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Abstract—Conficker [34] is the most recent widespread, well-
known worm/bot. According to several reports [21], [36], it has
infected about 7 million to 15 million hosts and the victims are
still increasing even now. In this paper, we analyze Conficker
infections at a large scale, about 25 millions victims, and study
various interesting aspects about this state-of-the-art malware.
By analyzing Conficker, we intend to understand current and
new trends in malware propagation, which could be very helpful
in predicting future malware trends and providing insights for
future malware defense. We observe that Conficker has some
very different victim distribution patterns compared to many
previous generation worms/botnets, suggesting that new malware
spreading models and defense strategies are likely needed. We
measure the potential power of Conficker to estimate its effects
on the networks/hosts when it performs malicious operations.
Furthermore, we intend to determine how well a reputation-
based blacklisting approach can perform when faced with new
malware threats such as Conficker. We cross-check several DNS
blacklists and IP/AS reputation data from Dshield [9] and
FIRE [10], and our evaluation shows that unlike a previous
study [25] which shows that a blacklist-based approach can
detect most bots, these reputation-based approaches did relatively
poorly for Conficker. This raises a question of how we can
improve and complement existing reputation-based techniques
to prepare for future malware defense? Based on this, we look
into some insights for defenders. We show that neighborhood
watch is a surprisingly effective approach in the case of Conficker.
This suggests that security alert sharing/correlation (particularly
among neighborhood networks) could be a promising approach
and play a more important role for future malware defense.

Index Terms—Botnet, Conficker, Botnet measurement, and
Botnet defense.

I. INTRODUCTION

Conficker worm [34] first appeared in November 2008 and

rapidly spread in the world within a short period. It exploits a

NetBIOS vulnerability in various Windows operating systems

and utilizes many new, advanced techniques such as a domain

generation algorithm, self-defense mechanisms, updating via

Web and P2P, and efficient local propagation. As a result, it

has infected millions of victims in the world and the number

is still increasing even now [21], [36].

It is clear that the complex nature of Conficker makes it

one of the state-of-the-art botnets, and therefore the analysis

of Conficker is very important in order to defend against it.

A full understanding of Conficker can also help us compre-

hend current and future malware trends. Existing research of

Conficker analysis mainly falls into two categories. The first

focuses on analyzing the Conficker binary and its behavior,
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revealing its malicious tricks such as the domain generation

algorithm [30], [38]. In this direction, SRI researchers [30] and

the Honeynet project [38] already provided excellent reports

that analyzed Conficker in great detail. The second research

category mainly focuses on analyzing the network telescope

data [5] or DNS sinkhole data [17] to reveal the propagation

pattern and victim distribution characteristics of Conficker

on the Internet. There are very few studies in this direction,

which is probably because it is very hard to obtain large scale

real-world data of victims and the amount of data should be

large enough to cover victims’ global behavior. CAIDA [5]

and Team Cymru [17] provided some initial reports which

contain some very basic statistics on the scanning pattern

and propagation information of Conficker. However, for a

worm/bot that has infected so many victims and has so much

potential to damage the Internet, it deserves a much deeper

study. Such study is necessary because by analyzing this state-

of-the-art botnet, we can gain more knowledge of current

malware, e.g., how it differs from previous generation malware

and whether such differences represent future trends or not.

These deeper investigations could also provide new insights in

developing new detection and defense mechanisms for current

and future malware.
In this paper, we attempt to provide a deeper empirical mea-

surement study of Conficker. We have collected a large-scale

data set which contains almost 25 million Conficker victims

with the help of Shadowserver.org (details on data collection

are discussed in Section III). We believe such scale is large

enough to uncover Conficker’s global patterns. We provide

an extensive measurement of various distribution patterns of

Conficker victims. Furthermore, we use a comparison- and

cross-check-based methodology in our measurement study.

We study the similarities and differences between Conficker

and several other publicly reported worms/botnets. Then we

analyze how these differences may affect existing reputation-

based detection approaches. We also investigate possible as-

pects that may be useful for Conficker and future malware

defense.
In short, this paper makes the following contributions:

• We provide a large-scale empirical study of almost 25

million Conficker victims. By analyzing this data, we

reveal many interesting aspects that were previously

unknown and show that Conficker victims exhibit a

very different distribution pattern from many previously

reported botnets or worms. This difference could be a new

trend or some ignored facts that are potentially important

for future malware defense. Detailed information is in

Section IV.

• We evaluate the effectiveness of existing reputation-

based approaches for detecting emerging malware threats.
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They are considered as promising in defending against

unknown malware compared to traditional signature-

based approaches [3]. Through cross-checking several

DNS blacklists and reputation data from Dshield [9] and

FIRE [10], our evaluation shows that these reputation-

based approaches are not effective for Conficker defense.

In addition, we investigate whether there are differ-

ences/similarities between victims detected by them and

victims not detected by them. Our study suggests that

these reputation-based approaches need to be significantly

improved and complemented by other techniques. De-

tailed information is in Section V.

• We measure the potential power of Conficker to predict

how much network traffic they can produce or how much

information they can steal. For example, we discover that

Conficker can generate nearly 2 Tbps network traffic even

when several reputation-based detection systems filter

some of them. Moreover, we reveal that it is possible for

a botmaster of Conficker to run huge amount of malicious

sites with minimal detection.

• We study the Conficker data and find that neighborhood

watch is surprisingly effective to infer new victims.

This could suggest that alert sharing/correlation (among

distributed collaborators, particularly neighborhood net-

works) could be an effective and promising technique

to defend against future emerging threats and it needs

more attention for such research. Detailed information is

in Section VII.

II. RELATED WORK

Conficker binary analysis. Porras et al. from SRI Interna-

tional provided a very extensive study of the Conficker binary

analysis [30]. They analyzed several variants of Conficker

and revealed how Conficker propagates, how it infects others,

how it evades anti-virus tools and how it updates itself. This

provided very detailed and valuable information of Conficker

behavior. The Honeynet project [38] also provides a detailed

analysis of Conficker binary. These studies also provide scan-

ning tools for detecting Conficker victims in the network.

Conficker data analysis. With the use of the telescope

data, researchers from CAIDA provided a simple analysis

on Conficker propagation [5]. The Telescope data mainly

contains scanning traffic from Conficker victims, which reveals

Conficker victim location and timing information to display

how Conficker emerges and spreads on the Internet. However,

such data is not complete due to the size limit of (passive)

monitoring networks. Recently, researchers started to use the

DNS sinkholing technique [17] to collect much more accurate

Conficker victim data. A report from Team Cymru[17] ana-

lyzed the behavior of Conficker victims and provided some

general distribution and propagation information. However,

there is still a lack of some deep analysis of Conficker victims

such as how different the victims are from previous malware.

This paper is a first attempt to provide an empirical deep study

of Conficker victims, reveal how they are distributed differ-

ently from previous generation malware, and how this affects

current reputation-based defense mechanisms. In addition, we

want to understand if there are some effective techniques for

early detection of future variations of Conficker.

III. DATA COLLECTION

An interesting feature of Conficker is the resilient updating

mechanism. To avoid detection, it automatically generates new

domain names (of updating servers) [30], [38] and connects

to those domain names to download an updated version of

itself.1 This function greatly supports Conficker to increase

the survivability and resilience. However, once the domain

generation algorithm was cracked by researchers, it also pro-

vides a way to sinkhole and track the victims. By registering

new domain names that will be used by Conficker victims

on controlled servers, defenders can collect visits from hosts

infected by Conficker. This approach is widely known as C&C

sinkholing and has been successfully adopted by researchers

that study Conficker [17]. Since all Conficker infected hosts

(regardless of versions) need to visit C&C domains frequently

(an intrinsic feature of all botnets), the sinkholing approach is

likely to collect most of Conficker infected victims regardless

of their locations or individual behaviors, as long as the

infected machines are alive and have network connections.

