
to prevent host-location hijacking attempts. TopoGuard re-
lies on checking a pre- and post-condition surrounding end-
host movement from port A to B. Prior to movement, a
Port-Down event must have been received from A. Follow-
ing movement, the host should no longer be reachable on A.
SPHINX does not implement specific checks, but relies on
detecting anomalies such as the same identifier (e.g., IP ad-
dress) being bound to multiple network ports. Both approaches
prevent attackers from imitating hosts that are online and have
not moved.

Host-location hijacking is still effective against hosts which
are in transit between locations, however. An unavoidable race
condition is introduced after a victim host leaves the network,



but before it has rejoined at another location. While in transit,
the victim’s identifiers are not bound to any network location,
allowing the first host which transmits with those identifiers
to ‘complete’ the move from the controller’s point of view.

We introduce port probing as a technique that enables
attackers to learn, with high precision, when victims begin
movement and become susceptible despite the presence of
TopoGuard or SPHINX. Depending on the level of stealth
desired by an attacker and the amount of precision needed
in estimating when a host goes offline, port probing uses a
variety of liveness probes to periodically query a victim host.
Once those probes indicate that the victim has gone offline,
the host-location hijacking attack can be triggered.

Note that we focus on scenarios where the victim has a
legitimate movement, i.e., dynamic VM migration in a data-
center or planned server maintenance. Thus, we will wait for
that vulnerable period to ‘complete’ the movement. However,
a more sophisticated attacker may induce such movement,
creating a window of opportunity to attack. One such method
could be to utilize automatic VM migration based on resource
usage. Many hypervisors (e.g., VMware) offer services to
automatically migrate VMs between servers when CPU or
memory resources become saturated. An attacker could co-
locate a host with the target VM and mount a denial-of-service
attack against those resources (e.g., cache page dirtying or
heavy disk I/O) until the victim was moved by the hypervisor.

Figure 2 schematically depicts a port probing attack to
optimally time host-location hijacking against an SDN con-
troller running TopoGuard. The top of the figure displays an
abbreviated view of the Host Tracking Service database that
binds network identifiers to network locations. The center of
the figure depicts an example OpenFlow network. The dotted
line between the victim and switch 0x2 is the location to
which the victim intends to move. At the bottom, the network
identifiers used by the attacker and victim are displayed.

To instantiate the attack, a malicious user joins the network
with its own IP and MAC addresses (1). At this point the Host
Tracking Service maintains an entry for both the attacker and
victim, correctly mapping their identifiers to network location.
In order to hijack the victim, the attacker must first acquire its
MAC address. We used arping, which is a tool to send and
receive arp packets. From a valid response, we then extract
the victim’s MAC address.

The attacker then begins the port probing phase. It periodi-
cally tests the victim’s reachability, waiting until the victim is
unreachable to continue the attack (2). The reachability tests
we’ve analyzed, and the precision/stealth tradeoffs between
them, are examined in Section IV-B1. Note that at this point
the victim has generated a Port-Down event in the process of
disconnecting, and it is no longer bound to port 2 on switch
0x1. Thus, TopoGuard has already validated the unfinished
move.

Once the victim is known to be offline, the attacker assumes
their identity via standard host-location hijacking (3).While
packet spoofing is sufficient, we observed that ifconfig can
reset a network interface card’s MAC and IP address rapidly

enough (4.1 milliseconds, onaverage) that spoofing via packet
header rewriting is unnecessary.

At this point the attacker has assumed the victim’s identity,
but the Host Tracking Service remains unaware of the change.
In order to generate a Packet-In event and complete the
victim’s movement, the attacker must first originate traffic
(4). Any dataplane (e.g., ICMP, HTTP, DNS, etc.) traffic will
suffice. At this point the attacker has successfully hijacked its
victim, and new flows with the victim as their destination will
instead be directed to the attacker.

