Poisoning Network Visibility in Software-Defined
Networks: New Attacks and Countermeasures

Lei Xu*
SUCCESS Lab
Texas A&M University
xray2012@cse.tamu.edu

Sungmin Hong*
SUCCESS Lab
Texas A&M University
ghitsh@tamu.edu

Abstract—Software-Defined Networking (SDN) is a new net-
working paradigm that grants a controller and its applications
an omnipotent power to have holistic network visibility and
flexible network programmability, thus enabling new innovations
in network protocols and applications. One of the core advantages
of SDN is its logically centralized control plane to provide the
entire network visibility, on which many SDN applications rely.
For the first time in the literature, we propose new attack vectors
unique to SDN that seriously challenge this foundation. Our new
attacks are somewhat similar in spirit to spoofing attacks in legacy
networks (e.g., ARP poisoning attack), however with significant
differences in exploiting unique vulnerabilities how current S-
DN operates differently from legacy networks. The successful
attacks can effectively poison the network topology information,
a fundamental building block for core SDN components and
topology-aware SDN applications. With the poisoned network
visibility, the upper-layer OpenFlow controller services/apps may
be totally misled, leading to serious hijacking, denial of service
or man-in-the-middle attacks. According to our study, all current
major SDN controllers we find in the market (e.g., Floodlight,
OpenDaylight, Beacon, and POX) are affected, i.e., they are
subject to the Network Topology Poisoning Attacks. We then
investigate the mitigation methods against the Network Topology
Poisoning Attacks and present 7TopoGuard, a new security exten-
sion to SDN controllers, which provides automatic and real-time
detection of Network Topology Poisoning Attacks. Our evaluation
on a prototype implementation of TopoGuard in the Floodlight
controller shows that the defense solution can effectively secure
network topology while introducing only a minor impact on
normal operations of OpenFlow controllers.

I. INTRODUCTION

Software-Defined Networking (SDN) has emerged as a
new network paradigm to innovate the ossified network in-
frastructure by separating the control plane from the data plane
(e.g., switches), as well as providing holistic network visibility
and flexible programmability. As the brain of the network, a
SDN controller grants users a great tool to design and control

* The first two authors contribute equally to the paper.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS 15, 8-11 February 2015, San Diego, CA, USA

Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23283

Guofei Gu
SUCCESS Lab
Texas A&M University
guofei@cse.tamu.edu

Haopei Wang
SUCCESS Lab
Texas A&M University
haopei@cse.tamu.edu

the network using their own applications atop the controller’s
core services. Not only in academic environments, but also
in real-world production networks, SDN, particularly its pop-
ular realization OpenFlox&ﬂ has been increasingly employed.
Many application scenarios have been studied and deployed
since then, ranging from campus network innovation to cloud
network virtualization and datacenter network optimization.

Since the controller is the core of the SDN architecture, if
the OpenFlow controller suffers from any serious vulnerability
in its design/implementation, the entire network would be
thrown into chaos, or even totally under the control of attack-
ers. To date, several approaches to SDN security have been
proposed. FortNOX [27] solves the rule conflicts that violate
existing security policies, and provides role-based authoriza-
tion and security constraint enforcement in the controller
kernel. FRESCO [30] provides a composable programming
framework to facilitate fast development of SDN security
apps. FlowVisor [28] provides isolation of different network
slices and VeriFlow [19] verifies network-wide correctness by
checking the forwarding graph representation derived from
flow modification messages. AvantGuard [31]] provides securi-
ty protection against data-to-control-plane saturation attacks.
However, these approaches have primarily concentrated on
network/rule consistency/authorization, conflict resolution, app
developing, or network resource consumption/scalability, not
on the fundamental vulnerabilities inside OpenFlow controller-
S.

In this paper, we study network topology services/apps
of the mainstream OpenFlow controllers and identify several
new vulnerabilities that an attacker can exploit to poison the
network topology information in OpenFlow networks. The
whole network-wide visibility is one of the key innovations
provided by SDN compared to legacy networking technologies.
As a fundamental building block for network management, the
topology information is adopted to most controller core ser-
vices and upper-layer apps, e.g., those related to packet routing,
mobility tracking, and network virtualization and optimization.
However, if such fundamental network topology information is
poisoned, all the dependent network services will become im-
mediately affected, causing catastrophic problems. For exam-
ple, the routing services/apps inside the OpenFlow controller

'In this paper, we may use SDN and OpenFlow interchangeably.

can be manipulated to incur a black hole route or man-in-the-
middle attack. In this paper, we uncover new security loopholes
existing in current Host Tracking Service and Link Discovery
Service in OpenFlow controllers. Furthermore, We introduce
two Network Topology Poisoning Attacks, i.e., Host Location
Hijacking Attack and Link Fabrication Attack. Upon the ex-
ploitation of the Host Tracking Service, an attacker can hijack
the location of a network server to phish its service subscribers.
By poisoning the Link Discovery Service, an adversary can
inject false links to create a black-hole route or launch a
man-in-the-middle attack to eavesdrop/manipulate messages
in the network. Our new attacks share some similarities in
spirit to traditional spoofing attacks in legacy networks (e.g.,
ARP Poisoning Attack), however with significant differences
in exploiting unique SDN vulnerabilities. According to our
study, all current major open source SDN controllers in the
market (i.e., Floodlight, OpenIRIS, OpenDayLight, Beacon,
Maestro, NOX, POX and Ryu) are affected. This raises a
serious alarm because these vulnerabilities could significantly
impact the deployment of current SDN networks and greatly
hurt the future of SDN.

In order to mitigate such attacks, we investigate possible
defense strategies. We note that it is difficult to simply use
static configuration to solve the problem (similar to using static
ARP entry for hosts or the port security feature for switches
[2] to solve ARP poisoning attacks), because it requires
tedious and error-prone manual effort and is not suitable for
handling network dynamics, which is a valuable innovation
of SDN. To better balance the security and usability, in this
paper, we propose TopoGuard, a new security extension to the
existing OpenFlow controllers to provide automatic and real-
time detection of network topology exploitation. By utilizing
SDN-specific features, TopoGuard checks precondition and
postcondition to verify the legitimacy of host migration and
switch port property to prevent the Host Location Hijacking
Attack and the Link Fabrication Attack.

In short, our paper makes the following contributions:

e We perform the first security analysis on the SD-
N/OpenFlow Topology Management Service. In par-
ticular, we have discovered new vulnerabilities in
the Device Tracking Service and Link Discovery
Service in eight current mainstream SDN/OpenFlow
controllers.

e We propose Network Topology Poisoning Attacks
to exploit the vulnerabilities we have found. We
demonstrate the feasibility of those attacks both in the
Mininet emulation environment and a hardware SDN
testbed.

e We investigate the defense space and propose automat-
ic mitigation approaches against Network Topology
Poisoning Attacks, along with a prototype defense
system, TopoGuard, currently implemented in Flood-
light, but could be easily extended to other controllers.
Our evaluation shows that TopoGuard imposes only a

negligible performance overhead.

The rest of the paper is organized as follows: Section
provides background information about the SDN/OpenFlow
and its Topology Management Service. Section describes
vulnerabilities in existing SDN Topology Management Service
and presents the Network Topology Poisoning Attacks. Section
investigates the defense strategies against Network Topol-
ogy Poisoning Attacks. Section [V] proposes our design and
implementation of TopoGuard along with its effectiveness and
performance evaluation. Section [V]] discusses possible issues
and limitations. Section [VII reviews related work about current
security research in the SDN/OpenFlow area and similar
attacks in the literature. Section [VIII] concludes this paper.

II. BACKGROUND

In this section, we provide an introduction to SD-
N/OpenFlow and its Topology Management Services imple-
mented in the existing OpenFlow controllers.

A. SDN/OpenFlow Background

The Basic Operation of SDN. Software-Defined Network-
ing (SDN) is a new programmable network framework that
decouples the control plane from the data plane. An SDN
application in the control plane generates complicated net-
work functions such as computing a routing path, monitoring
network behavior, and managing network access control. The
data plane handles hardware level network packet processing
based on high level policies from the control plane. SDN
enables users to design and distribute innovative flow handling
and network control algorithms conveniently, and add much
more intelligence and flexibility to the control plane. We
can implement new control functions or protocols just as
writing a normal application (analogous to writing an app for
smartphone/Android OS). OpenFlow, as a leading reference
implementation of SDN, defines the communication protocol
between the control plane and the data plane. An OpenFlow
switch must establish a TCP connection (with an option
of TLS/SSL) to the OpenFlow controller before exchanging
symmetric/asynchronous OpenFlow messages. When a new
packet comes into an OpenFlow switch, the switch checks if
the packet matches any existing flow rules. If so, the switch
will process the packet based on the matching rule with
the highest priority. Otherwise, the switch sends a Packet-
In OpenFlow message to the OpenFlow controller to ask for
proper actions according to network policies specified in the
SDN apps. Once the specific decision is made, the OpenFlow
controller either issues a Packet-Out message for the one-time
packet processing or instructs the OpenFlow switch to install
new flow rules by sending a Flow-Mod message. In addition,
whenever any change on a switch port is detected, a Port-Status
OpenFlow message must be sent to the controller.