With the aid of Shadowserver.org, we have collected the

Conficker sinkhole data2 captured from January 1, 2010 to

January 8, 2010. During this period, we observe 24,912,492

unique IP addresses of Conficker victims. Like many other

measurement/analysis work, our empirical study has some lim-

itations and they are mainly caused by not perfectly collected

data. For example, our collection of Conficker victims may

not cover all infected victims. In addition, we note that the

accurate counting of malware victims is not an easy task

because of the existence of DHCP (which may inflate actual

numbers), NAT (which may deflate actual numbers), and many

other issues [39], [32]. For example, Stone-Gross et al. [32]

pointed out that there is a slight difference between the number

of IP addresses and the number of real infected hosts. This is

the limitation of almost all existing worm/botnet measurement

studies. We do not intend to solve this problem in this paper.

We simply report our observations from our collected data.

Although the number may not be exact, with such a large scale

it at least provides an estimation of overall characteristics and

statistics of Conficker.

To obtain more interesting results, we survey previous work

[20], [19], [27], [25], [39], [40], [31], [4] about the behavior of

nefarious worms and bots/botnets3. They are used to compare

with our Conficker result and to help us track whether infection

trends have changed. Based on the information they provide,

we select seven measurement studies, which are summarized

in Table I. Of these, three are well-known network worms [20],

[19], [27] and six are botnets [25], [39], [40], [31], [33], [26].

Fortunately, we could get the information of victims infected

by Megad [26] or Srizbi bots [33] through [4]. Note that some

1We provide a brief description on Conficker’s domain generation mecha-
nism in Appendix.

2Detailed information of the Conficker sinkhole is explained in Appendix.
3At this time, we have also tried to compare our results with the previous

work of analyzing Conficker victims such as [5]. However we could not
compare the results, because we were not able to get their data.
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studies of botnets do not specify botnet names in their work

[25], [39], [40], but they show the result of malicious nodes

that send spam emails. Since most spam emails are delivered

by botnets [25], we can reasonably assume that their studies

represent the behavior of some bots or malware.

IV. WHO IS WORKING FOR CONFICKER?

In this section, we provide a basic but important network-

level examination, which demonstrates fundamental character-

istics of Conficker victims. We review how Conficker victims

are distributed over the IP address space and ASes. Also, we

investigate the bandwidth of Conficker victims and domain

names that Conficker victims belong to. Finally, we survey

portions of countries where Conficker victims heavily exist.

Some of them are already provided by other studies [5], [17],

but our work is more than just providing basic measurement

results. To comprehend the radical alteration of malware, we

compare Conficker victims’ network-level characteristics with

those of previous well-known bots or worms.

A. Distribution Over Networks

We plotted each victim’s IP address to determine how

Conficker victims are distributed over the IP address space

and found that they are not uniformly distributed in the whole

IP address space; instead the distribution is highly biased,

mostly concentrated in some specific ranges.

Result 1. (Distribution over the IP address space) Most
of hosts infected by Conficker are concentrated in several
specific IP address ranges.

Figure 1 depicts the number of victims of three botnets -

Conficker, MegaD, and Srizbi - over the IP address space.

At first, we focus on the result of Conficker and we will

discuss the results of others. The presence of several rising

regions, which represent densely infected areas by Conficker,

reveals that the victims are not uniformly distributed. Since

the IP address ranges within these regions could be regarded

as more vulnerable, we inspected three notable rising regions

of Conficker in detail. They are in the range of (77.* - 96.*),

(109.* - 125.*), and (186.* - 222.*) and they cover around

87% of all victims. In particular, the rapidly increasing region,

which is in the range of (109.* - 125.*), includes 9,303,423

infected hosts and accounts for 37.34% of the total number of

Conficker victims. To get a more detailed view, we narrowed

down the scope from the ranges to more specific networks. In

that region, we found that 123.* and 124.* networks are the

main contributors. They comprise 1,701,438 infected hosts

and account for 6.83% of all victims. We analyzed further

and discovered that there are 40,278 Conficker victims in

the 123.19.* network, which is around 61.9% of all possible

IP addresses in that /16 subnet. Similar characteristics were

observed in nearby networks such as the 123.22.* and the
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Fig. 1. Distribution of infected hosts over IP address; Conficker, MegaD,
and Srizbi.

123.23.*4

Result 1.1. (Distribution over IP address space -
Comparison) Some portions of IP address ranges were
already affected by the previous botnets, but some ranges
such as 109.* - 125.* are more highly affected by Conficker.

Figure 1 also shows the results of two recent botnets -

MegaD and Srizbi. As displayed in Figure 1, their infected

regions are very similar to those of Conficker. (77.* - 96.*),

(109.* - 125.*), and (186.* - 222.*) are especially highly

infected. However, their rising degree, which represents the

infection rate, is different from that of Conficker. While

Conficker shows high increase in the region of (109.* - 125.*),

both MegaD and Srizbi show the rapid increase in the region

of (77.* - 96.*).

We also compare this distribution of Conficker victims with

that of previous botnets such as Waledac [31] and Botnet1

[25]. Interestingly, the comparison results are similar to the

above results. While the ranges of (77.* - 96.*) and (186.* -

222.*) are also known as major locations of the Waledac botnet

and Botnet1, they have no significant number of victims in the

region of (109.* - 125.*).

We tried to understand why the range of (109.* - 125.*) has

more victims in the case of Conficker. After investigating the

data in this range, we concluded that the reason is most likely

a change of infection trend, and we will elaborate on this in

Result 2.1.

Since it is nearly impossible to monitor the entire Internet,

it is more efficient to focus on specific (suspicious) networks

that are more likely to contain commands directed by a

botmaster. The IP address ranges within wide spikes, which

4Since the 123.* network is in Class A network, it seems that there is no
meaning in splitting it into subnetworks. However, people commonly split
Class A networks into several /16 subnets to manage them efficiently. As in
the case of 123.* network, we found that it is divided and assigned to several
network providers. The 123.19.* network is one of them and it is assigned
to VietNam Post and Telecom Coorperation and its inetnum is 123.19.0.0 -
123.19.255.255.
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Malware [Work] Type Data Source Data Collection Time
Botnet1 [25] Botnet Sinkhole server Aug. 2004 ∼ Jan. 2006
Botnet2 [39] Botnet Hotmail Jun. 2006 ∼ Sep. 2006
Botnet3 [40] Botnet Spamhaus Nov. 2006 ∼ Jun. 2007
Waledac [31] Botnet Infilatrion into Waledac Aug. 2008 ∼ Sep. 2009
Srizbi [33] Botnet Sinkhole server Aug. 2010
MegaD [26] Botnet Sinkhole server Aug. 2010
CodeRed [20] Worm Measurement Jul. 2001 ∼ Oct.2001
Slammer [19] Worm Measurement Jan. 2003
Witty [27] Worm Measurement Mar. 2004

TABLE I
DATA SOURCE OF PREVIOUS WORMS/BOTS FOR COMPARISON.

are shown in Figure 1, can be good candidates that need to

be focused.

Insight from Result 1 and 1.1 (Monitoring Networks
more efficiently) It is impossible to monitor all the IP
addresses on the Internet, but we can monitor a limited
number of specific ranges to efficiently detect commands and
attacks in infected networks. Even though the ranges may be
different for each botnet, there are still some common parts
and they are good candidate ranges to monitor.

Representing identities of Conficker-infected hosts by IP

address is often preferable in a way that it is precise and

elaborate. However, the number of the infected IP addresses

is so large that this makes it hard to grasp the global view

of Conficker victims. Hence, we use the Autonomous System
(AS), which is a useful method for clustering hosts on the

Internet for easier management and has been applied in

previous measurement work, to group the hosts infected by

Conficker.

Result 2. (Distribution over ASes) Of all infected hosts,
the top two ASes account for 28.37% of all victims and top
20 ASes cover 52.54% of all victims. In particular, most of
the top rated ASes are located in Asia.

Conficker victims are concentrated in a few ASes and most

of the top infected ASes are located in Asia. As shown in

Table II, around 30% of infected hosts belong to one of only

two ASes and more than 50% of infected hosts belong to one

of the (top) 20 ASes. Most highly infected ASes are mainly

distributed in Asia, particularly in China. This result also

suggests that an approach to detect malicious hosts based on

ASes would be practical.