Until the victim rejoins the network, the attacker may
impersonate the victim with impunity. During this time frame
no anomalous behavior is detected by SPHINX, and no
TopoGuard policies are violated: by winning the race condition
the attacker’s hijacking is indistinguishable (to the controller)
from a successful move by the victim. At some point, however,
the victim will complete its intended move to port 4 of switch
0x2 and rejoin the network (5). Once it originates traffic, the
Host Tracking Service will (depending on controller) either
have multiple switch ports assigned to the same identifier or
will begin oscillating between switch ports based on the last
seen packet. This will trigger SPHINX and other anomaly
detectors, and may break routing correctness as flows are
re-directed between victim and attacker, causing a denial-of-
service

Alert Floods The detection of the attack actually provides
further opportunities for the attacker to manipulate the network
by exploiting the action taken by the controller upon detec-
tion. Both SPHINX and TopoGuard raise an alert to prompt
intervention by a network operator whenever an anomaly or
policy violation is detected, respectively. Note, however, that
determination of which end-host is the attacker and which is
the victim is left to the operator, and may require follow-
up investigation (especially in the context of VM migration,
where the future location of the victim may require correlating
network and hypervisor logs). Furthermore, this alert does not
alter network state in any way, and thus does not block the
ongoing attack. It merely informs network operators that a
suspicious event has occurred.

Attackers can take advantage of this to flood operators with
spurious alerts by spoofing arbitrary end-host identifiers from
one or more nodes, thus, distracting them from a smaller
number of real victims on which the attackers want to maintain
persistence.

Conceivably, TopoGuard and SPHINX could be modified
to automatically isolate end-hosts after detecting a hijacking
attack. In this case, however, the system must infer which
of the two hosts is the attacker and which one is legitimate.
Without out-of-band data sources, any attempt to distinguish
is likely to be imperfect, thus can be leveraged by an attacker
to mount denial-of-service attacks by causing the controller
to isolate arbitrary victims for some period of time. Even if
both hosts are isolated the attacker can still mount a denial-
of-service attack, albeit at the cost of losing its own network
access. In some network environments, however (e.g., IaaS-
type cloud computing), acquiring a new end-host or virtual



TABLE I: Liveness Probe Options

Type Stealth Requirements Timing (ms)
ICMP Ping Low None 0.91± 0.04
TCP SYN Medium Port Known 492.3± 1.4
ARP ping High Same subnet 133.5± 1.6
TCP Idle Scan Very High Suitable zombie 1.8± 0.1

machine has low cost for the attacker.
1) Liveness Probing: In order to mount a Host Loca-

tion Hijacking attack without triggering either TopoGuard or
SPHINX, an attacker cannot impersonate a victim until that
victim has disconnected from the network. To determine when
this occurs the attacker must periodically test the victim’s
liveness via a network probe. These probes, however, may
themselves trigger an alert by a network monitoring systems
if they are distinct from normal network traffic. To this end,
we investigated several liveness probe options, summarized in
Table I. All of these are available using nmap, a standard net-
work mapping and reconnaissance tool. In Table I, the Stealth
column refers to the estimated likelihood of standard Intrusion
Detection Systems flagging probe traffic as suspicious, based
on recommended rules for the Snort open-source Intrusion
Detection System [34]. Note that a number of factors outside
of scan type also contribute to the stealthiness of an actual
scan, including the scan rate and various evasion techniques
like packet fragmentation. The Timing column indicates the
time resolution of each probe type by showing, in milliseconds
the mean and Standard Deviation of scan time from 1000
scans on our testbed, not including the round-trip time between
attacker and victim (which would be invariant over all scan
types).

ICMP ping is a standard test for reachability and liveness,
but is commonly blocked by firewalls. Even when an attacker
and victim are on the same subnet, frequent ICMP Pings are
an obvious indicator of network reconnaissance and are likely
to be flagged by IDS.

TCP SYN scans detect host reachability by initiating a TCP
handshake on a specified port. If the port is open or closed
(thus indicating an active host), the scanner will receive a
SYN-ACK or RST packet, respectively. If the request times
out, the host is assumed to be unreachable. Although TCP
traffic itself is ubiquitous and not subject to suspicion, SYN
scans are unique in that no data is exchanged over the TCP
session. Snort rules tracking zero-data flows may detect this
scanning technique. nmap can be used to evade such rules,
however, by adding decoy data and fake follow-up packets to
the established TCP session. TCP SYN scans are also very
slow. As can be seen in the table, a single scan takes almost
half a second to complete. As shown in Section V-B, this is
comparable to the time taken to launch the entire attack.