Operational Distinctions Between SDN and Legacy
Networks. SDN/OpenFlow introduces many networking in-
novations, as described in its latest specification [4]. In this
paper, we do not emphasize all of those details between the

Distinctions

OpenFlow Networks

Legacy Networks

Source MAC Address

Unchanged when passing the OpenFlow switches

Changed when passing layer 3 devices

Control Message Authentication

Between the OpenFlow switches and controllers

Among layer 3 devices

Spanning Tree Implementation

Centralized calculation based on topology

In a distributed manner

TABLE I: The Distinctions Between Legacy Networks and OpenFlow Networks Highlighted in This Paper

OpenFlow networks and the legacy networks. Instead, we only
list some distinctions relevant to the context of this paper,
as shown in Table [I, which are helpful to explain the idea
of this paper. First, the legacy layer 3 devices (e.g., routers)
rewrite the layer 2 identity (i.e., source MAC address) of a
packet when forwarding it, however the normal behavior of an
OpenFlow switch is to keep the layer 2 identity unchanged
For example, the legacy layer 3 devices enforce Proxy ARP
[7] (i.e., they reply ARP requests intended for destination
hosts) by “falsifying” the layer 2 identity inside ARP replies;
the OpenFlow controller, nevertheless, provides ARP proxy
without manipulating ARP replies due to its global view of
host information. Second, in legacy networks, the Control
Message Authentication is among layer 3 devices; however, in
the OpenFlow networks, the Control Message Authentication
is enforced between switches and controllers because of the
separation of the control plane and the data plane. Third,
unlike legacy networks that utilize BPDUs (Bridge Protocol
Data Units) to compute Spanning Tree Protocol (STP) in a
distributed manner, the OpenFlow controller is capable of
centralized calculation of Spanning Tree based on the topology
view.

B. Unique Topology Management in OpenFlow Controllers

Different from legacy networks, topology management is
unique in SDN networks due to the newly added, logically
centralized network controller. In order to facilitate network
management and programmability, the OpenFlow controller
maintains topology information and provides such visibility to
upper services/apps, as shown in Figure [I| More importantly,
not only all controllers use the same topology discovery
mechanism, but also both core controller components and SDN
applications are tightly coupled with the topology information.
The more OpenFlow applications are developed, the more
critical dependencies would affect the whole components in
the controller.

Generally, in an SDN/OpenFlow network, topology man-
agement includes three parts: (1) switch discovery, (2) host dis-
covery, (3) internal link (i.e., switch-to-switch link) discovery.
The switch discovery does not require any additional protocol
since when an OpenFlow switch establishes a connection to
the OpenFlow controller, the switch information should be
stored in the OpenFlow controller for future management.
When a switch receives any packet from a host and it does not

2The OpenFlow switches can manipulate packet headers by using the
Set-Field action if the application needs to do so. However, Set-Field is
typically optional for the OpenFlow switch implementations to increase their
functionalities.

Applications Topology-Aware Host-Aware
(Routing, LB, etc.) Service (E.g. STP) Service (E.g. Web)

. Update status Update status
[UlpeEEe RETs] [pActicvns] [pActions]

Core Services (e.g., policy, etc.) l

s N

Link Discovery Service
Core = [

—
Update Status Link Info
\
||

s N

Host Tracking Service

S—
[Update Status Host Profile

\ /

App =

11

Switch

Packet-In
LLDP >

Fig. 1: Service Dependencies among Layered Controller
Components

match any flow entry in the flow table, a Packet-In message
encapsulating the packet is sent to the OpenFlow controller.
The OpenFlow controller then learns the information about
the host and its location (i.e., the corresponding attached
switch port) from the message. For internal link discovery,
the OpenFlow controller herein utilizes OpenFlow Discovery
Protocol (OFDP). In this paper, we mainly focus on the
Host Tracking Service and Link Discovery Service inside the
OpenFlow controller.

Host Tracking Service. Inside an OpenFlow controller,
Host Profile is maintained to track the location of a host. There
are significant advantages for Host Tracking. For example,
in a data center, it is tedious and error-prone to manually
maintain the locations of virtual machines due to their fre-
quent migration. Also, as demonstrated in [3], the OpenFlow
controller with host location tracking can provide seamless
handoff among different access points. In this regard, the Host
Tracking Service (HTS) in the controller is to provide an easy
way to guarantee flexible network dynamics by dynamically
probing Packet-In messages and updating Host Profiles.

Let us take a close look at how an OpenFlow controller
tracks dynamics of host devices. In an OpenFlow network, the
OpenFlow controller reactively listens to Packet-In messages
to maintain Host Profile. During this procedure, the OpenFlow
controller mainly handles two relevant host events (i.e., JOIN
and MOVE). The scenario for the first event is that, when the
OpenFlow controller fails to locate an existing Host Profile

Step 1: Packet- Controller Step 3: Packet-
Out with LLDP In with LLDP
Step 2: LLDP
Advertisement
Switch X Switch Y

Fig. 2: Link Discovery Procedure in OpenFlow Networks

according to the information from incoming Packet-In mes-
sages, it creates a new Host Profile. In such case, the controller
assumes a new host joins the network. The second scenario
occurs when the OpenFlow controller successfully locates
a Host Profile but finds mismatched location information
between the Host Profile and Packet-In messages. In the case, it
assumes the host has moved to a new location and then updates
the location information inside the corresponding Host Profile.

Table [III] shows the Host Tracking Services in current
OpenFlow controller platforms. In order to handle host mo-
bility, the existing OpenFLow controllers maintain a profile
for each host. In detail, the Host Profile includes: (1) MAC
address, (2) IP address, and (3) Location information (i.e., the
DPID and the port number of the attached switch as well as the
last seen timestamp). Normally, a Host Profile is indexed by
the MAC address. Floodlight, for example, indexes the Host
Profile with MAC address and VLAN ID. Beacon and the old
version of Host Tracking Service in OpenDayLight support
both MAC address and IP address as the index.

Link Discovery Service. To dynamically discover topol-
ogy, the Link Discovery Service (LDS) inside OpenFlow
controllers uses Open Flow Discovery Protocol (OFDP), which
refers to LLDP (Link Layer Discovery Protocol) packets with
format shown in Table to detect internal links between
switches.

Figure [2| depicts the link discovery procedure in an Open-
Flow network. Note that here we illustrate only a unidirectional
link discovery for simplicity (the discovery of opposite link
is performed in a similar fashion). Initially, the OpenFlow
controller sends out Packet-Out messages to Switch X with the
payload of a controller-specific LLDP packet. The payload of
the LLDP packet contains DPID and the output port of Switch
X. Upon receiving the LLDP packet, Switch X advertises
it to all other ports in a broadcast manner. Typically, in an
OpenFlow network, this kind of broadcast is achieved by
iterative transmissions of one LLDP packet to each broadcast-
enabled port of a switch. Then, the next-hop Switch Y, driven
by its firmware or under explicit instructions of the attached

OpenFlow controller, reports the incoming LLDP packet to
the controller with the ingress Port ID and DPID of Switch
Y via a Packet-In message. When receiving the Packet-In
message from Switch Y, the OpenFlow controller can detect a
unidirectional link from Switch X to Switch Y. Table [L1I| shows
link discovery components in existing OpenFlow controller
platforms. We find that all of these controllers embrace the
internal link discovery procedure as we describe above.

In addition to the internal link discovery, some OpenFlow
controller implementations, e.g., Floodlight and OpenIRIS,
also propose a scheme to detect multi-hop links, which refers to
links traverse across a Non-OpenFlow island. In order to detect
such links, Floodlight leverages BDDP packets(i.e., a broadcast
version of LLDP packets with a broadcast destination MAC
address) to overcome unpredictable forwarding behaviors of
Non-OpenFlow switches.

Finally, we note that these topology management services
are critical building blocks to provide important informa-
tion to other topology-dependent services (e.g., shortest-path
routing and spanning tree) and apps (e.g., network routing
management/optimization). For interested readers, we provide
more details of two representative topology-dependent services
(among many others), i.e. shortest-path routing and spanning
tree in SDN, in the Appendex [A]

III. TOPOLOGY POISONING ATTACK

In this section, we describe the vulnerabilities in Topology
Management Services of existing OpenFlow controllers that
we have found. Based on such vulnerabilities, we propose and
measure two OpenFlow Network Topology Poisoning Attacks,
i.e., Host Location Hijacking Attack and Link Fabrication
Attack.

A. Threat Model and Experimental Environment

We assume an adversary possesses one Or more com-
promised hosts or virtual machines (e.g., through malware
infection) in the SDN/OpenFlow network and has the read
and write privilege on packets in the operating systemE] Note
that, in this paper, we assume the transmission of OpenFlow
messages via the control channel can be properly protected by
SSL/TLS.

Furthermore, we demonstrate the SDN-specific Network
Topology Poisoning Attacks both in Mininet 2.0 [24] and
a physical environment (with hardware OpenFlow switch-
es). Mininet 2.0 is widely used for emulating an OpenFlow
network environment. Our hardware testbed includes several
OpenFlow-enabled hardware: TP-LINK(TL-WR1043ND) and
LINKSYS(WRT54G) which run OpenWRT firmware with an
OpenFlow extension and PCs with Intel Core2 Quad processor
and 2GB memory.

3In the extreme case, the adversary can be an insider.