Result 2.1. (Distribution over ASes - Comparison)
Even though the top two ASes were also sources of previous
botnets, most of other top rated ASes are newly emerged in
the Conficker case.

By comparing the result of the distribution over ASes with

that of other bots, we find that even if there are common

ASes between recent bots (Conficker, MegaD, and Srizbi)

and previous bots (Botnet1, Botnet2, and Botnet3), there is a

ASN # Host AS Name Country
4134 2825403 CHINA-BACKBONE China
4837 1435411 CHINA169-BACKBONE China
7738 385672 TELECOMUNICACOES Brazil
3462 280957 HINET Taiwan

45899 273577 VPNT-AS-VN Vietnam
27699 260848 TELECOMUNICACOES Brazil
9829 248444 BSNL-NIB India
8167 237465 TELESC Brazil
3269 231020 ASN-IBSNAZ Italia
9121 207849 TTNET Turkey
9394 195088 TELEFONICA China
4812 182015 CRNET China
4788 180876 CHINANET-SH-AP Malaysia
8402 141130 TMNET-AS-AP Russia
8151 138567 CORBINA-AS Mexico

17974 137991 UNINET Indonesia
4808 137672 TELKOMNET-AS2-AP China
3352 135276 CHINA169-BJ China
8708 128228 TELEFONICA-DATA-ESPANA Romania
3320 126520 RDSNET Germany

TABLE II
CONFICKER VICTIMS IN THE TOP 20 ASES.

significant difference in the locations of infected ASes. Some

previous studies [25], [39], [40] investigated which ASes are

the major sources of the botnets that deliver spam emails5.

We compare their findings with our result and denote it in

Table III. In [25], the authors analyzed data collected in 2004

- 2006 and pointed out that most of the bots are located in

North America (particularly in USA), while in [39] and [40]

in which data was collected in 2006 - 2007, it was emphasized

that bots spread widely over the world. However, in the case

of Conficker and two other recent bots (MegaD and Srizbi),

ASes in the USA are not major resources of bots any more.

Instead, most highly infected ASes are located in Asia and

South America.

From this result, we conclude that the trend of major

locations of bot infected hosts is still changing; (i) mainly
located in North America, (ii) widely spread over the World,

(iii) popular in Asia and South America. This trend guides us

to observe Asia and South America more closely than North

America, which used to be the major source of spam email

5In [40], they only present the top five of ASes, and that is why we could
not compare the whole list.
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Conficker Botnet1 [25] Botnet2 [39] Botnet3 [40] MegaD [26] Srizbi [33]

ASN Country ASN Country ASN Country ASN Country ASN Country ASN Country
4134 China 766 Korea 4134 China 4766 Korea 3352 Spain 9121 Turkey
4837 China 4134 China 4837 China 19262 USA 3269 Italy 17552 Thailand
7738 Brazil 1239 USA 4776 Australia 3215 France 6739 Spain 4134 China
3462 Taiwan 4837 China 27699 Brazil 4837 China 9121 Turkey 5617 Poland
45899 Vietnam 9318 Japan 3352 Spain 4134 China 6147 Peru 9829 India
27699 Brazil 32311 USA 5617 Poland no info. no info. 19262 USA 4837 China
9829 India 5617 Poland 19262 USA no info. no info. 4134 China 7738 Brazil
8167 Brazil 6478 USA 3462 Taiwan no info. no info. 7738 Brazil 4766 Australia
3269 Italy 19262 USA 3269 Italy no info. no info. 7418 Chile 24560 India
9121 Turkey 8075 USA 9121 Turkey no info. no info. 22927 Argentina 27699 Brazil

TABLE III
TOP 10 ASES HOSTING CONFICKER AND SPAMMING BOTNETS.

when we built blacklists to prevent spam at the time. It is

important that the trend of major sources of bots is changing.

Also, we find that four ASes in Conficker are never seen in

the previous results. Two of them are in Asia (Vietnam and

India) and another two are in South America (Brazil).

Insight from Result 2 and 2.1. (Change of Infection
Trend) North America used to be the main contributors of
botnets, but now Asia and South America contribute more.
This means that the locations of the main sources of botnets
are changing and we may chase this trend (e.g., new malware
spreading models and defense strategies are probably needed).

B. Distribution Over Domain Names

In this section, we inspect the domain names of each

victim using DNS reverse lookup.6 A domain name indicates

a group in which a host belongs and it can be a good way to

reveal the host itself because domain names are expressed in

easy and comprehensible words.

Result 3. (Distribution over Domain Name) The .br, .net
and .cn domains cover around 24.42% of Conficker victims.
Interestingly, one of the third level domains covers around
7% of infected hosts, which means it contains more than
1,700,000 victims.

As shown in Table IV, only a few domains account for

about 20% of hosts infected by Conficker. This does not

solely apply to top level domains but to all second level

domains and third level domains as well. In the case of top

and second level domain names, their scope is quite broad

and it is hard to find any big advantage when compared to IP

address range or AS number. However, for third level domain

names, it is possible to focus on small sets of victims. It is

useful to monitor victims because the top third level domain

includes numerous Conficker victims. In particular, we find

that domain 163data.com.cn accounts for 6.88% of infected

6In our DNS reverse lookups, about 49% of victims did not return valid
results and therefore we labeled them as “Unknown”, shown in Table IV.
Since previous studies also showed similar rates of “unknown” domains, we
leave them in the table.

hosts. Also, more than 99% of victims in 163data.com.cn
include the word dynamic in their fourth level domain names.

From this, we can guess that they are using dynamic IP

addresses, as their names imply. This result is similar to [39]

which uncovers dynamic IP addresses as a main source of

most spam emails.

Result 3.1. (Distribution over Domain Name -
Comparison) The .net domain is still prevalent, but
new domains such as .br, .cn, and .ru have recently emerged
as heavy resources of botnets. The .com and .edu domains
used to be the major sources of worms, but now they seem to
cast off the yoke of malicious domains.

Comparing the domain result with previous well-known

worms, we found that a few domains that were not previously

seen in Conficker. Also, we found that .com and .edu domains,

which used to be nefarious domains, are now relatively clean.

Unfortunately, because they do not provide the result of second

level and third level domain distributions, we could only

compare top level domains. In the case of the previous worms,

top contributors of infected domains are .net, .com and .edu.

However, in the case of Conficker, things have changed. While

the .net domain is still prevalent, there are newly emerged

domains which are not shown in the previous work: .cn,
.ru, .in, and .mx. All domains that are newly seen represent

their countries and we call these ccTLDs (Country Code Top

Level Domains). The report from Verisign [37] shows that the

registration rate of above ccTLDs has increased a lot for the

past three years (e.g., 10% of increasing in 2009). From the

Verisign report, we find that some vulnerable domains such as

.cn, .ru, .br, and .ar are registered much more than many other

domains. This implies that the number of hosts in recently

registered ccTLDs have increased a lot. Therefore we may

monitor more closely whether they are infected by malware

or not, since they may not be on any blacklists. The more

interesting part is .edu and .com domains are no longer serious

sources of malware. Of course, there are infected hosts which

still belong to those domains, but its coverage is reduced to

1.21% in .com and 0.0096% in .edu. This result implies that

the networks in .com and .edu domains are probably better

managed and protected than before.
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Top Level Percentage Second Level Percentage Third Level Percentage
Unknown 48.81% Unknown 48.81% Unknown 48.81%
br 8.83% com.cn 6.89% 163data.com.cn 6.88%
net 8.65% net.br 4.61% veloxzone.com.br 1.96%
cn 6.94% com.br 4.20% dynamic.hinet.net 1.86%
ru 5.01% hinet.net 1.91% telesp.net.br 1.69%
it 2.36% telecomitalia.it 1.55% retail.telecomitalia.it 1.46%
ar 1.54% corbina.ru 0.99% brasiltelecom.net.br 1.39%
in 1.35% ny.adsl 0.93% broadband.corbina.ru 0.99%
com 1.21% com.mx 0.90% kd.ny.adsl 0.93%
mx 1.16% com.ar 0.84% prod-infinitum.com.mx 0.85%

TABLE IV
TOP 10 DOMAIN NAMES HOSTING CONFICKER VICTIMS IN EACH LEVEL.