ARP ping scans broadcast an ARP Request for the target.
If the target responds with an ARP Reply, it is assumed to be
online. Standard ARP scan detection techniques assume that
the scan is being used for network-wide host discovery. They
look for large floods of ARP requests for non-existent IPs.
Targeted attacks against a known IP address are much harder

to detect (with a low false positive rate) due to the ubiquity
of ARP requests on Ethernet. In fact, the majority of network
IDS, including both Snort and Bro, do not support ARP ping
detection [46]. This stealthiness comes at a cost, however. ARP
scans are two order of magnitude slower than ICMP pings.

TCP idle scans [9] use a side channel in the TCP im-
plementation to scan a target indirectly. Instead of sending
TCP SYN normally, an intermediate ‘zombie’ host is used.
This zombie appears in traffic or IDS logs as the originator
of the scan, rather than the actual attacker. This technique is
extremely stealthy, but has pre-requisites which are not always
available. The attacker must be able to spoof a packet from
the zombie, and the zombie must be running a susceptible
versions of TCP.

Given these tradeoffs, we chose to use ARP pings in our
host location hijacking attacks as attacker and victim already
share the same network (by virtue of being administered by
the same SDN controller).

2) Downtime Window Duration: When running TopoGuard
or SPHINX, Host Location Hijacking attacks that do not rely
on alert floods are limited to the downtime window of an
offline or migrating host. Specifically, it is limited to the period
of time from when the attacker realizes the host is down (by
the failure of a liveness probe) to the period of time when
TopoGuard or SPHINX raise an alert that multiple network
locations are using the same identifier.

For some scenarios, such as target hosts which go offline for
patching or maintenance, attackers have a window of minutes
to hours within which to impersonate the target. In these cases
factors like scan rate (probes per minute) and network round-
trip times (10s to 100s of ms for enterprise networks [30])
are minor factors which do not appreciably impact the usable
downtime window.

Other scenarios, such as VM live migration, have tighter
time constraints. Live migration is a technique used by hyper-
visors to relocate a VM from one physical machine (and thus
network location) to another, while minimizing the disruption
of ongoing network sessions. Xen and VMWare, two of
the most commonly used hypervisors, have been consistently
shown to produce downtime windows on the order of seconds
[47], [40], [27], [44]. Round-trip times between VMs sharing
a cloud infrastructure are only on the order of hundreds of
microseconds [18]. However, in order to detect a migration in
progress an attacker needs a high probe rate with minimal
timeout before declaring the host unreachable. This may
reduce stealth, if a cloud-based IDS is present and configured
to monitor for network scans.

V. RESULTS

In this section we present the results of mounting our
attacks. We also discuss possible extensions indicated by the
evaluation.

A. Port Amnesia Attack

Colluding hosts are set up in the topology presented in
Figure 1. We successfully register links with the TopoGuard



controller by relaying LLDP packets over a second 802.11
wireless network . The controller infers a route through our
malicious link, allowing arbitrary man-in-the-middle attacks.
We leverage the bridge-util tools to create Linux bridges
between the SDN-connected interface and wireless interface of
each malicious host.

TopoGuard will not raise an alert when we create our false
link, as LLDP traffic is faithfully received and transmitted
while first-hop traffic is not generated. The SPHINX system
implicitly trusts new links, and only raises an alert when
existing links are changed. Furthermore, since all packets
sent to the link are faithfully transited, switch-based flow
counters do not register a discrepancy in inbound/outbound
traffic volume.

The in-band attack scenario requires that the attacker takes
a more active role. A primary consideration (given the need
to context-switch) is the rate at which LLDP packets are sent
by the controller. This is dependent upon the specific SDN
controller; Floodlight (and TopoGuard) send LLDP probes
out every 15 seconds (this was confirmed using Wireshark).
To defeat TopoGuard’s protections, the attacker must perform
a HOST/SWITCH context switch between sending host-like
traffic and sending LLDP packets. More generally, the port
amnesia attack must be performed at each context switch.