DI_dst

DI_src Eth_type

Chassis ID TLV Port ID TLV

TTL TLV

Optional TLVs

End TLV

01:80:C2:00:00:0E

Outgoing Port MAC

0X88CC

DPID of Switch Port Number of Switch

Time to Live

E.g., System Description

End Signal of LLDP

TABLE II: The Format of LLDP Packets

Controller Platform

Link Discovery Service

TLVs

Host Tracking Service

Host Profile

Ryu switches.py DPID, Port ID, TTL host_tracker.py MAC, IP, Location
Maestro DiscoveryApp.java DPID, Port ID, TTL LocationManagementApp.java MAC, Location
NOX discovery.py DPID, Port ID, TTL hosttracker.cc MAC, Location
POX discovery.py DPID, Port ID, TTL, System Description host_tracker.py MAC, 1P, Location
Floodlight LinkDiscoveryManager.java DPID, Port ID, TTL, System Description DeviceManagerImpl.java MAC, VLAN ID, IP, Location
OpenDayLight DiscoveryService.java DPID, Port ID, TTL, System Description DeviceManagerImpl.java MAC, VLAN ID, 1P, Location
OpenlRIS OFMLinkDiscovery.java DPID, Port ID, TTL, System Description OFMDeviceManager.java MAC, VLAN ID, 1P, Location
Beacon Topologylmpl.java DPID, Port ID, TTL, Full Version of DPID DeviceManagerImpl.java MAC, VLAN ID, IP, Location

TABLE III: Topology Management Services (the bold attributes in Host Profile column denotes the identifier of a host)

B. Host Location Hijacking Attack

In this part, we detail the Host Location Hijacking Attack
which is a kind of spoofing attack by exploiting the Host
Tracking Service in the OpenFlow network.

Exploitation in Host Tracking Service. As described in
Section |lIl HTS in the OpenFlow controllers maintains Host
Profile for each end host to track network mobility. As long
as hosts (or virtual machines) migrate, HTS can quickly react
to such event. In particular, HTS recognizes the motion of
hosts by monitoring Packet-In messages. Once being aware
that a particular host migrates to a new location, i.e., DPID or
ingress Port ID is different from the corresponding entry of the
Host Profile, HTS updates Host Profile and optionally raises
a HOST_MOVE event to its subscriber services. However,
such update mechanism is vulnerable due to the ignorance of
authentication.

In order to investigate security issues when HTS updates
Host Profile, we manually analyze the source code of HT-
S in current mainstream OpenFlow controllers. Our study
shows that existing OpenFlow controllers have few security
restrictions on host location update. For instance, Floodlight
and the old version of OpenDayLight controller provides an
empty-shell API, called isEntityAllowed, which accepts every
host location update rather than blocking possible spoofing
attacks. The POX controller throws a warning if the observed
time for device migration is less than a minimum expected
time (60 seconds by default). However, we assume that such
simple verification is easy to bypass if the adversary recognizes
this feature in advance. The lack of consideration on security
provides an opportunity for an adversary to tamper host
location information by simply impersonating the target host.
What is worse, all OpenFlow controllers have a routing module
that utilizes the host location information to make the packet
forwarding decision. That is, if an adversary can tamper the
location information, he/she has a potential to hijack the traffic
towards the host.

Here, we propose an attacking strategy where the adversary

/
°"e“”°‘"-
Network ooee
] Tenant

//(

10.0.0.100

Fig. 3: Attacker impersonates a specific web server to phish
users

crafts packets with the same identifier of the target host. Once
receiving the spoofed packet, the OpenFlow controller will be
tricked to believe that the target host moves to a new location,
which actually is the attacker’s location. As a result, future
traffic to the target is hijacked by the adversary. Next, we
introduce a practical example of harvesting web clients by
exploiting the vulnerability in HTS, as shown in Figure

Web Clients Harvesting. In order to conduct a Web
Clients Harvesting Attack, we firstly need to retrieve the
identifier of the target. From Table we find that the host
identifier varies among MAC address, VLAN ID, and IP
address depending on the platform and version of OpenFlow
controllers. It is trivial to know the IP address if we have
already chosen an attacking target. Besides, the VLAN ID is
normally unused during the update procedure of Host Profile.
On the other hand, as MAC address is regarded as the (or part
of) identifier for hosts in most OpenFlow controllers (except
for Ryu), we can use ARP request packets to probe the MAC
address of our target. Note that such simple probe method is
feasible because the OpenFlow network does not change the
source MAC address during packet transmission.

In addition, one difficulty to successfully exploit HTS

L http://10.0.0.100/ http://10.0.0.100/
$

10.0.0.100 -¢ B add < 10.0.0.100 ~C| (@~ a$ ¢
It works!

This s the default web page for this server.

Attack Succeed!

‘This is the malicious web server

‘The web server software is running but no content has been added, yet. The web server software is to phish users.

(a) Connected to Genuine Server (b) Hijacked by Malicious Server

Fig. 4: Web Impersonation Attack

lies in that the adversary needs to race with the target host,
because any traffic initiated from the target host can correct
host location information in the controller. To overcome the
non-determinism of such situation, we could set our target
as a server. This is because a server normally runs in a
passive mode, i.e., it opens specific port(s) and waits for remote
connections from clients.

In this paper, we launched a Host Location Hijacking
Attack in our experimental environment. We chose Flood-
light (master) as the OpenFlow controller, atop which the
Host Tracking Service and Shortest Path Routing Service
are enabled by default. We deployed an Apache2 [1] web
server with IP address “10.0.0.100” and several hosts in our
customized OpenFlow topology. The reachability test is shown
in Figure fi(a)] that is, before we launch the Host Location
Hijacking Attack, clients can visit the genuine web server
with our assigned IP address. Upon a compromised host, we
also run a Web service and send ARP request to probe the
corresponding MAC address of “10.0.0.100”. We then use
Scapy [8] to periodically inject fake packets in the name of
our target (the genuine web server “10.0.0.100”). After that, we
find the new coming client attempting to visit the web server
“10.0.0.100” is directed to the malicious server, as shown in

Figure @(b)}

C. Link Fabrication Attack

In this part, we show how an adversary can fabricate a
link into the network topology to threaten normal network
activities.

Exploitation in Link Discovery Service. To build the
entire network topology and handle dynamics of a network,
OpenFlow adopts OFDP for topology management. Typically,
OpenFlow controllers utilize LLDP packets to discover links
among OpenFlow switches. However, there exist security flaws
during the link discovery procedure.

As implicated in Section the LDS in OpenFlow con-
trollers is subject to two invariants: 1) The integrity/origin
of LLDP packets must be ensured during the Link Discovery
procedure; 2) The propagation path of LLDP packets can only
contain OpenFlow-enabled switches. Unfortunately, those two
security invariants are poorly enforced in current instantiations
of OpenFlow controllers. In our study, we find that the syntax
of LLDP packets varies among different OpenFlow controller
platforms. For example, POX and Floodlight use an integer
variable to represent the port number of a remote switch

whereas the form of the port number in OpenDayLight is
the ASCII value of characters. In addition, some OpenFlow
controllers add extra TLVs (Type-Length-Values), e.g., system
description, to enrich the semantics of LLDP packets. The
controller-uniqueness of LLDP packets to some extent protects
the LLDP “origin invariant.” However, we argue that it is not
enough when taking into account the open source nature of
OpenFlow controllers and simple semantics of LLDP. Also,
the Floodlight controller adds an origin authenticator as an
extra TLV of LLDP packets to verify the origin of LLDP
packets. However, the authenticator keeps unchanged after the
setup of Floodlight controllers, which allows an adversary to
violate the origin property. More seriously, we find that there
is no mechanisms in current OpenFlow controllers to ensure
the integrity of LLDP packets.

In our study, we also find some OpenFlow controller-
s, e.g., Floodlight and OpenDaylight, provide an API sup-
pressLinkDiscovery to block LLDP propagation to particular
ports connected to hosts. This kind of method is similar to
the BPDU Guard security feature in legacy Ethernet switches,
which prevents BPDU frames from sending to those ports
enabled with the PortFast feature (i.e., manual configuration of
switch ports connected to hosts). However, depending only on
static port settings is not enough for diverse OpenFlow network
environments, varying from a home network to an enterprise
or cloud/data-center network and from stationary networks to
mobile networks.

In order to deceive the LDS, an adversary can violate
the “integrity/origin invariant” and “path invariant” of LLDP
packets. In particular, the adversary originates falsified LLDP
packets or simply relays LLDP packets between two switches
to fabricate a non-existing internal link. At a first glance, it
does not seem practical to inject arbitrary packets into the net-
work from hosts or virtual machines because they are normally
isolated by specific mechanisms, e.g., VLAN and Firewall.
However, it appears feasible for hosts and virtual machines
to inject or relay LLDP packets in OpenFlow networks. The
OpenFlow networks allow LLDP packets to be sent outside
all switch ports to dynamically track internal links between
switches. Thus, the current design of OpenFlow controllers
accepts LLDP packets from each switch port, even though it
is connected to a host, which leaves a room for an adversary
to inject fake internal links on compromised hosts or virtual
machines. Next, we describe two methods an adversary can
utilize to inject fake links into network topology.