We also investigated the domain result of other recent

botnets, and we discovered that .net and ccTLDs are prevalent,

but .com is less serious than the previous worms in their

results. This result confirms the above comparison result

between Conficker and previous worms. The comparison

result is summarized in Table V.

Result 3.2. (Distribution over Domain Name - Sensitive
Domain Name) There are Conficker victims in government
networks and companies listed in Fortune 100, even though
the number of infected hosts is small.

Besides sending DDoS packets and spam emails, a

botnet can steal sensitive information from victims [15].

If hosts infected by a bot belong to critical networks such

as government and military networks that contain sensitive

information, a botmaster can steal important information from

them. Using our Conficker data, we investigated how many

victims are affiliated with government or military networks

and we found 714 such victims. Surprisingly, victims in

government networks are not limited to a few countries,

instead they are spread around 70 countries including U.S.A.,

Parkistan, India and China. Also, we investigated how many

victims are in well-known companies. To do this, we used

the Fortune 100 Company List [11] and we found 2,847 such

hosts. Conficker victims still exist within several reputable

companies such as HP and IBM.

Insight from Result 3, 3.1 and 3.2. (Watch out for
new and sensitive Domains!) It is nearly impossible to
monitor all domain names. However, we have observed that
recently registered ccTLDs are more vulnerable and more
easily infected by Conficker. Hence, it is necessary to closely
monitor those recently registered domains. In addition, even
though the number of victims is not large, a botmaster of
Conficker can steal sensitive information from government and
top rated company networks.

C. Distribution over Bandwidth

Besides IP address, AS and domain names, bandwidth

gives us information that shows us what kinds of networks

Conficker victims belong to. It also helps to predict the power

of the botnet. For instance, if we know there are one million

Conficker victims in the world and most Conficker victims

are in networks with bandwidth less than 1 Kbps, we can

deduce that it could generate 1 Gbps traffic in the best case.

To measure the bandwidth, we use Tmetric [35] which sends

ICMP packets to the target network and provides a measured

bandwidth result. Tmetric sends several packets, whose sizes

are different to each other, to a target network and measure

their response times. Basically, a response time depends on

the bandwidth of the target network, thus we can estimate the

bandwidth of a network based on the measured response time.

Here, to estimate the bandwidth of a subnet, we have sent

five packets, whose sizes are different from each other, to the

subnet and estimated the average bandwidth value from their

results. Since Tmetric needs to contact the target network to

estimate the bandwidth, we cannot get the bandwidth result

without live target networks and hosts. It takes quite a long

time to contact each host and measure the bandwidth, so

we only contact one host in each distinct subnetwork (/24)

where Conficker victims exist. We reasonably assume that

hosts in the same subnetwork (/24) have the same bandwidth.

In addition, we have contacted each network 5 times and

measured the average value of estimated bandwidth results.

Result 4. (Bandwidth Distribution) About 99% of
Conficker victims have bandwidth less than 1 Mbps and this
means that most of them are ADSL or Modem/Dialup users.

We find that most victims are using Modem/Dialup or

ADSL networks. As shown in Figure 2 (a), about 90% of

Conficker victims are in the network whose bandwidth is

less than 200 Kbps and around 99% of victims are residing

in the network whose bandwidth is less than 1 Mbps. This

result is similar to [14] and [39] which denote most bots

are using ADSL or Dialup networks. When we conducted

this measurement, we found interesting patterns between the

bandwidth of a subnet and the number of infected hosts in

the subnet.

Result 4.1. (Bandwidth Distribution - relation with the
numbers of victims) The networks that have low bandwidth
are likely to have more Conficker victims than those with
high bandwidth.

We suspect that there is a relationship between the
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Conficker CodeRed Slammer Witty MegaD Srizbi

Top level % Top level % Top level % Top level % Top level % Top level %
Unknown 48.81% Unknown 47.22% Unknown 59.49% net 33% Unknown 25.87% Unknown 37.93%
br 8.83% net 18.79% net 14.37% com 20% net 19.44% net 8.65%
net 8.65% com 14.41% com 10.75% Unknown 15% com 10.28% tr 8.19%
cn 6.94% edu 2.37% edu 2.79% fr 3% br 7.51% ru 6.12%
ru 5.01% tw 1.99% tw 1.29% ca 2% it 4.30% br 5.45%
it 2.36% jp 1.33% au 0.71% jp 2% ar 3.42% pl 3.98%
ar 1.54% ca 1.11% ca 0.71% au 2% co 2.85% com 3.20%
in 1.35% it 0.86% jp 0.65% edu 1% cl 2.48% th 3.19%
com 1.21% fr 0.75% br 0.57% nl 1% pl 2.20% in 2.38%
mx 1.16% nl 0.73% uk 0.57% ar 1% es 1.98% it 1.59%

TABLE V
TOP 10 DOMAIN NAMES HOSTING CONFICKER, CODERED, SLAMMER, WITTY, MEGAD, AND SRIZBI.
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Fig. 2. Bandwidth measurement of Conficker victims.

bandwidth of a network and the number of infected hosts

of the network. As shown in Figure 2 (b), the bandwidth

of the subnet is inversely related to the number of infected

hosts in the subnet. We think that this pattern is related to

the manageability of each network. A network with high

bandwidth indicates consuming high setup cost and it also

means the network is that worthy. And we could infer that

such worthy network is under reasonably good maintenance.

Insight from Result 4 and 4.1. (Examine ADSL or Mo-
dem/Dialup networks) Hosts with ADSL or Modem/Dialup
connections are still very vulnerable.

D. Distribution over Geographic Location
Result 5. (Geographic Location) 34.47% of infected hosts

are located in China, which is larger than the total number
of Conficker victims from the next top eight countries.

As shown in Table VI on the distribution over countries,

the top ten countries include over 70% of Conficker victims,

China ranks number one by a large margin. Conficker victims

are distributed over most of the world including Asia, Europe,

and South America, but interestingly, only 1.1% of victims

are located in North America. This result is somewhat

different from previous infection patterns.

Result 5.1. (Geographic Location - Comparison) In
previous worms and botnets, most the infected hosts were
located in North America - especially in USA, but in recent
botnets such as Conficker, most victims are located in the
Asian region - especially in China.

We compare the country distribution with that of other

worms and bots to determine whether it is different or similar

and we find that the location of heavy malware contributors

is changing. Even though we could not get the exact country

distribution from the previous work [25] [39], we are able

to estimate which country had more victims based on their

distribution over ASes. From Table VI and III, we observe

that worms prevalent several years ago were mainly located

in North America. In previous botnets, [39] and [40] show

that victims are mainly located in both Asia and North

America, but [25] and [31] denote that most victims are

located in North America. However, contrast to the results

of previous work, we find that Conficker victims are mainly

located in Asia and not in North America, where only 1.1%



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

Conficker Waledac CodeRed Slammer Witty MegaD Srizbi

Code % Code % Code % Code % Code % Code % Code %
CN 34.47% US 17.34% US 43.91% US 42.87% US 26.28% US 11.45% TR 18.66%
BR 9.43% U.K 7.76% KR 10.57% KR 11.82% U.K 7.27% ES 11.04% RU 9.41%
RU 7.39% FR 7.04% CN 5.05 % Unknown 6.96% CA 3.46 % BR 8.33% KR 6.69%
IN 4.45% ES 5.90% TW 4.21% CN 6.29% CN 3.36% IT 5.43% IN 5.85%
IT 3.56% IN 5.50% CA 3.47% TW 3.98% FR 2.94% U.K 5.24% BR 5.76%
VT 2.81% no info. no info. U.K. 3.32% CA 2.88% JP 2.17% CO 4.88% CN 5.66%
TW 2.59% no info. no info. GE 3.28% AU 2.38% AU 1.83% CN 4.32% US 4.26%
GE 2.03% no info. no info. AU 2.39% U.K. 2.02% GE 1.82% KR 3.88% PL 4.19%
AR 2.00% no info. no info. JP 2.31% JP 1.72% NL 1.36% AR 3.74% TH 3.47%
ID 1.85% no info. no info. NL 2.16% NL 1.53% KR 1.21% CL 3.65% GE 2.53%