Using ifconfig to change a network interface (down and
then up with IP and MAC addresses) takes 3.25 milliseconds,
on average. However, the physical networking layer defines
how and when a switch will detect port-down messages,
which correspond to physical detachment of an interface from
a switch. For Ethernet over twisted-pair, the IEEE 802.3 stan-
dard defines a link integrity pulse time of 16 ± 8 milliseconds
[1]. If no link pulses are received for that interval, a device
is considered to be disconnected from the switch. An attacker
changing network identifiers faster than 16 milliseconds will
not trigger a port-down/up in the switch. Thus, in order to
context switch between HOST and SWITCH, an attacker must
wait at least 16 milliseconds between bringing the network
interface down and back up. In the worst case, this adds a 16
ms latency to each packet, but allows the attacker to interleave
their HOST and SWITCH traffic arbitrarily.

B. Port Probing Attack

The port probing timeline of events is detailed in Figure 3.
Green text indicates victim actions, red text indicates attacker
actions, and black text indicates SDN controller events. During
our attack, we take measurements at the points specified in
the timeline. We use date to provide the current system
time, with microsecond precision. Note that due to the limited
window of time in which the attacker can act with impunity,
actions taken after the victim down event are most critical to
optimize.

The primary goal of port probing is to quickly ascertain
that the victim is offline. This affects the total amount of time
that the attacker can impersonate the victim without detection.
Thus, the attacker wants to know as quickly as possible when
the victim disconnects by sending frequent probes with a

low timeout value. High probe rates, however, increase the
probability of detection by an IDS. Similarly, low timeout
values may generate false positives and trigger an alert if the
victim has not begun migration.

To determine how much delay an attacker must suffer to
remain stealthy, we performed two sets of experiments detailed
in Sections V-B1 and V-B2. In the first, we investigated the
factors that impact the optimal timeout threshold for attacker
probes. In the second, we investigated what scan rates for ARP
and TCP SYN scans are sufficient to generate an alert in the
Snort IDS using standard, best-practice detection rules.

Once the victim is known (or believed) to be offline, the
attacker launches a conventional host-location hijacking attack
by changing their network identifiers to those of the victim.
The time to do this using ifconfig is shown in Figure 4. On
average, this takes 9.94ms. Note that the distribution is heavy-
tailed, however, with some trials taking as long as 160ms.

Finally, the attacker uses the victim’s ID to send and receive
traffic. We measure the time that it takes (from the victim
going down) for the attacker to reach this success state. The
measurement is taken in two places: first, we measure when
our interface comes up as the victim. This is shown in Figure
5, and on average takes 478ms. The majority of this time
is spent waiting for a probe timeout after the victim has
gone offline, as can be seen in Figure 8. Once this step is
complete, the attacker successfully originates packets with the
victim’s identity. Additionally, we measure when the controller
acknowledges the attacker as the victim. This is shown in
Figure 6. Once complete, traffic sent to the victim is routed
to the attacker.

Our attack, from victim down to controller recognition of
ID, takes an average of 549ms. As discussed in Section IV-B2,
live VM migration downtime windows are on the order of
seconds. This leaves the majority of the victim migration
window open for attacker actions. For human-mediated move-
ment scenarios (e.g., a server going offline for patching), the
attack is virtually instantaneous with respect to the downtime
window.

Furthermore, the majority of this time is spent conducting
the final reachability probe to the target, and ensuring it has
timed out. In ideal network conditions (i.e., minimal variance
in RTT), probe timeout values could be reduced and this attack
could be launched in tens of milliseconds.