Fake LLDP Injection. In this case, an adversary generates
fake LLDP packets into an OpenFlow network to announce
bogus internal links between two switches. By monitoring the
traffic from OpenFlow switches, the adversary can obtain the
genuine LLDP packet. Afterwards, he/she can violate the ori-
gin invariant of an LLDP packet, while OpenFlow controllers
leverage specific syntax and extra TLVs for verification. Due
to the open source nature of most OpenFlow controllers, the
adversary can find out the reference LLDP syntax. Although
the source code of OpenFlow controllers could be veiled and

User Compromised Host Compromised Host User

Fig. 5: Link Fabrication in an LLDP relay manner

a network administrator could customize the source code, it is
also available to decode the LLDP packets by using differential
tools. Moreover, as described above, the weak authenticator of
LLDP packets imposed by several OpenFlow controllers can
be bypassed. As long as the adversary acquires the genuine
LLDP packet along with its syntax, he/she can modify the
specific contents of the LLDP packet, e.g., the DPID field or
the port number field, and launch the Link Fabrication Attack.
In order to circumvent the possible anomalous traffic detection,
the adversary could tune the LLDP injecting rate to the LLDP
sending rate monitored from the OpenFlow controller.

LLDP Relay. Instead of injecting forged LLDP packets, a
stronger adversary can also fabricate internal links in a relay
fashion (without packet modification). That is, when receiving
an LLDP packet from one target switch, the adversary repeats
it to another target switch without any modification. In the
case, the adversary constructs a fake topology view to the
OpenFlow controller as if there is an internal link between
those two target switches. This kind of fake link injection
incurs future attack possibilities which we will describe more
in detail as follows.

Here, we discuss two ways to build a communication
channel to relay LLDP packets, i.e., by physical links and
by a tunnel. An intuitive relay method is that an adversary
sets up physical links (e.g., cable or wireless) between two
switches. If this is not feasible, the adversary can use another
more feasible approach, which relays LLDP packets by reusing
the existing OpenFlow network infrastructure as illustrated in
Figure [5 Particularly, the dotted line is the communication
channel between two users in the view of an OpenFlow
controller, whereas the dashed line is the actual traffic route. To
successfully launch an LLDP relay attack, the adversary first
needs to find suitable relay host(s), which can be achieved
by a connection test. Another thing we need to note is that,
some OpenFlow controllers, e.g., Floodlight and POX, disable
the Host Tracking Service on internal link switch ports, which
hinders the deployment of the LLDP relay channel. However,
we cannot ignore the tunnel-based LLDP relay attack on
those controllers in a hybrid network scenario (i.e., a network

contains both OpenFlow islands and Non-OpenFlow islands),
as the OpenFlow controller can hardly stop Host Tracking
Service on the Multi-hop link ports (i.e., switch port outgoing
to another Non-OpenFlow switch).

Next, we illustrate two attack possibilities on the top of
Link Fabrication Attack, i.e., Denial of Service attack and man-
in-the-middle attack.

Smallest DPID Second Smallest DPID

User User

(a) The chosen switch has the second (b) The chosen switch has the small-
smallest DPID est DPID

Fig. 6: Denial of Service Attack

Denial of Service Attack. To prevent a broadcast storm
and save energy, OpenFlow controllers provide Spanning Tree
Service (as detailed in Appendix A). When any topology up-
date occurs, Spanning Tree Service is triggered to block those
redundant ports. However, this capability can be leveraged by
an adversary to launch a Denial of Service attack. In particular,
by injecting a fake link into existing topology, the adversary
can borrow the knife of Spanning Tree Service to “kill” normal
switch ports.

One challenge to launch this type of attack is the non-
deterministic characteristics of Spanning Tree Calculation after
fake link injection. We note that the Spanning Tree Algorithm
always excludes the link that connects largest DPID switches.
Hence, we introduce an attack strategy tailored to a practical
scenario, where an adversary possesses several compromised
hosts connected to ingress switches. By listening to LLDP
packets, the adversary can acquire the DPIDs of two ingress
switches. Then, the adversary controls the compromised host
which connects to the ingress switch with a lower DPID and
injects a fake LLDP to announce a link with the target switch.
As a result, there may be two consequences: if the DPID
of the aggregation switch is smaller than that of our chosen
switch, the adversary could shut down an arbitrary port of
the target switch, as shown in Figure otherwise, if the
chosen switch has the smallest DPID, the link between the
target switch and the aggregation switch is excluded from the
spanning tree and also the corresponding ports are blocked, as

shown in Figure

We demonstrated a Denial of Service attack in our ex-
perimental environment. We chose POX as the OpenFlow
controller, enabling routing module (12_learning.py), link dis-
covery module (discovery.py) and spanning tree module (span-
ning_tree.py). Note that the action for non-spanning-tree ports
was configured as Port_Down. Then, we deployed a FatTree-
like topology, where we controlled two hosts connecting to two

Ingress Switch

ST

——
@ N\\
\
N

User Compromised Host User

(a) Attack Topology

root@mininet-vm:™# tcpdump

tcpdumps verbose output suppressed, use -v or -wwv for full protocol decode
listening on h2-eth0, link-type EM1OME (Ethernet), capture size 65535 bytes
08:58:40,733076 ARP, Request who-has 10,0,0,3 tell 10,0,0,1, length 28
08:58:40,891255 ARP, Reply 10.0.0.3 is-at b2:af:fbsed:a0:69 Coui Unknown), lengt|
h 28

08:58:40,905558 IP 10,0,0,1 > 10,0,0,3: ICHP echo request, id 2757, seq 1, lengt
h 64

08:56:40,911964 IP 10,0,0,3 > 10,0,0,1: ICHP echo reply, id 2757, seq 1, length
64

08:568:41,731296 IP 10,0,0,1 > 10,0,0,3; ICHP echo request, id 2757, seq 2, lengt|
08:58:41,731520 IP 10,0,0,3 > 10,0,0,1: ICHP echo reply, id 2757, seq 2, length
08:58:42,730103 IP 10,0,0,1 > 10,0,0,3: ICHP echo request, id 2757, seq 3, lengt
08:58:42,730156 IP 10,0,0,3 > 10,0,0,1: ICHP echo reply, id 2757, seq 3, length
64

08:58:42,830172
08:568:43,731298 IP 10,0,0.1 > 10,0,0,3: ICHP echo request, id 2757, seq 4, lenat|

h 64
08:50:43,731247 1P 10,0,0,3 > 10,0,0,1: ICHP echo reply, id 2757, seq 4, length
B4

(b) Attack Result

Fig. 7: Man-In-The-Middle Attack

sibling ingress switches. We ran Wireshark with the OpenFlow
Dissector extension [5], which helps to parse OpenFlow mes-
sages, and dumped the Packet-Out messages with the payload
of LLDP packets. We also ran an attacking script to craft fake
LLDP packets based on the dumped genuine LLDP packets
and injected them to the switch with the smaller DPID. As
a result, we noticed that the users who are connected to our
target switch port could not access the network resource any
more.

Man-In-The-Middle Attack. Similarly, The fake link in-
jection can also disturb the operation of Shortest Path Routing
Service. An adversary can build an LLDP relay channel to
deceive an OpenFlow controller with the illusion of an (actu-
ally non-existing) internal link between target switches. Once
the OpenFlow controller notices a link up, it re-computes the
Shortest Route based on contaminated topology information.
As a result, all the traffic traversing through the fake route
will fall into the trap of the adversary. Note that unlike legacy
Ethernet switches, the OpenFlow switches do not change
the source MAC address of packets. As such, in order to
circumvent possible anomaly detection, we must keep the
source MAC address when relaying both LLDP and normal
packets.

Here, we launched a man-in-the-middle attack in our
experimental environment. The OpenFlow controller we chose
was Floodlight (master) with default settings. We deployed an
linear network topology, as shown in Figure where we

had a compromised host connecting two ingress switches in
the network. After the deployment, we ran an attacking script
to relay traffic between two target switches (The dashed line
in Figure is the actual communication traffic route). As
shown in Figure [7(b)] we successfully wiretapped the traffic
of clients connected to the target switches.

IV. COUNTERMEASURES
A. Static Defense Strategies

To defeat the proposed Network Topology Poisoning At-
tacks in SDN networks, we can have two major types of
defense strategies: static or dynamic. The static solution is
to manually configure/manage the host location and link in-
formation beforehand (e.g., assign a host identifier such as a
MAC address to a specific switch port), and then manually
verify and modify whenever there are changes (new addition
or removal). However, this defense is obviously not attractive
as the manual management is tedious, error-prone and not
scalable in practice. In particular, it is not suitable for SDN
networks, in which dynamics could be common and the
scalability is important. Thus, in the following sections, we
mainly focus on discussing dynamic defense strategies, as
briefly summarized in Table [V] We will further introduce our
proposed new defense system, TopoGuard, and evaluate its
effectiveness and performance in the later section.

B. Dynamic Defense Strategies against Host Location Hijack

The problem of Host Location Hijacking lies in that
OpenFlow controllers fail to verify the host identifier when
the location of a host is updated. In order to tackle this issue,
we discuss two possible mitigation methods which can secure
HTS in OpenFlow controllers as well as dynamically track
network mobility.