TABLE VI
TOP 10 COUNTRIES WHERE CONFICKER, WALEDAC, CODERED, SLAMMER, MEGAD, AND SRIZBI ARE LOCATED. (CODE DENOTES two-letter country
code, AND THE MEANING OF EACH COUNTRY CODE IS; CN = CHINA, BR = BRAZIL, RU = RUSSIA, IN = INDIA, IT = ITALY, VT = VIETNAM, TW =

TAIWAN, GE = GERMANY, AR = ARGENTINA, ID = INDONESIA, U.K = UNITED KINGDOM, FR = FRANCE, ES = SPAIN, KR = KOREA, CA = CANADA,
AU = AUSTRALIA, JP = JAPAN, NL = NETHERLANDS, TR = TURKEY, CO = COLUMBIA, CL = CHILE, PL = POLAND, TH =THAILAND

of victims are located. Also, this pattern is shown in other

recent Srizbi botnet. Most victims of the Srizbi botnet are

located in Asian regions. In the case of the MegaD botnet,

although USA is on the top rank, the percentage of USA is

less than previous worms and the percentage of Asian and

South America regions is higher than previous worms. Thus,

we may think that MegaD also shows similar characteristics.

Therefore, changing monitoring focus from North America

to Asia seems reasonable.

Insight from Result 5 and 5.1. (From North America to
Asia - Confirmed) We clearly observe that the hosts infected
by Conficker are mainly located in Asia and not in North
America, as also shown in Result 2 and 2.1.

V. HOW WELL DO REPUTATION-BASED DETECTION

SYSTEMS DETECT CONFICKER?

In this section, we examine how well current reputation-

based detection systems detect Conficker. Reputation-based

approaches (e.g., DNS blacklists) are widely considered as

promising to detect malicious hosts and networks [25], [3]. To

investigate their effectiveness, we will test DNS blacklists [3]

and other reputation-based detection systems such as Dshield

[9] and FIRE [10] to check if they could successfully detect

emerging threats such as Conficker.

A. DNS Blacklists

We have investigated several well-known blacklists such as

DNSBL [7], SORBS [29], SpamHaus [2], and SpamCop [1]

to see how many victims of Conficker are on their blacklists.

We tested all 24,912,492 infected hosts and we found out that

only 4,281,069 hosts are on blacklists which is only 17.18%

of all victims.

Result 6. (DNS Blacklist) DNS blacklists only cover a
small portion of Conficker victims. More specifically, only
17.18% of Conficker victims are found on any of four DNS
blacklists.

Our investigation result is quite different from the previous

work [25] which shows about 80% of bot infected hosts are

already on some blacklists and we believe that the disparity

is caused by the difference of distribution of infected hosts.

As we mentioned in Section IV-A and IV-B, the distribution

of Conficker victims (over IP address space, ASes, Domain

names and Countries) is different from the previous work, and

this makes it hard to build effective blacklists for detecting

emerging malicious hosts/networks, because blacklists highly

depend on the reputation of hosts and networks obtained from

their previous records (and currently heavily rely on spam

activity records).

Insight from Result 6. (Unfortunately, blacklists can
not help us all the time) Only less than 20% of victims are
on DNS blacklists, which means that we need better ways to
detect future emerging malware.

B. Dshield and FIRE

Since most DNS blacklists are mainly to detect hosts or

ASes sending spam, they may not detect other malicious

behaviors (potentially) performed by (emerging) infected

hosts. Some other reputation-based detection systems are

also proposed to complement DNS blacklists, and we need

to investigate their performance of detection. There are

several studies that try to detect network scanning attacks or

web-based attacks and Dshield [9] and FIRE [10] are good

examples of them. Dshield provides information to detect

hosts or ASes sending suspicious network scanning/attacking

packets, and FIRE [10] lists malicious ASes which frequently

host rogue networks by measuring their reputation. We plan to

inspect how many Conficker victims are notified by Dshield

and FIRE7.

7It is worth noting that the main purpose of FIRE is to find networks/hosts
launching malicious services instead of directly detecting bot-infected hosts.
We still perform the experiment because it is well-known that botnets are
heavily used platforms to launch malicious services [15].
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Result 7. (Dshield) Only 0.33% of victims of Conficker
are found on the list of malicious IP addresses reported by
DShield, and most of the top ASes infected by Conficker are
not on the malicious AS list of Dshield.

Checking Conficker victims against the list provided

by Dshield [8], we found that only a small portion of

hosts and ASes are on the list. We investigated 588,797 IP

addresses presented by Dshield, and they denoted world-wide

attackers/scanners that were detected by all kinds of IDSs

and reported to DShield. Since one of the infection vectors

in Conficker is random IP scanning [22], we expect a large

portion of Conficker victims to show up in Dshield. However,

we only find 82,856 hosts from the list. This shows that

these Conficker victim hosts are probably easy targets of

many previous malware. However, Dshield is still not good

at catching major portions of new emerging malware such

as Conficker. Similarly, we examined the malicious AS list

provided by Dshield and we only observed 83 Conficker

infected ASes out of 10,584 ASes given by Dshield. Only

one of them (AS4812) is a serious contributor of Conficker

(ranked 12th among infected ASes) but the rest are not as

critical as AS4812. Most of them cover less than 0.02% of

Conficker victims.

Result 8. (FIRE) Most highly infected ASes by Conficker
are not reported by FIRE.

We compared our infection list of ASes with the results

provided by FIRE as well and we want to know whether

FIRE is helpful in detecting Conficker victims. Although

FIRE denotes AS4134 as the 8th most malicious AS in its

list, most of other heavily infected ASes by Conficker are not

shown in the top 500 malicious ASes of FIRE. Some of the

main contributing ASes to Conficker have never shown up on

FIRE’s list.

Insight from Result 7 and 8. (New and complementary
detection approaches are needed) DNS blacklists, Dshield
and FIRE detect only a small portion of Conficker victims.
This means that these reputation-based approaches are not
the perfect solution. We need to improve them significantly
and complement them with other approaches.

When we tested Dshield and FIRE, we expected that they

could complement DNS blacklists, but the result is not very

positive. This implies that these reputation-based systems

alone are far from enough to protect the Internet from emerg-

ing threats. We believe that new detection systems (e.g., those

based on anomalous behaviors of malware) are badly needed

to complement existing reputation-based approaches to defend

against future malware threats.

C. Blacklisted and Non-blacklisted victims

As we observe in this section, only a small number of

victims are detected by the current reputation-based detection

systems. From this observation, we raise following questions;

Fig. 3. Distribution of blacklisted/non-blacklisted victims over IP address.

ASN (BL) % ASN (NBL) %
AS45899 8.35% AS4134 21.87%
AS9829 7.87% AS4837 11.12%
AS4134 4.25% AS7738 2.25%
AS27699 4.07% AS3462 2.13%
AS7738 3.97% AS3269 1.80%
AS8167 3.35% AS9394 1.50%
AS4837 2.58% AS4812 1.42%
AS17974 2.23% AS4788 1.41%
AS17557 2.17% AS9121 1.28%
AS24560 1.97% AS8167 1.20%

TABLE VII
TOP 10 ASES WHICH HAVE BLACKLISTED AND NON-BLACKLISTED

CONFICKER VICTIMS (BL IS FOR BLACKLISTED AND NBL FOR

NON-BLACKLISTED).

(i) who (i.e. Conficker victims) are detected by the current

reputation-based detection systems and who are not? and

(ii) how are they different? We believe that answers to the

questions can give us some hints to design more effective

reputation-based detection systems.

To understand who are listed and who are not, we show the

distribution of blacklisted and non-blacklisted victims over IP

address spaces and it is shown in Figure 3. As presented in

Figure 3, the distributions of blacklisted and non-blacklisted

victims are very similar to each other and both are mainly

distributed in (77.* - 96.*), (109.* - 125.*), and (186.* -

222.*). This result implies that even though each individual

victim of blacklisted is different from that of non-blacklisted,

they are both located in similar IP address spaces.