1) Probe Timeouts: Unlike port scans (which return packets
to the attacker), liveness scans can only detect a host going
offline by the absence of returned packets. The duration to wait
for a packet return before deciding the host if offline is referred
to as the probe timeout value, and often dominates the scan
duration (e.g., the standard ICMP ping defines timeout values
in seconds, while a scan may take only a few milliseconds).
The attacker has obvious incentive to minimize timeout values,
but in doing so risks false positives (i.e., believing the host
has gone offline when it has not) due to delayed packet
arrivals. Therefore, the attacker must estimate the distribution
characterizing the round-trip time (RTT) of packets. As long
as the attacker can measure the RTT of packets to the
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Fig. 4: Distribution of time taken to change network
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Fig. 5: Distribution of times from Victim Down to Attacker
Interface Up. At this point the attacker has claimed the

victim’s network identity.

target (or a representative surrogate), the probe timeout value
given a desired false-positive rate can be easily derived by
computing the quantile distribution function for the observed
measurements.

For our experiments we modeled network delay as a normal
distribution with µ = 20ms and σ = 5ms. Due to the
timescale of our attack, higher network latencies mask the
attack completely and dominate the time taken to mount it.
With these network conditions and a desired false positive
rate of, 1% we chose a probe timeout of 35ms. In other
environments (e.g., datacenters) a different delay profile will
hold, but it remains straightforward for the attacker to calculate
this on-the-fly.

Using this timeout value, Figures 7 and 8 show the times to
start and end the last ping (which will timeout), relative to the
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Fig. 8: Distribution of times from Victim Down to Attack
Ping Timeout. This is the earliest that the attacker knows the

victim has left the network.

victim going offline. The start of the last ping depends on when
the attacker began scanning, the RTT of each packet, and when
the victim goes offline. This ping begins, on average, within
half a millisecond of the victim going offline, as seen in Figure
7. The end of that ping measures when the attacker believes
the victim is offline, relative to when the victim actually goes
offline. This includes the timeout value discussed above. On
average, the attacker realizes that the victim is offline 12
milliseconds after the event. This is seen in Figure 8.

2) Scan Detection: In addition to choosing a timeout value,
the attacker must also choose a scan rate. Higher rates af-
ford the attacker a better resolution, but may also trigger
networking intrusion detection systems that are sensitive to
port scanning. To determine the highest scan rate that is still
relatively covert, we ran TCP SYN and ARP scans at varying
rates over a network link monitored by the open-source Snort
IDS [34]. Snort’s default detection rules, however, do not
include rules for either type of scan. We augmented these with
a set of rules from Proofpoint, an IDS vendor which publishes
best-practice Snort rulesets [37]. The Proofpoint rules detected
TCP SYN scans above 2 scans per second.

ARP scans, however, remained undetected. We have been
unable to find rules for either Snort or the stateful Bro IDS
which can reliably detect ARP scanning. Some literature, in
fact, indicates that such scans are not considered malicious
scanning at all, as they reveal nothing about the status of



individual ports on the target machine [46]. Given the paucity
of options for detecting ARP scans, we elected to send ARP
liveness probes at a rate of 54 KBps (1 packet every 50ms).

VI. DEFENSES

A. Port Probing

Recall that port probing relies on exploiting a fundamen-
tal race condition associated with host migration: the first
end-host claiming to be the target will be treated as such
by the controller. This attack crucially relies on the lack
of authentication surrounding network identifiers (e.g., MAC
and IP Address). More generally, it relies on the ability to
spoof network identifiers and the bindings between them.
Conventional network access control such as IEEE 802.1x [7]
uses a certificate or other cryptographic credential to verify
that a device is authorized before enabled traffic to transit
the network port used by the device. Unfortunately, 802.1x
does not cryptographically bind network identifiers (e.g., MAC
address) to user credentials, and thus is insufficient to prevent
port probing attacks. However, recent work on secure identifier
binding in SDNs [19] extends the coverage afforded by 802.1x
through the entire identifier stack. This would effectively
prevent port probing attacks, as the attacker can no longer
misleadingly claim to be the victim device without triggering
alerts.