Authenticate Host Entity. A cryptographic solution to
this problem is to authenticate a host by adding additional
public-key infrastructure. In particular, when a host needs to
change its location, it encodes the new location information
into an unused field of packet (e.g., VLAN ID or ToS) with
the encryption using its private key. This solution seems decent
to prevent malicious host profile falsification, because it is not
practical for an adversary to acquire the private key of the
target host. However, there are several restrictions that make it
hard to be feasible in practice. First, it begets additional storage
overhead for keeping public keys in the OpenFlow controller
side as well as computation overhead for handling each Packet-
In message. The management of all keys of hosts and the
dynamic addition/removal also bring a lot of overhead and cost.
Moreover, this method requires to modify the implementation
on every host, which is tedious and difficult in practical
deployment.

Verify the Legitimacy of Host Migration. Another
lightweight solution we propose is to verify conditions of a
host migration. The idea is based on our two observations.
First, the precondition of a host migration is that the OpenFlow

Host Migration Comparative Feasibility

Integirty/Origin Invariant of LLDP | Path Invariant of LLDP

Authentication Yes Low

Yes No

Verification Yes High

No Yes

TABLE IV: Defense Capabilities

controller must receive a Port_Down signal before the host mi-
gration finishes. Second, the postcondition of a host migration
is that the host entity is unreachable in the previous location
after the completion of the host migration. Consequently, based
on this cause-and-effect relation, we can verify the legitimacy
of the host migration by checking the precondition and post-
condition. This method also adds performance overhead for
Packet-In message processing, but compared to Host Entity
Authentication, it is lighter and more feasible. In this paper, we
adopt this verification approach to secure the host migration.

C. Dynamic Defense Strategies against Link Fabrication

As mentioned earlier, the root causes of the Link Fabri-
cation attack can be summarized as: 1) The integrity/origin
of an LLDP packet can be violated during the link discovery
procedure in OpenFlow networks; 2) The compromised hosts
can involve in the LLDP propagation path. To fix those security
omissions, we propose two approaches that can secure the Link
Discovery procedure without the burden of manual effort.

Authentication for LLDP packets. The first security
omission exploited by an adversary is that the OpenFlow
controller fails to verify the integrity of LLDP packets. Also,
the adversary can defeat the verification of the origin in current
OpenFlow controllers as long as he/she is able to receive
LLDP packets from the connected switch. One solution to
this problem is to add extra authenticator TLVs in the LLDP
packet. Especially, we can add a controller-signed TLV into
the LLDP packet and check the signature when receiving
the LLDP packets. The signature TLV is calculated over
the semantics of the the LLDP packet (i.e., DPID and Port
number). In this case, the adversary can hardly manipulate the
LLDP packets. However, this approach suffers from the fact
that it fails to defend against the Link Fabrication attack in an
LLDP relay/tunneling manner.

Verification for Switch Port Property. Another security
invariant of the OpenFlow link discovery procedure is that
no hosts can participate in the LLDP propagation. An idea
to mitigate the relay-based Link Fabrication is to check if
any host resides inside the LLDP propagation, e.g., we can
add some extra logic to track the traffic coming from each
switch port to decide which device is connected to the port.
If OpenFlow controllers detect host-generated traffic (e.g.,
DNS) from a specific switch port, we set the Device Type
of that port as HOST (details in Section . Otherwise, we
assign those switch ports as SWITCH when LLDP packets
are received from those ports. In OpenFlow networks, those
two categories are mutually exclusive because LLDP can only
transmit on switch internal link ports and ports connected to the

OpenFlow controller [ﬂ One assumption of this method lies in
that the compromised machine is not an actual switch thus will
generate regular host-generated traffic (e.g., ARP, DNS). This
assumption is reasonable and it holds in most cases in practice.
While a powerful adversary could theoretically disable all host-
generated traffic in compromised hosts or virtual machines, it
could also make the machine somewhat non-functional, at least
for some normal networking activities/operations, and such
non-functional anomaly could be easily noticed by the normal
machine user, thus expose the existence of the adversary.

Finally, we note that in the case the adversary mutes all
host-generated traffic, our aforementioned switch port property
verification may not work. From the controller perspective,
the attacking host can act just as a part of a cable, which
is very difficult to discover by layer 2 or layer 3 security
mechanisms. We could resort to verify some physical layer
characteristics (e.g., [20]) to differentiate whether the attached
device hardware is a switch or a machine, which is out of the
scope of this paper.

V. TopoGuard PROTOTYPE SYSTEM

In this section, we detail the design and implementation of
a new security extension for the OpenFlow controller, called
TopoGuard, to protect the SDN networks from Network Topol-
ogy Poisoning Attacks. TopoGuard is certainly not perfect. Our
goal is to provide an automatic tool that (i) has a good balance
between usability and security, and (ii) can be easily integrated
into current mainstream OpenFlow controllers for immediate
protection.

A. Overview

The basic idea of TopoGuard is to secure OpenFlow
controllers by fixing security omissions as described in the
previous section. In TopoGuard, we design Topology Update
Checker to automatically validate the update of network topol-
ogy, which is dependent on the information provided by Port
Manager and Host Tracker.

Architecture. Figure [§] illustrates the architecture of our
defense system. The Topology Update Checker verifies the
legitimacy of a host migration, the integrity/origin of an LLDP
packet and switch port property once detecting a topology
update. Specifically, the Port Manager surveils OpenFlow
messages to track dynamics of switch ports, which are stored
in the Port Property. Afterwards, the Port Property is used to
reason about the trustworthiness of a topology update. The
Host Prober module is to test the liveness of the host in

“In this paper, we consider the control channel of OpenFlow networks could
be properly under protection of SSL/TLS.

TopoGuard
OpenFlow / Probe
Messages Port Host Liveness S
Manager Prober §
I Pass or
Port Topology Block
Property Update
DB Checker Topology Topo|°gy
\ T / Update |
. nstance
Trigger

Fig. 8: The Architecture of TopoGuard

First-Hop

LLDP Pack
acket ost Packet

First-Hop
Host Packet

LLDP Packet

HOST ANY SWITCH

Port_Down Signal Port_Down Signal

Fig. 9: The Transition Graph of Device Type

the specific location of the OpenFlow network, which also
provides forensics to judge the host migration.

B. Design

Port Property Management. In order to reason about the
validness of a topology update, we profile extra properties for
each switch port in an OpenFlow controller. These properties
include: Device Type, Host List and SHUT_DOWN_FLAG. The
Device Type depicts which type of device a particular switch
port connects to. The value could be ANY, SWITCH and
HOST. As illustrated in Figure 0] The initial value of Device
Type is ANY, which will turn to SWITCH or HOST based on
following traffic. When Port Manager receives LLDP packets
from a switch port with Device Type of ANY, it changes its
type to SWITCH. Similarly, the Device Type of the switch
port is set to HOST when Port Manager receives any first-
hop host traffic, i.e., the host identity of the traffic is detected
by the OpenFlow controller for the first time. In contrast, the
HOST and SWITCH port are set back to ANY when receiving
a Port_Down signal indicated in Porz-Status messages. If Port
Manager detects an LLDP packet from a HOST port or a first-
hop host packet from a SWITCH port, it raises an attack alert
and notifies Topology Update Checker to prevent the relevant
topology update. The intuition behind this defense approach
is that an LLDP packet is only designed to traverse through
switch internal link ports in the data plane.

One challenge in port property management is how to
decide the Device Type of a port as HOST. An intuitive
solution in the OpenFlow networks is to monitor Packet-In
messages from the switch port to detect host-generated traffic
(e.g., ARP and DNS). After detecting host-generated traffic, we
consider the port is connected to a host and change its Device

10

Type as HOST. However, in our study, we find that different
OpenFlow switches may issue multiple replicas of Packet-In
messages for a specific host flow, i.e., the OpenFlow controller
would receive host traffic from switch internal link ports. It
could be due to the race condition scenario or specialized
packet processing logic of OpenFlow controller applications.
To solve this problem, we keep tracking the first-hop host
traffic. Especially, we maintain Host List in the Port Property
for each switch port, which contains host entities (in the form
of a MAC address). When receiving Packet-In messages, the
Port Manager locates the host entity in the existing Host List
of Port Property. if the host entity is not found, the traffic
is regarded as first-hop traffic and the source MAC address
is recorded in the Host List of Port Property of the ingress
switch port. Also, we need to handle network dynamics such
as the Ser-Field action in the OpenFlow flow rule, because
any modification of the source MAC address during packet
transmission can cause misclassification of first-hop traffic. For
this, we also maintain a host-MAC alias map when we observe
some flow rule modifying the source MAC address.

Another purpose of keeping Host List is to verify the trust-
worthiness of a host migration. As we mentioned in Section[[V]
the precondition for a host migration is that the OpenFlow con-
troller receives a Port_Down signal before the host migration
finishes. At this point, we set SHUT_DOWN_FLAG for hosts in
the Host List of a switch port once detecting the port is down.
The SHUT_DOWN_FLAG can be disabled when Port Manager
receives correlated host traffic from the port. Furthermore, we
can validate the SHUT_DOWN_FLAG inside Host List for the
verification of the host migration.