We investigate AS and Country distributions of blacklisted

and non-blacklisted victims to obtain more knowledge of their

distributions.

The top 10 ASes which include blacklisted and non-

blacklisted victims are shown in Table VII. Interestingly, some

top 10 ASes containing blacklisted victims also have many

non-blacklisted victims. Moreover, these common ASes cover

more than 35% of non-blacklisted victims.

In addition, we present how both blacklisted and non-
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Country (BL) % Country (NBL) %
BR 15.85% CN 40.23%
IN 15.43% BR 8.00%
VN 11.18% RU 7.17%
RU 8.42% IT 4.01%
CN 8.22% TW 2.99%
ID 2.63% DE 2.36%
UA 2.47% IN 2.11%
AR 2.43% AR 1.89%
PK 2.41% KR 1.82%
SA 2.34% ID 1.71%

TABLE VIII
TOP 10 COUNTRIES WHICH HAVE BLACKLISTED AND NON-BLACKLISTED

CONFICKER VICTIMS (BL IS FOR BLACKLISTED AND NBL FOR

NON-BLACKLISTED).

blacklisted victims spread over the world and then we show

the top 10 countries with both in Table VIII. As represented

in Table VIII, we observe that blacklisted victims and

non-blacklisted victims spread over similar countries.

Result 9. (Blacklisted and Non-blacklisted victims) The
distributions of victims of blacklisted and non-blacklisted are
very similar to each other.

Then, what do these observations imply? We believe that

they indicate that we might need another viewpoint for

reputation-based detection systems toward victims. Current

reputation-based detection systems focus on individual victim

hosts (i.e. fine-grained view). However, we consider that the

clustering (or grouping) of victims (coarse-grained view) can

help us to complement the reputation-based detection systems

based on each individual host, since both blacklisted and

non-blacklisted victims are located close to each other. There

are also some recent studies which propose spam detection

systems based on coarse-grained view of victims [23], [24]

and we believe we confirm that their approaches are helpful to

complement fine-grained reputation-based detection systems.

Insight from Result 9. (Coarse-grained view of vic-
tims) Coarse-grained view could complement fine-grained
reputation-based detection systems based on each individual
victim.

VI. HOW POWERFUL IS CONFICKER BOTNET

A botmaster will use infected victims to perform malicious

operations. Although it has not been previously reported

whether Conficker really fulfills attacks or not, it is possible

that a botmaster of Conficker commands victims to carry

out some malicious actions. Thus, it may be interesting to

understand how Conficker victims affect networks or hosts

when they perform attacks.

The power of botnets can be defined by each attack method

they provide. For example, if bots generate malicious traffic

such as DDoS packets, the performance of this attack will be

decided by the amount of traffic they can generate. And in

this case, the performance highly depends on the number of

infected hosts since the more victims there are, the more traffic

they can produce.

We define three different power metrics for Conficker. First,

we define power of massive attack to represent how much

network traffic Conficker can create. We believe this metric

enables us to understand the effects of Conficker on the

network when they perform DDoS-like attacks or send spam

emails massively. Second, we define power of information
stealing attack to show how much important information can

be stolen by Conficker. Finally, we define power of launching
malicious sites to reveal how many malicious sites a botmaster

could possibly run for her profit.

A. Power of Massive Attack

To comprehend massive attacks produced by bots, we

should measure network traffic produced by infected hosts.

We assume that a host (or hosts) is connected to a network

and the network is managed by subnets such as /24 and /16.

In addition, we will treat each subnet as a source of network

traffic. We define the following parameters:

• Ni, the number of infected hosts (Conficker victims) in

the ith /24

• Bi, the bandwidth of end hosts (Conficker victims) in the

ith /24 subnet

• Ii, 1 if there is any infected host(s) in ith /24 subnet, 0

otherwise

We measure possible network traffic from each infected

subnet considering two extreme cases. The first case is that

a single host in the subnet can consume all the allowed

bandwidth of the backbone router connected to the subnet.

That is, the generated traffic from this infected subnet i is just

Bi. The second case is that the bandwidth of the backbone

router connected to the subnet is significantly larger than the

bandwidth available at end hosts. In this case, suppose there

are Ni infected hosts in the subnet i and each generates Bi

Mbps traffic, then the infected subnet generates NiBi Mbps

maximum traffic. We can easily infer that the actual traffic

could be generated by infected hosts inside the subnet ranges

between these two bounds. More formally, the power of
massive attack is defined as follows (assume that Conficker

victims are across n /24 subnets):

∑n
i=1 IiBi ≤ power of massive attack ≤ ∑n

i=1 NiBi

When we measured this metric, we found 1,339,698 /24

subnets in our data set. We calculated the number of infected

hosts and the bandwidth of each /24 subnet. To represent those

values more clearly, we denote the NiBi and IiBi values of

infected /24 subnets in Figure 4.

As presented in Figure 4, in the case of NiBi, 90% of /24

subnets have bandwidth with lower than about 4.5 Mbps and

IiBi values show that most of them are lower than 0.5 Mbps.

To measure the maximum bound of the power of massive
attack, we sum up all total bandwidth of Conficker and find

that the total value is 2.067 Tbps. In addition, we measure the

minimum bound and it is 160.37 Gbps. Thus, the value of

power of massive attack will be determined between 160.37
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Fig. 4. Distribution of NiBi and IiBi values of each /24 subnet.

Gbps and 2.067 Tbps. We believe that the value is enough

(even the minimum bound value) to consume most resources

of the target server, if the Conficker victims are used to

perform a DDOS attack heading to a certain target server

(e.g., one of popular web servers).

Result 10. (Massive Attack) If a botmaster of Conficker
performs DDoS attack, she may produce enough network
traffic to deny the services of popular web servers.

In the previous metric, we assume that all bots could

generate malicious traffic without any problem. However, it

may not be true, since some network security solutions such

as reputation-based detection systems may detect malicious

traffic and filter it. It motivates us to modify the previous power

metric to consider detection and filtering.

To do this, we add another parameter of detection rate to

the previous metric. The detection rate is determined for each

/24 subnet and calculated by dividing the number of hosts,

which are infected and enlisted in blacklists, in a /24 subnet

by the number of all infected hosts in the /24 subnet. Since

this rate means how current reputation-based detection system

can filter malicious traffic, we will use 1 - detection rate to

measure the percent of traffic not filtered. This idea can be

formalized as follows.

• Pi, the number of infected hosts which are in blacklists8

of the ith /24 subnet

• Qi, the number of all infected hosts of the ith /24 subnet

• αi, detection rate of ith /24 subnet = Pi

Qi

Finally, we can get the modified metric by multiplying the

previous metric of power of massive attack with (1 - αi), thus

we will have a new minimum bound of traffic and maximum
bound of traffic.

We present the distribution of (1−αi)NiBi and (1−αi)IiBi

values in Figure 5. Since some traffic is detected and filtered,

8When we measure the detection rate, we use four different DNS blacklists
mentioned in Section V.

the distribution shows that the amount of overall traffic is

smaller than the previous metric. Finally, maximum bound
of traffic is 1.7835 Tbps and minimum bound of traffic is

149.3 Gbps. These ranges are lower than the previous values

(around 15% lower). However the ranges still point out that

even the minimum bound of traffic is enough to consume

most of the network resources of certain target networks.

This implies that even if there were perfect traffic filtering

system based on reputation, a botmaster still can launch a

severe attack against the networks or hosts.

Fig. 5. Distribution of (1−αi)NiBi and (1−αi)IiBi values of each /24
subnet.

Result 11. (Massive Attack - with reputation-based
filtering) Although some traffic can be filtered by reputation-
based detection, the Conficker botmaster still can generate at
least 150 Gbps (up to 1.68 Tbps) network traffic.

B. Power of Information Stealing Attack

Besides producing malicious network traffic, bots also can

steal sensitive information from infected hosts. At this point,

the performance of a botnet is measured in a different way.