B. Port Amnesia

Since recent work has demonstrated an effective defense
against port probing attacks, we focus our efforts on preventing
port amnesia attacks. To do so, we extend the open-source
version of TopoGuard [45] to detect characteristic anomalous
interactions corresponding to in-band and out-of-band port
amnesia attacks. TOPOGUARD+ adds two additional modules
to TopoGuard: a Control Message Monitor (CMM) module
that detects anomalous control plane interactions during LLDP
propagation, and a Link Latency Inspector (LLI) module that
detects abnormal latencies during LLDP propagation between
switches. CMM and LLI prevent in-band and out-of-band port
amnesia attacks respectively.

C. Control Message Monitor (CMM)

Recall that in-band port amnesia attacks rely on periodi-
cally resetting TopoGuard’s behavioral classifier during LLDP
propagation in order for end-hosts to appear as switches. The
CMM implements a checking procedure to detect this. When
an LLDP probe is in progress, receipt by the controller of
any of the following message types from a port involved in
the LLDP probe (either sender or receiver) will raise an alert.
Since the receiver may not be known in advance, the check is
retroactively applied to the receiving port for the time between
LLDP packet generation and receipt by logging the relevant
messages in the controller:

• Port-Up or Port-Down — This indicates a behavioral
profile reset used by in-band port amnesia. Each attacker
port must change its status from HOST to SWITCH
repeatedly, in order to both relay LLDP traffic and

originate data-plane traffic over their secure channel. This
necessitates bringing the interface down and up again,
which will raise an alert.

The CMM effectively stops in-band port amnesia attacks
by installing checks for behavior uniquely characteristic of,
and critical to, the attacks. Out-of-band port amnesia attacks,
however, do not have such a signature that can be easily
monitored. Instead, we address these attacks by focusing on
the fact that any out-of-band relaying will necessarily add
latency not present in a switch-switch connection.

D. Link Latency Inspector (LLI)

If an attacker has access to an out-of-band channel (e.g., a
wireless link) over which packets can be relayed, they do not
need to switch between HOST and SWITCH behavior profiles,
and thus can evade the CMM. However, utilizing this channel
incurs delays due to both signal propagation over the back
channel, and encoding/decoding of packets (e.g., converting
from Ethernet to 802.1n). 1

Based on this insight, we implemented a Link Latency
Inspector module in TOPOGUARD+ to measure the latency
of switch-internal links during all LLDP propagations, and
flag anomalies that may indicate a fabricated link. In order
to resolve the latency between two target switches (e.g., sw1

and sw2), we measure the overall LLDP propagation time
(TLLDP ) between them and the delays of control links (TSW1

and TSW2). Then, the switch link latency can be estimated as
TLLDP − TSW1 − TSW2.

LLDP Propagation Delay (TLLDP ). In order to measure
the LLDP propagation delay, we add an extra timestamping
function for each LLDP packet during link discovery proce-
dure. In particular, we extend LLDP packets with optional
Type-Length-Value (TLV) field that contains the encrypted
value of their departure times (by using controller-owned
keys). Once the SDN controller receives LLDP packets, it
may decrypt the timestamps and compute LLDP propagation
delays.

Control Link Latency (TSW ). In addition, we adopt echo
messages to measure round-trip delays between an SDN con-
troller and a switch. The idea is to utilize packet-out messages
to send out a probe message (ICMP ping) to the target switches
and set its next-hop (output action) to the controller. As long as
the controller receives the probe message, it measures the one-
time round-trip delays by computing the elapsed time from
sending the probe message to receiving it. Moreover, we take
the average of the latest three latency measurements of the
control links in order to minimize variance.

Verification of Link Update. The Link Latency Inspector
verifies link updates by considering its latency. The insight
lies in that the switch link latency may abnormally increase if
there exist extra devices or channels to relay LLDP packets. To

1This work assumes the attacker is using compromised end-hosts to
conduct LLDP relay attacks, which do not have specialized packet-forwarding
hardware or extremely high-bandwidth links. For example, a purely hardware-
based device which uses point-to-point laser communications is out of scope
of this work.



achieve the goal, the LLI utilizes a straightforward application
of interquartile range (IQR), which is widely used to find out-
liers in a set of data. The LLI maintains a fixed size data store
for values of the latencies of switch internal links measured
from verified LLDP packets and computes lower quartile (Q1),
upper quartile (Q3), and interquartile range (IQR, Q3-Q1)
upon the data store. When a new LLDP packet arrives in the
SDN controller, the LLI inspects the computed latency value
with the threshold (Q3 + 3IQR). If any suspicious latency of a
switch internal link is found, the Link Latency Inspector raises
an alarm to the network administrator and may optionally
block the topology update.