Host Prober. As the counterpart to checking the precondi-
tion of a host migration, we can also leverage Host Prober
to verify the postcondition, i.e., the host is unreachable in
the previous location after the host migration completes. To
achieve this, the Host Prober issues a host probing packet,
e.g., ICMP Echo Request, to the former location of the host
and waits for a response within a reasonable timeout. The Host
Prober sends out a Packet-Out message with the payload of a
crafted ICMP packet and outputs it to a specific switch port. In
order to ensure the successful delivery of the response, the Host
Prober also installs a flow rule to direct the ICMP response
back to the OpenFlow controller. Also, to lower the overhead,
in the current implementation, we set the response timeout as
1 second.

Topology Update Verification. The Topology Update
Checker verifies the correctness of a topology update including
a host migration and a new link discovery. When a host
migration is detected, the checker references Port Property to
check the precondition and instructs Host Prober to validate
the postcondition. We note that the time overhead of checking
the postcondition would be much higher than that of checking
the precondition. In order to reduce the overall overhead, we
can adopt a roll-back technique in Host Migration verification.
That is, the Topology Update Checker updates a host location
if the precondition is passed (SHUT_DOWN_FLAG for that

host is enabled in Port Property of the former location)
without waiting for the result of Host Prober. However, if the
response of Host Prober indicates a malicious host migration,
the Topology Update Checker withdraws the previous update
and raises an attack alert. In this case, the time overhead
for verifying the host migration only counts on validating the
precondition.

The Topology Update Checker also verifies the link discov-
ery. The first task is to ensure the LLDP integrity/origin. For
this sake, we place a signature TLV into an LLDP packet,
which is a cryptographic hash value of a DPID and Port
number. As soon as a new link is discovered, the Topology
Update Checker conducts extra verification logic for the signed
hash TLV. Then, the Topology Update Checker detects if the
host lies on the path of the LLDP propagation. This task is
achieved by checking the Device Type of switch ports of the
new link. As a result, any internal link update involved in the
HOST port will be denied and trigger an attack alert.

C. Implementation

We have developed a prototype implementation of 7o-
poGuard on the master version of Floodlight. The Topology
Update Checker, including Port Manager and Host Prober,
works as a Floodlight service and is approximately 700 lines
of Java code. The Topology Update Checker implements IDe-
viceListener and ILinkDiscoveryListener to monitor an update
event of the topology instance inside Floodlight controller,
while the Port Manager implements IOFSwitchListener and
IOFMessageListener to initiate and maintain Port Property for
each switch port.

To ensure the origin and integrity of an LLDP packet, we
also use a keyed-hash message authentication code (HMAC)
as an optional TLV for LLDP packets. In particular, we utilize
javax.crypto package and select SHA-256 as the hash function
along with controller’s secret key. This adds about 130 lines
of code in Java.

D. Evaluation

We evaluated a prototype implementation of TopoGuard to
examine its effectiveness and performance.

1) Effectiveness: We first measured the effectiveness of
our implementation against the Network Topology Poisoning
Attacks discussed in Section Our experiment is conducted
in the OpenFlow network environment including the Flood-
light controller with TopoGuard. We launched aforementioned
Network Topology Poisoning attacks in the environment and
testified the reactions of the fortified Floodlight controller by
observing the console output.

Detecting Host Location Hijacking. An adversary can
spoof the identity of a target host to hijack its location
information inside OpenFlow controllers. Note that we assume
the target host is not compromised by the adversary. With
TopoGuard, the falsified host migration can be detected due
to dissatisfaction of the precondition and the postcondition.

11

lew 1/0 server worker #2-1] Link added: Link [src=00:00:00:00:00:00:60:01 outPort=3, dst=80:00:00:00:60:00:
:rver-main] Starting DebugServer on :6655

-$PortManager:New I/0 server worker #2-1] Device:7a:f1:0d:d6:31:fd is added on:

$PortManager:New I/ server worker #2-1] sw:I,port:1
-$PortManager:New T/0 server worker #2-1] Device:96
$PortManager:New I/0 server worker #2-1] sw:1,port:2
“$PortManager:New I/0 server worker #2-2] Device:ca:81:f9:df:0f:bl is added on:
“$PortManager:New I/0 server worker #2-2] sw:2,port:2

"$§PortManager:New I/0 server worker #2-1] Device:2a3:45:16:50:b9:cf is added on:

1
"$PortManager:New I/0 server worker #2-1] sw:3 port:3
‘$PortManager:New I/0 server worker #2-2] [Violation: Host Move Trom switch 1 port 1 without Port ShutDown
"$PortManager:New I/0 server worker #2-1] lViolation: Host Move from switch 1 port 1 is still reachable

Fig. 10: The Detection of Host Location Hijacking Attack

2f:54 is added on:

lew 1/0 server worker #2-2] Link added: Link [src=09:00:00:00:00:00:00:83 outPort=1, dst=00:00:00:00:00:00:
er:New I/0 server worker #2-1] Inter-switch link detected: Link [src=80:60:00:00:00:00:60:62 outPort=3, ds
lew 170 server worker #2-1] Link added: Link [src=00:00:00:00:00:00:00:82 outPort=3, dst=00:00:00:00:00:00:
er:New I/0 server worker #2-1] Inter-switch link detected: Link [5rc=60:00:00:00:00:00:60:01 outPort=3, ds
lew 1/0 server worker #2-1] Link added: Link [src=00:00:00:00:00:80:00:01 outPort=3, dst=80:00:00:00:60:00:
lew 1/0 server worker #2-1] Link added: Link [src=00:00 :08:00:00:00:83 outPort=2, dst=00:00:60:00:00:00:
er:New I/0 server worker #2-1] Inter-switch link updat Link [src=60:00:00:00:00:00:00:03 outPort=2, dst
lew 1/0 server worker #2-1] Link updated: Link [src=00:00:00:00:00:00:00:03 outPort=2, dst=00:00:00:00:00:0
:rver-main] Starting DebugServer on :665!
$PortManager:New 1/0 server worker #2-2]fviolation: Receive LLDP packets from HOST port: SW 1 port 2

‘$PortManager:New 1/0 server worker #2-2]

$PortManager:New 170 server worker #2-2] Violation: Receive LLDP packets from HOST port: SW 1 port 2

Fig. 11: The Detection of Link Fabrication Attack

That is, the Floodlight controller fails to receive a Port_Down
message before receiving a host move event as shown in the
first line in the red pane of Figure [T0] and it succeeds in
probing the target host in the previous location after receiving
the host move event, as shown in the second line in the red
pane of Figure [I0]

Preventing Link Fabrication. An adversary can also
falsify LLDP packets to fabricate non-existing links between
switches. Under the radar of TopoGuard, the attempts to
exploit the poor origin check and the omitted integrity as-
surance of the LLDP packets can be efficiently prevented.
To ensure network dynamics, we do not manually block the
LLDP packets on switch ports, i.e., the adversary is allowed
to receive LLDP packets. However, once either a DPID or
Port ID is manipulated by the adversary, the fortified LLDP
handler can detect it and fire an alert. Note that we disable
the port property verification while checking the integrity of
LLDP packets because this LLDP falsification is also launched
inside the data plane.

For another way of link fabrication, the adversary utilizes
compromised hosts to relay LLDP packets between two target
switches. When the compromised hosts start relaying LLDP
packets, TopoGuard detects the violation of Device Type of
particular ports, as shown in the red pane of Figure [TT]

2) Performance: We further evaluated the performance of
TopoGuard on Floodlight about the overhead over normal
packet processing. In this experiment, we leverage Java Sys-
tem.nanoTime API to measure the running time of program
snippets, which provides a precision of 1 nanosecond. Note
that the measurement is conducted after all modules of the
Floodlight controller are completely booted.

Impact on Performance The performance penalty im-
posed by TopoGuard mainly comes from the Link Discovery
Module and the Packet-In message processing. Table [V]shows
the average delay for TopoGuard added to the Floodlight
controller on link discovery snippets, i.e., different functional
blocks of Link Discovery Module. For the first round of

Link Discovery Snippet Impact of TopoGuard (Percentage) Controller Overall Cost
LLDP Construction(First time with computing HMAC) 0.431ms(80.4%) 0.536ms
LLDP Construction 0.005ms(2.92%) 0.171ms
LLDP Verification 0.005ms(1.64%) 0.304ms

TABLE V: HMAC Overhead on the Floodlight controller

the LLDP packets construction, the average overhead of 7o-
poGuard is 0.431 ms, which accounts for 80.4% of overall
LLDP construction time. However, we note that the following
cost of TopoGuard imposed on the LLDP construction is much
lower, which is about 0.005 ms and only accounts for 2.92% of
overall LLDP construction time. The significant discrepancies
stem from our implementation strategy because TopoGuard
computes the HMAC value once and cache the computation
result for the future construction and verification of LLDP
packets. The strategy also lowers the impact of TopoGuard
on the verification phase of LLDP packets, which is only
about 0.005 ms. On the other hand, the Port Manager incurs
a delay over the normal packets processing because it sits in
the earlier stage in the OpenFlow message processing pipeline
of the Floodlight controller than the Shortest Path Routing
Service and the Link Discovery Service. Accordingly, we also
measure the time that the Port Manager spends on handling
LLDP packets and host-generated packets. The result shows
the average delay is 0.02 ms for the LLDP packets processing
in the Link Discovery Service and 0.032 ms for the normal
packets processing in the Shortest Path Routing Service. From
the above result, we conclude that the impact of TopoGuard is
negligible on the normal operation of Link Discovery Service
of the Floodlight controller.