Previously, we consider both the number of infected hosts

and their bandwidth. However in this case, we do not need

to consider the bandwidth any more, since a botmaster can

steal sensitive information from infected hosts through a few

network messages and this operation does not require heavy

traffic. Thus, we can focus only on the number of infected

hosts.

However, considering only the number of infected hosts

is not enough. Every host has its own sensitive information,

but is the importance of the information same on each

host? There may be hosts with more or less important

information. Then, how do we define the importance of

the information? We think that if victims belong to some

companies or organizations, which are more likely to have

critical information, we consider them as more important

hosts. Some cautious readers will notice that this intuition

is very similar to the Sensitive Domain Name of Result
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3.2. Thus, we use the same notion in this measurement. We

regard that the victims have more sensitive information, if

they belong to companies in Fortune 100 lists [11] or have

domains of gov or mil. Thus, the case of stealing information

from each type of domain can be summarized like following.

• A1, the number of hosts which belong to companies in

Fortune 100 list
• A2, the number of hosts which have gov or mil domain

• A3, the number of hosts which belong to neither A1 nor

A2

When a botmaster issues a command to random bots in

order to steal information, the probability pi, which she

steals information from each type, is simply described as the

following equation.

pi =
Ai∑3

j=1
Aj

, where i ∈ {1, 2, 3}

In the case of Conficker, we found 2,847 victims of A1,

714 victims of A2 and 24,908,931 victims related to A3.

Thus, the value of p1 is 0.00014, p2 is 0.00003, and p3 is

0.999857. The probability of randomly stealing information

(from the sensitive domains) seems to be really low. However

if a botmaster has knowledge of the sensitive domains, it

is easy for her to steal important information by sending a

command to targeted domains.

Result 12. (Information Stealing Attack) Conficker has
a good foothold to steal important information from sensitive
companies or organizations.

C. Power of Launching Malicious Services

The previous metrics mainly consider each bot as a client.

However sometimes a botmaster lets a bot be a server to

launch a malicious service such as a phishing site or a malware

downloading site [15]. Thus, we also need to estimate the

power of hosting malicious sites.

The parameters to denote this metric are similar to the

previous ones. However we should consider another important

factor, the reputation of a bot-infected host. When a bot

launches a malicious site, it may not always succeed, because

some reputation-based detection systems or other protection

schemes can block users from visiting the malicious site. At

this time, those systems mainly use reputation of a host to

determine whether the host is malicious or not. It implies

that the reputation is an important factor to estimate how a

botmaster can successfully runs malicious sites.

To measure the reputation of a host, we borrow knowledge

from the reputation-based detection systems. Similar to the

way of measuring detection rate, we investigate how many

bots are already listed in the blacklists. When we determine the

reputation of a Conficker victim, we do not only investigate the

host level, but also consider neighbors’ information, i.e., even

though a host is not in any blacklists, if it is surrounded by

several malicious hosts, it can be also considered as suspicious.

Some recent reputation-based detection systems use neighbor’s

information to detect hosts launching malicious services and

they show promising detection results [10]. Thus, we believe

that our consideration of neighbor’s information is reasonable

in this case.
In addition, this idea is similar to coarse-grained view

(i.e. aggregation or grouping) of Conficker victims that

we mentioned in section V. Thus, we aggregate victims

within the same /24 network to measure the reputation9. To

represent the reputation of each /24 subnet, we define a term of

βi for each ith /24 subnet and it can be represented as follows:

βi =

{
1 if there is no victim enlisted in the blacklists

0 if there is any victim enlisted in the blacklists

Besides the reputation, we should also consider the proba-

bility of hosts being behind NAT (network address translation).

Multiple hosts behind NAT may not provide network services

because they do not have unique IP addresses which are

accessible from outside. To consider this probability, we define

another parameter of ρ:

ρi =

{
0 if multiple (more than one) hosts share NAT

1 otherwise

We can estimate the total number of victims that may run

malicious sites successfully by applying β and ρ values to each

/24 subnet, and it can be formalized as the following equation.

Power of launching malicious services =
∑n

i=1 βiρiNi

In the case of Conficker, we found 345,609 /24 subnets

over 1,339,698 have “1” for the reputation value and it is

25.79% of all subnets. While we can estimate reputation of

a subnet easily, it is hard to know whether multiple hosts

behind NAT or not. According to a recent study [18], around

34% - 45% of DSL networks are using one IP address to

serve multiple hosts behind. Since most of Conficker infected

subnets are DSL networks, we might apply this ratio to our

estimation. Since we want to roughly estimate the number of

infected hosts which can possibly launch malicious services,

we conservatively select NAT rate of 45%. Thus, we randomly

select 45% of subnets from the found subnets (i.e., 345,609

subnets) and remove them from our consideration. Finally, we

have 190,085 subnets and 7,575,111 victims are in those /24

subnets, which are 30.4% of all infected victims. This means

that a botmaster of Conficker may be able to launch more

than 7 million malicious web sites with minimal detection.

Result 13. (Hosting Malicious Sites) It is possible for a
botmaster of Conficker to host a huge amount of malicious
sites with minimum detection.

Insight from Result 10, 11, 12 and 13. (High-
performance botnet) If a botmaster of Conficker performs
malicious actions, she may ruin most networks or hosts easily
with her huge amount of bots.

9We can apply different levels of aggregation easily by changing the method
of grouping.
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VII. CAN NEIGHBORHOOD WATCH HELP?

Conficker still uses network scanning to infect other hosts

on the Internet as previous worms and bots did, and it also

adopts several advanced skills to infect hosts efficiently. The

spreading techniques of Conficker can be classified into two

categories [6], [22]; (i) infecting random hosts and (ii) infect-
ing nearby hosts. Conficker has a function of scanning ran-

domly selected IP addresses. Although this will help Conficker

to spread globally, it is not probably very efficient these days

because most networks are protected by firewalls or Network

Intrusion Detection/Prevention Systems. To propagate more

efficiently, Conficker adopts several interesting techniques to

infect hosts nearby: (1) an ability to infect other hosts in the

same subnet, (2) an ability to infect hosts in the nearby subnets

[6], and (3) an ability to infect portable storage devices.
The diverse infection techniques of Conficker lead us to ask

this question: “Which vector is more effective to infect hosts?”.

Some previous studies suggested that second approach - (ii)
infecting nearby hosts - is probably more dominant in the

Conficker case [22], [16]. We think that this seems reasonable,

because even though most networks are protected well from

outside threats, they are still open to internal attacks. However,

they do not show concrete evidence to support it.
To determine whether this hypothesis is correct, we con-

structed a test. Prior to explaining our test, we declare that we

will use /24 subnet as a basic unit in our test, since Conficker

scans neighbor /24 subnets to find new victims. And we make

the following definition to simplify the test. We define two

terms: (i) “camp” is the group of /24 subnets whose /16 subnet
is the same and locations are close together, and (ii) each /24
subnet is a “neighbor” of nearby /24 subnets in the same
camp. Sometimes, even if two /24 subnets are in the same /16

subnet, their physical locations could be far from each other.

However, since our concept of “camp” is each /24 subnet

with both nearby IP address and physical location, we should

consider its location as well. The example case of “camp” and

“neighbors” is shown in Figure 6. In this case, we assume

that /24 subnets could be “neighbors” in the same “camp” if

they are located within 100km and share the same /16 (i.e.,

10.11.*.*) subnet prefix.

Fig. 6. Example camp and neighbor of 10.11/16 networks (assuming distance
threshold is 100km).

Based on the above definition, we establish a hypothesis as

follows. Of the two infection vectors of Conficker, suppose the
second infection vector plays a dominant role, the infection

pattern10 of a /24 subnet will be similar to that of its “neigh-
bors” in the same “camp”11. In other words, the hosts in

nearby networks of infected host are more likely to be selected

[6] as future victims than randomly chosen hosts.

To evaluate the hypothesis, we have tested the following

scenarios. First, we divide hosts into /24 subnets and assign

each /24 subnet into a “camp” based on our definition.