VII. EVALUATION

In this section, we present a performance and security
evaluation of TOPOGUARD+. We implemented a prototype
of TOPOGUARD+ over the TopoGuard system in the Flood-
light controller. In particular, we extended the LinkManager
application to inspect control messages during LLDP propa-
gation and measure LLDP propagation delays. In addition, we
implemented a new application to track real-time controller-
switch latencies that are reported LinkManager. To evaluate
TOPOGUARD+, we utilized Mininet to created an emulated
SDN testbed as shown in Figure 9. All data plane links are
configured with 5 milliseconds latency and an out-of-band link
between two attacker-compromised hosts with 10-millisecond
latency.

out of band channel

control channel
data plane links

5ms

5ms

5ms

10ms

5ms

5ms

5ms

Floodlight (TopoGuard+)

5ms

Fig. 9: The evaluation testbed

A. Security Evaluation

In order to calibrate the Link Latency Inspector, we first
measured the latency of all four links in Figure 9. Figure 10
records 100 latency measurements of switch link latencies
from TOPOGUARD+. Overall, the average probed latencies for
all switch links is around 5 milliseconds, which is consistent
with our setup in the mock network environment. The only
potential consequences of these lower-latency measurements
is a slight decrease of the threshold value for detection of
anomalous links, which makes it easier to detect fake links.
In addition, the maximum latencies for those links exhibit
micro-burst characteristics (e.g.,, 12 milliseconds) which may
introduce false positives for TOPOGUARD+. We consider that

such jitter can be tolerated in the SDN controllers as we
discussed in Section VIII-A.

In order to evaluate the effectiveness of the LLI against
out-of-band port amnesia attacks, we also measure the latency
threshold distribution for anomalous link discovery, as shown
in Figure 11. From the startup of Floodlight controller, we
record both measured link latencies and computed thresh-
old for anomalous link detection. Moreover, we control two
compromised hosts to build up fake links by utilizing a side
channel, as shown in Figure 9, one minute after the bootstrap
of the Floodlight controller. The result showcases that TO-
POGUARD+ can effectively locate all fake links. Figure 13
depicts the alert raised for such a link. Note that the plot
begins with a set of burst values that dramatically raise the
detection threshold. This is due to the bootstrapping of the
Floodlight controller, which adds significant extra latency for
measurement of link latencies. Once it has reached a steady
state, the threshold values converge, which also showcases that
our approach can tolerate a small number of anomalous inputs
of link latencies.
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In addition, we measured the effectiveness of TO-
POGUARD+ against in-band port amnesia attacks. We
launched the aforementioned topology tampering attacks in
the testbed environment and confirmed that every port amnesia
attack was detected and an alert raised. As shown in Figure 12,
TOPOGUARD+ can successfully detect in-band port amnesia
attacks since such attacks must by necessity cause characteris-
tic control plane messages to be generated (e.g.,Port-Down
messages) during LLDP propagation.



Fig. 12: Alerts from TOPOGUARD+ for anomalous control
messages during LLDP propagation

07:17:09.608 ERROR [n.f.l.i.LinkDiscoveryManager:New I/O server worker #2 3] Deteced suspicious link discovery: an abnormal delay during LLDP propagation
07:17:09.608 ERROR [n.f.l.i.LinkDiscoveryManager:New I/O server worker #2 3] link delay is abnormal. delay:22ms, threashold:14ms
07:17:09.609 ERROR [n.f.l.i.LinkDiscoveryManager:New I/O server worker #2 6] Deteced suspicious link discovery: an abnormal delay during LLDP propagation
07:17:09.609 ERROR [n.f.l.i.LinkDiscoveryManager:New I/O server worker #2 6] link delay is abnormal. delay:22ms, threashold:14ms