VI. DISCUSSION

Topology management has never been included in the
OpenFlow Specification [4]]. In other words, it is vendor-
implementation-dependent although there is already some dis-
cussion about this issue in the community. However, most
of existing OpenFlow controllers and switch vendors follow
a certain convention for handling the topology management.
Since the first reference OpenFlow controller implementation
(i.e., NOX [13]), almost all the implementations implicitly
follow its design, including OpenFlow Discovery Protocol
(OFDP) and Host Tracking Service. This may be a root
cause for explaining that all the controllers expose the similar
vulnerabilities. We hope that our work can draw attention from
the SDN community and more security considerations will be
put into the further specification.

Our attacks mainly focus on the data plane communication
channel, i.e., an adversary can launch Link Fabrication Attack
or Host Location Hijacking Attack on the top of compromised
hosts. In fact, the security of OpenFlow control plane is
also a security concern. As discussed in [9], most OpenFlow
controllers and switch vendors lack full implementation of
SSL/TLS. Seizing this security deficiency, an adversary can
also launch man-in-the-middle attacks to manipulate control

12

traffic between the controller and switches. We think that
the message authentication can be extended to all OpenFlow
messages to mitigate potential message falsification.

Finally, the fact that the OpenFlow controller handles all
the layer 2 protocols on behalf of switches in OpenFlow
networks leaves a room for other potential vulnerabilities
from which the traditional network switches do not suffer.
For instance, a new kind of Denial of Service attack [31]],
targeting at the Packet-In message handler, may saturate the
control channel of OpenFlow as well as overload OpenFlow
controllers. In order to systematically investigate the potential
security issues, designing a new security fuzzer for SDN
(controllers) may help us find more vulnerabilities, which is
our future work.

VII. RELATED WORK

In this section, we investigate security research in the SDN
domain and related poisoning attacks in legacy networks.

Security Research for SDN networks. Several verifica-
tion approaches are often used to debug and check network
invariants. VeriFlow [[19] presents a layer between the control
plane and the data plane that monitors network state updates
and verifies the violations of invariants dynamically at real
time. NetPlumber [18] introduces a realtime network-wide
policy checking tool using Header Space Analysis (HSA).
NICE [22] uses model checking and symbolic execution to
find network software bugs in OpenFlow applications. SOFT
[21] introduces an approach for testing the interoperability
of OpenFlow switches with reference implementations. [14]
designs and presents the first machine-verified SDN controller
based on NetCore [25]]. [[11] introduces a verification tool that
takes the software program of a data plane as input and check
target properties. These verification solutions only verify the
logic correctness of the control plane and data plane, however
fail to locate the network topology exploitations discussed in
this paper. One insight behind Network Topology Poisoning
Attacks stems from the centralized network visibility that
OpenFlow Controller offers to lessen onerous network man-
agement tasks. Unfortunately, our study in this paper shows
that this function could be exploited if not carefully designed,
thereby incurring serious security threats.

To date, the security issues of SDN have been being widely
discussed in both academia and industry. FortNox [27]] intro-
duces a SDN tunneling attack and presents two mechanisms,
role-based authorization and security constraint enforcement,
to solve corresponding security challenges. OF-RHM [16]

proposes OpenFlow Random Host Mutation to dynamical-
ly mutates IP addresses of hosts inside an LAN network.
FRESCO [30] introduces an OpenFlow security application
development framework which provides modular composable
security services for application developers. SDN Scanner [29]
and Avant-Guard [31] show a new attack (which is called
data-to-control plane saturation attack) against SDN networks
and provide solutions to prevent such attacks. Different from
the previous work, this paper is the first one to study the
network topology visibility exploitation in the SDN network.
Concurrently, SPHINX [23] proposes a unified approach to
use network flow graphs to detect attacks that violate those
learned flow graphs/modules. Different from their work, this
paper deeply investigates the vulnerabilities causing Network
Topology Poisoning Attacks, as well as a low-overhead real-
time defensive solution.

Related Poisoning Attacks in Legacy Networks. One
notorious counterpart to the Host Location Hijacking Attack
is the ARP Cache Poisoning attack in Ethernet networks. That
is, an adversary sends forged ARP messages to associate the
IP address of the target host with the MAC address of a
malicious host. By doing so, the adversary can hijack the entity
of the target host, which is normally a gateway. However, the
ARP Cache Poisoning attack has several differences from the
Host Location Hijacking Attack as shown in Table First,
the attacking scope of the ARP Cache Poisoning is limited
to a broadcast domain, i.e., the adversary must stay within
the same broadcast domain with its target. By contrast, the
adversary can launch the Host Location Hijacking Attack at
any location of an OpenFlow network. Second, in addition
to ARP reply packets, the Host Location Hijacking Attack
can leverage almost all kinds of packets, e.g., ICMP echo,
UDP and TCP, to usurp the location of the target host. In this
point, the Host Location Hijacking Attack can be concealed in
normal traffic to sidestep NIDS (Network Intrusion Detection
Systems). Also from the defense perspective, the traditional
mitigation strategies for ARP Cache Poisoning, such as the
static ARP entry, may not be appropriate to apply directly
to the SDN network since its static configuration undermines
the dynamics handling capability of the OpenFlow network,
e.g., tracking host migration between various OpenFlow access
points [3]. To defend against the Host Location Hijacking
Attack along with tracking network dynamics, in this paper, we
leverage OpenFlow specific capabilities to dynamically verify
the host migration.

As illustrated in Table [VII, an attack in legacy networks
similar to the spirit of the Link Fabrication Attack is the
STP Mangling (a.k.a, BPDU Falsification) attack [26], i.e.,
an adversary falsifies BPDUs with the smallest bridge ID to
preempt the root of Spanning Tree. After faking the root, the
adversary has potential to elaborate a Denial of Service or man-
in-the-middle attack. However, the STP Mangling attack only
disrupts the running of STP rather than injecting a fake link
into network topology to poison the entire network operation.
Also, some prior work about the exploitation of the view of
network topology focus on only link-state routing protocols.

13

Jones et al. [17] outline vulnerabilities of the design of OSPF
and discuss the possible exploitations. Nakibly et al. [12]]
introduce two attacks to persistently falsify the topology
of an OSPF network, which also incurs denial of service,
eavesdropping and man-in-the-middle attacks. Such attacks are
launched by compromising the router entity or obtaining the
pre-shared keys for the authentication of router. However, the
Link Fabrication Attack in this paper can be launched from the
hosts residing in the data plane. Apart from a wired network,
The link-state routing protocols in Mobile Ad Hoc networks,
e.g., Optimized Link State Routing Protocol (OLSR), also
incur similar security challenges. As mentioned in [6], an
adversary can falsify links into OLSR topology by generating
TC (or HNA) messages. Similar to OSPF Link Fabrication,
OLSR Link Fabrication requires compromised routing entities,
which is not required in our attacks. Another attack avenue in
OLSR is the Wormhole attack [10], [32], which artificially
creates wormholes in OLSR networks by recording traffic in
one location and replaying it in another location. The OLSR
Wormhole attack is only launched in a relay/replay manner.
In contrast, our Link Injection attack can also be launched by
falsifying the LLDP packets. In all, Table summarizes the
differences of those attack from the Link Fabrication Attack
proposed in this paper.

Note that aforementioned work motivates our study, but
the problem domain in this paper is totally different. That
is, we focus on the SDN-specific security issues which stem
from the different operations of SDN networks and legacy
networks, as well as from the security omissions in the design
and implementation of current OpenFlow Controllers.

VIII. CONCLUSION

In this paper, we propose new SDN-specific attack vectors,
Host Location Hijacking Attack and Link Fabrication Attack,
which seriously challenge the core advantage of SDN, i.e.,
network-wide visibility. We demonstrate that the attacks can
effectively poison the network topology information, thereby
misleading the controller’s core services and applications. We
also systematically investigate the solution space and then
present TopoGuard, a new security extension to the OpenFlow
controllers, which provides automatic and real-time detection
of Network Topology Poisoning Attacks. Finally, our prototype
implementation shows a simple yet effective and efficient
defense against the Network Topology Poisoning Attacks. With
the publication of this paper, we also plan to release our
prototype tool to help fix these vulnerabilities in widely used
OpenFlow controllers. We hope that this work will attract
more attention to SDN security research and contribute to
the standardization of the SDN specification with security
considerations.