Second, we investigate the infection pattern of each /24

subnet to see whether the infection pattern of each /24

subnet is similar to its “neighbors”. We use Variance-Mean
Ratio (VMR) [12] for a numerical expression. In this test,

we measure the mean and variance value of the numbers

of infected hosts of each /24 subnet in each “camp”, and

calculate VMR for each “camp”. If the value of VMR is less

than one, distribution of the data set shows under-dispersion

with mean value in the center, which means that infection

patterns of /24 subnets in the “camp” are very similar to each

other.

Result 14. (Neighborhood) Most /24 subnets show similar
infection patterns (numbers of infected hosts) with their
“neighbors”. The closer they are located with each other, the
more similar in their infection patterns.

We measured the VMR value of each “camp” and we

found that more than 70% of “camps” denoted that their /24

subnet members are similar to each other. From this result,

we reasonably infer that the dominant infection vector of

Conficker is to infect nearby hosts. The test result is shown

in Table IX. When we did this test, we got three types of

“camps” based on its geographical information. For instance,

if we set the distance metric for the “camp” as 100km which

means that all /24 subnets in the “camp” have the same /16

subnet and they are within 100km of each other, we found

85,246 “camps” from our data and we discovered 62,121

“camps” whose /24 subnet members are similar to each other.

We observed that more than 67% of “camps” showed that

their /24 subnet members are similar to each other. The closer

their locations are, the clearer this pattern is shown. This

result tells us that Conficker is more likely to select nearby

hosts than randomly chosen hosts and this means Conficker

victims are mainly infected by neighbor networks/hosts. We

deduce from this result that infection from the inside could

be more harmful than the threats from the outside. Usually,

most enterprise networks and ISPs protect their internal hosts

using firewalls and IPS/IDS from external attacks, but there

are very few approaches to protect hosts from internal threats.

Result 14.1 (Victim inference based on neighborhood
information) We could infer unknown victims by sharing and
correlating neighbor alert information, even if we only know

10We use the number of infected hosts of /24 subnet as a feature to represent
an infection pattern.

11On the contrary, if the first infection vector (random scanning) plays
a more important role, then the victim infection pattern across neighbor
networks in the same camp will be likely more different (and note that
vulnerable hosts on the Internet is highly unevenly distributed as shown in
previous studies [13]).
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Within Distance # of all “camps” # of “camps” whose /24 subnet members are similar to each other
≈ 100km 85,246 62,121 (72.87%)
≈ 200km 65,748 44,633 (67.88%)
≈ 300km 54,415 36,495 (67.06%)

TABLE IX
THE NUMBER OF ALL “CAMPS” AND “CAMPS” WHOSE MEMBERS ARE SIMILAR TO EACH OTHER.

small sets of families and its neighbors.

Based on previous results, we propose an approach of

inferring (or early warning) emerging (unknown) infected /24

subnets using neighborhood information and we will show that

the approach can infer unknown infected /24 subnets with

more than 90% of accuracy. From the above test, we find

that Conficker victims share their infection patterns with their

neighbors, and this finding gives us an intuition that collecting

and sharing neighborhood information would be helpful to

infer unknown victims or provide early warnings. To validate

this intuition, we have tested the simple scenario of “We only
have small portions of information of benign and malicious
hosts, but we can gather neighborhood information. Then,
how many unknown malicious hosts can we infer based on
neighborhood information?”.

As a method of considering neighborhood information, we

use the K-Nearest Neighbor (KNN) classification algorithm,

because it is a very popular approach that classifies unknown

examples using the most similar “neighbors” in the known

examples. When we apply the KNN algorithm to our data,

we need the following preparations.

• define classes: in this test, we define two classes: benign
(normal /24 subnet) and malicious (/24 subnet which has
Conficker victims)

• collect data: we use our Conficker data for malicious
data, and we collected the same number of benign /24
subnets as malicious /24 subnets.12

• divide data: we randomly select 20% of data from both
data sets for training samples and other 80% of data is
used for testing.

When all the preparation is completed, we apply the KNN

algorithm, which checks neighbors iteratively, to our data. To

efficiently run the KNN algorithm without high overhead, we

simply choose a common setting of 3 for K. In addition, we

use IP address location information to calculate the distance.

We know the longitude and latitude of IP address, thus

we can estimate the distance of two different IP addresses

by measuring the differences between their longitude and

latitude. After applying KNN to the data, we found that it

can infer unknown infected /24 subnets with a high accuracy.

As shown in Table X, even if we only know a small part of

Conficker data (20%), we can infer other infected /24 subnets

more than 90% accuracy with reasonable True Positive

12As a result, we have 1,300,000 malicious /24 subnets (infected by
Conficker), and 1,300,000 benign /24 subnets (NOT infected by Conficker
or other malware).

(TP) and False Positive (FP)13 rates. This inference result

implies that if we share neighbor information, we could infer

unknown victims or provide early warnings more efficiently.

Inference Accuracy TP rate FP rate
91.59% 91.65% 8.5%

TABLE X
ACCURACY, TP AND FP RATE OF THE INFERENCE APPROACH BASED ON

NEIGHBORHOOD INFORMATION.

Insight from Result 14 and 14.1. (Neighborhood
watch) We observe that a large portion of victims could be
infected by nearby victims and find that it is very important
to share threat information with neighborhood networks.
And this insight implies that further research is needed for
developing new inference or early-warning approaches based
on cooperated/shared (alert) information (and probably in an
efficient privacy-preserving way).

VIII. CONCLUSION

In this paper, we have studied a large-scale Conficker

infection data to discover (i) their distribution over networks,

ASes and etc, (ii) difference from previous bots/worms (iii)

the effectiveness of current reputation-based malware detec-

tion/warning systems, and (iv) some insight to help detect

future malware.

Our analysis of Conficker victims and cross-comparison

results allowed us to obtain profound insights of Conficker

victims. They also guide us to understand the trends of

malware infections and to find interesting ideas that can aid

the design of future malware detecting systems. We revealed

that current reputation-based malware detecting systems that

depend on previously known information are not enough

to detect most Conficker victims. This result suggests that

different kinds of (complementary) detection systems such as

an anomaly-based detection system are needed. We measure

the performance of Conficker and we believe that it provides

more clear understanding the real effects of Conficker on the

network or host. We provide a basis that proves the hypothesis

of “A Conficker bot is more likely to infect nearby hosts
than randomly chosen hosts” and we believe that it calls

for more research of detection systems which are based on

watching/sharing/correlating neighborhood information.

13TP denotes the rates that the algorithm classifies real malicious networks
correctly, and FP denotes the rates that the algorithm classifies benign
networks as malicious.
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APPENDIX A

CONFICKER DOMAIN GENERATION

While our paper here focuses on analyzing the infected

machines or bots, we give a brief description of the domain

generation of Conficker botnet for completeness. Conficker

uses domain fluxing and IP fluxing techniques to evade detec-

tion and containment. Conficker botnet has evolved over time

and comes in different versions. Conficker uses random names

for the C&C servers and employs multiple IP addresses for

the C&C servers. Conficker.A bots [22] generate 250 domains

every three hours, using the current date and time as the seed.

All the bots generate the same domain names every day and

the C&C server can be hosted at one of these domain names.

In order to make it harder for a security vendor to pre-register

the domain names, Conficker.C [30] increased the number of

randomly generated domain names per bot to 50K.

APPENDIX B

CONFICKER SINKHOLE SERVER

Conficker sinkhole servers are operated by several compa-

nies and organizations (e.g., Georgia Tech, AOL, F-Secure,

ShadowServer, Support Intelligence, SIE, and Symantec, later

known as the Conficker Working Group) and have been started

in February 2009. The operators have purchased domains

used by the Conficker bots and redirected to their servers.

In preparation of Conficker.C, which would generate 50K

domains each day over 116 TLDs, ICANN worked with
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them to dub Conficker Cabal, and the TLD operators block,

monitor, and/or redirect domains to the conficker sinkholes.

The sinkholes run web servers and collect web logs. Each

sinkhole uploads its logs to a central repository used for

remediation reporting and for academic research.
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