Fig. 13: Alerts from TOPOGUARD+ for anomalous link
latencies from link tampering attacks

B. Performance Evaluation

We also evaluated the performance overhead introduced by
TOPOGUARD+. In this experiment, we leveraged the Java
System.nanoTime API to measure time stamps of running
a program with the precision of 1 nanosecond. The major
performance overhead of TOPOGUARD+ lies in the extra
security inspections during processing of LLDP packets (i.e.,
monitoring control messages and link latencies), and not on
any dataplane operations (e.g., packet forwarding). The table II
shows TOPOGUARD+ adds an average of 0.299 milliseconds
to the LLDP processing logic in the Floodlight controller.
Moreover, TOPOGUARD+ also introduces 0.134 milliseconds
overhead to LLDP packet construction through the addition of
an extra encrypted timestamp TLV. The overall results show-
case TOPOGUARD+ add negligible overhead to the Floodlight
controller, none of which impact dataplane flows.

TABLE II: TOPOGUARD+’s Performance Overhead

Function Overhead introduced by TOPOGUARD+
LLDP Construction 0.134ms
LLDP Processing 0.299ms

VIII. DISCUSSION

A. False Alerts from the Bursts of Latency

TOPOGUARD+ may raise false alerts for micro-bursts in
link latencies as shown in Section VII. The consequence of
the false positives will falsely remove benign switch links
from topology view maintained by SDN controller, which
may further cause re-computation of routing paths and other
topology dependent services. However, we consider that the
SDN controller can withstand such fluctuating cases, as the
default link timeout value exceeds the LLDP probing interval
by a factor of 2-3, as shown in Table III. Thus, a benign
switch link will be removed from topology view of the
Floodlight controller only if there are multiple bursts of link
latencies over 10-35s, and not in response to an isolated event.
Moreover, we can also increase the timeout value to greatly
decrease the possibility of removal of benign switche links by
TOPOGUARD+.

IX. RELATED WORK

In addition to the attacks discussed in this paper, two other
primary types of SDN-specific attacks have been presented

TABLE III: Link timeout and discovery intervals in various
SDN controllers

Controller Link Discovery Interval Link Timeout
Floodlight 15s 35s

POX 5s 10s
OpenDaylight 5s 15s

in the literature to date: saturation attacks [41], [43] and
controller-switch communication [5] attacks.

Analogous attacks have been demonstrated in traditional
networking protocols. ARP poisoning is the most similar at-
tack to host location hijacking for traditional networks. Similar
link fabrication attacks have previously been demonstrated in
traditional networking protocols including Open Shortest Path
First [31], [20], Optimized Link State Routing Protocol [17],
and Spanning Tree Protocol [35].

A number of approaches have been developed that verify
that flow rules do not violate a set of invariants or that
an intended configuration state is maintained [2], [3], [24].
For instance, NetPlumber [23] and VeriFlow [25] observe
OpenFlow messages between the controller and switches and
detect if rules would be installed that violate an invariant or
pre-defined policy. Such verification approaches have focused
on logic errors in rules as opposed to malicious topological
manipulation and thus none of the approaches to date detect
the TopoMirage attacks.

Other related efforts include the work by Mekky, et al. [29]
to allow efficient inspection and filtering of higher network
layers in SDNs. Kotani and Okabe [26] filter Packet-In
messages according to some predefined rules to protect the
controller. LineSwitch [4] mitigates control plane saturation
DoS attacks by applying probabilistic black-listing. Spiffy [21]
detects link-flooding DDoS attacks in SDNs by applying rate
changes to saturated links. These defenses, although effective
against other attacks, do not detect the TopoMirage attacks.

X. CONCLUSION

We examined recently proposed defenses, TopoGuard and
SPHINX, that aim to prevent host location hijacking and link
fabrication attacks in SDNs. We presented two new attacks,
port amnesia and port probing, that can bypass state-of-the-
art topology tampering defenses, analyzed the parameters and
properties of these attacks, and demonstrate them against real-
world SDN systems. Furthermore, we designed, implemented
and evaluated countermeasures against these attacks.
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