ACKNOWLEDGEMENTS

This material is based upon work supported in part by the
Air Force Office of Scientific Research under FA-9550-13-1-
0077 and a Google Faculty Research award. Any opinions,

Attack Requirement

OpenFlow Host Location Hijacking

ARP Cache Poisoning

Attacker Location Restriction

Anywhere within the OpenFlow domain with the target

Stay within the same broadcast domain with the target

Target Visibility

MAC Address and IP Address

Only IP Address

Attack Avenue

OpenFlow Host Location Hijacking

ARP Cache Poisoning

Falsified Packet Type

Almost every kind of packets

Only ARP packet

Attack Result

OpenFlow Host Location Hijacking

ARP Cache Poisoning

Hijack the Target Location Yes

Yes

TABLE VI: Comparison between Host Location Hijacking and ARP Cache Poisoning

Attack Requirement

OFDP Link Fabrication

STP Mangling OSPF Link Fabrication OLSR Wormbhole

Attack relies on Compromised Routers/Switches No

No Yes No

Need to defeat Neighbor Discovery/Authentication No

No Yes No

Attack Avenue

OFDP Link Fabrication

STP Mangling OSPF Link Fabrication OLSR Wormbhole

Falsify Control Message Yes

Yes Yes No

Relay Control Message Yes

No Yes Yes

Attack Result

OFDP Link Fabrication

STP Mangling | OSPF Link Fabrication | OLSR Wormhole

Injecting False Link into Network Topology Yes

No Yes Yes

Affected Service

All Topology-Based Services

STP

Routing Routing

TABLE VII: Comparison between Link Fabrication Attack and Previous Counterparts

findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of AFOSR and Google.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

Apache http server project. https://httpd.apache.org/.

Configuring port security. http://www.cisco.com/c/en/us/td/docs/
switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/port_sec.
htmll

n-casting using openflow.
n-casting-mobility-using-openflow/.

http://archive.openflow.org/wp/

OpenFlow Specification v1.4.0. http://www.opennetworking.org/
1mages/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.4.0.pdf,

Openflow wireshark dissector. http://archive.openflow.org/wk/index.
php/OpenFlow_Wireshark_Dissector.

Optimized Link State Routing Protocol (OLSR).
http://www.ietf.org/rfc/rfc3626.txt.
Proxy ARP. http://www.cisco.com/c/en/us/support/docs/

1p/dynamic-address-allocation-resolution/13718-5.html#
howdoesproxyarpwork.

Scapy: Packet manipulation program. http://www.secdev.org/projects/
scapy/.

K. Benton, L. J. Camp, and C. Small. Openflow vulnerability assess-
ment. In Proceedings of ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN’13), August 2013.

D. Raffo C. Adjih and P. Mhlethaler. Attacks against olsr: Distributed
key management for security. In 2005 OLSR Interop and Workshop,
July 2005.

M. Dobrescu and K. Argyraki. Software dataplane verification. In
Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2014.

D. Gonikman G. Nakibly, A. Kirshon and D. Boneh. Persistent ospf
attacks. In In proceedings of the 19th Annual Network & Distributed
System Security Conference (NDSS’12), 2012.

Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado,
Nick McKeown, and Scott Shenker. Nox: towards an operating system
for networks. July 2008.

14

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Guha, M. Reitblatt, and N. Foster. Machine-verified network
controller. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), 2013.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. Elastictree: Saving energy in data center
networks. In Proceedings of the 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2010.

J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random host
mutation: Transparent moving target defense using software defined
networking. In Proceedings of ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN’12).

E. Jones and O. L. Moigne. Ospf security vulnerabilities analysis. In
Internet-Draft draft-ietf-rpsec-ospf-vuln-02, IETF, June 2006.

P. Kazemian, M. Chang, H. Zeng, S. Whyte, G. Varghese, and N. McK-
eown. Real time network policy checking using header space analysis.
In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2013.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veri-
flow: Verifying network-wide invariants in real time. In Proceedings
of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

L.B. Kish. Protection against the man-in-the-middle-attack for the
kirchhoff-loop-johnson(-like)-noise cipher and expansion by voltage-
based security. In Fluctuation and Noise Letters 6 (2006) L57L63.

M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic. A
soft way for openflow switch interoperability testing. In Proceedings
of ACM Conference on emerging Networking EXperiments and Tech-
nologies (CoNEXT), 2012.

P. Peresini D. Kostic M. Canini, D. Venzano and Jennifer Rexford.
A nice way to test openflow applications. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2012.

K. Mahajan M. Dhawan, R. Poddar and V. Mann. Cloudnaas: a cloud
networking platform for enterprise applications. In In proceedings of
the 22th Annual Network & Distributed System Security Conference
(NDSS’15), 2015.

Mininet. Rapid prototyping for software defined networks. http://yuba.
stanford.edu/foswiki/bin/view/OpenFlow/,

C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and
run-time system for network programming languages. In Proceedings

https://httpd.apache.org/
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/port_sec.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/port_sec.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/port_sec.html
http://archive.openflow.org/wp/n-casting-mobility-using-openflow/
http://archive.openflow.org/wp/n-casting-mobility-using-openflow/
http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://archive.openflow.org/wk/index.php/OpenFlow_Wireshark_Dissector
http://archive.openflow.org/wk/index.php/OpenFlow_Wireshark_Dissector
http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html#howdoesproxyarpwork
http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html#howdoesproxyarpwork
http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html#howdoesproxyarpwork
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/

of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, 2012.

A. Ornaghi and M. Valleri. Man In The Middle Attacks. fhttp:/www.
blackhat.com/presentations/bh-europe-03/bh-europe-03- valleri.pdf.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A
security enforcement kernel for openflow networks. In Proceedings
of ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN’12), August 2012.

R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar. Can the production network be the testbed? In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2010.

S. Shin and G. Gu. Attacking software-defined networks: A first
feasibility study (short paper). In Proceedings of ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN),
2013.

S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson.
Fresco: Modular composable security services for software-defined
networks. In Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS’13), 2013.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable
and vigilant switch flow management in software-defined networks. In
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS), 2013.

A. Perrig Y. Hu and D. B. Johnson. Wormhole attacks in wireless
networks. In 2005 OLSR Interop and Workshop, July 2005.

[26]

[27]

[28]

[29]

(30]

[31]

[32]

APPENDIX
A. Example Topology-dependent Services in SDN

In this section, we describe two representative topology-
dependent services (among many others), i.e. shortest-path
routing and spanning tree, to illustrate how topology manage-
ment services contribute to SDN network operations.

Shortest-Path Routing Service. Packet routing is the cor-
nerstone for network operation. The topology service is crucial
for packet forwarding in all OpenFlow instantiations. To ex-
plain the packet processing procedure in OpenFlow controllers,
we take the example of the routing service in Floodlight. We
assume Alice wants to visit a web site “ABC.com”. After a
successful DNS resolution, Alice receives the corresponding
IP address and then sends an HTTP request to “ABC.com”.
Since the nearest switch is unable to find a flow rule to forward
this packet, the OpenFlow switch reports it to the OpenFlow
controller as a Packet-In message. In order to process this com-
munication, the OpenFlow controller resolves the destination
location by referring to the Host Profile stemmed from Host
Tracking Service. After resolving location information of the
destination, the OpenFlow controller runs a shortest path algo-
rithm (e.g., Dijkstra’s algorithm) on the topology information
derived from the Link Discovery Service to compute a route
(in its networks) from the source to the destination. If the
OpenFlow controller successfully derives a route, it pushes
a route update to involved OpenFlow Switch(es) for future
communication between Alice and “ABC.com.”

Spanning Tree Protocol Service Apart from shortest path
routing, loop-free is another important concern for network
management. For this purpose, Spanning Tree Protocol (STP
for short) is used to disable redundant ports and links as
a layer 2 extension. Also, it provides an avenue to save
energy in data center network [15]. Instead of distributed STP

15

computation (by BPDUs) in traditional networks, OpenFlow
controller has the capability to solve the Spanning Tree in
a fast-convergence manner. As described in Algorithm |1} the
spanning tree calculation in OpenFlow controllers is built upon
the topology information.

After calculating spanning tree, OpenFlow controllers
leverage Port-Mod messages to manage the switch port status.
In particular, if particular OpenFlow switch ports stay outside
of Spanning Tree, the controller can send out Port-Mod mes-
sage with the ofp_port_config of OFPPC_PORT_DOWN to
turn off those ports.

Algorithm 1 Topology-based STP Calculation in SDN

Input: 7O PO:The topology of current network

Output: ST:The spanning tree of TOPO

. ST.switches <+ (), ST.links
solvedSwitches <

2: root = POP(sorted(T'O PO.switches)

3. while TRUE do

4 for each switch S € TOPO.switches do

5 if S ¢ solvedSwithes and (root, S) € TOPO.links then

<~ 0, candidateSwitches <+ 0,

6: candidateSwitches = candidateSwitches U S
7: ST.switches = ST.switches U S

8: ST.links = ST.links U(root, S)

9: end if

10: if candidateSwitches == () then

11: break

12: end if

13: end for

14: solvedSwitches = solvedSwitches U root
15: root = POP(sorted(candidateSwitches))

16: end while

17: return ST

http://www.blackhat.com/presentations/bh-europe-03/bh-europe-03-valleri.pdf
http://www.blackhat.com/presentations/bh-europe-03/bh-europe-03-valleri.pdf

	Introduction
	Background
	SDN/OpenFlow Background
	Unique Topology Management in OpenFlow Controllers

	Topology Poisoning attack
	Threat Model and Experimental Environment
	Host Location Hijacking Attack
	Link Fabrication Attack

	Countermeasures
	Static Defense Strategies
	Dynamic Defense Strategies against Host Location Hijack
	Dynamic Defense Strategies against Link Fabrication

	TopoGuard Prototype System
	Overview
	Design
	Implementation
	Evaluation
	Effectiveness
	Performance

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Example Topology-dependent Services in SDN

