
An Intrusion-Tolerant and Self-Recoverable Network
Service System Using A Security Enhanced Chip

Multiprocessor

Weidong Shi Hsien-Hsin S. Lee Guofei Gu Laura Falk†

Trevor N. Mudge† Mrinmoy Ghosh

School of Electrical and Computer Engineering †Department of Electrical Engineering
College of Computing and Computer Science

Georgia Institute of Technology University of Michigan
Atlanta, GA 30332 Ann Arbor, MI 48109

{shi, guofei}@cc.gatech.edu {laura, tnm}@eecs.umich.edu
{leehs, mrinmoy}@ece.gatech.edu

ABSTRACT
This paper proposes a novel system design using a chip
multiprocessor (CMP) to provide intrusion tolerance and
self-recovery for server applications. Our platform provides
three major advantages over previously proposed approaches,
1) security insulation from remote exploits and attacks; 2)
close coupling between processor cores in a CMP to ensure
immediate logging, fine-grained inspection and fast recov-
ery; 3) concurrent and fine-grained inspection, logging and
recovery techniques that are off of the critical path. We have
designed a multi-point defense and recovery system to de-
feat remote exploits. We used a checkpoint based approach
to recover server applications under attack. It takes a snap-
shot of the application’s context and memory state before
it handles the next request. If the request turns out to be
malicious, the system can discard the malicious request and
rollback the application’s state to a known good one through
checkpointing. We have also designed an rapid recovery sys-
tem for kernel space rootkit attacks. Our intrusion surviv-
able and self-recovery design provides reliable production
services that System Administrators are seeking.

Keywords
Intrusion-tolerant computing, survivable service, chip multi
processor, self-healing, rootkits, buffer overflow.

1. INTRODUCTION
In the face of remote attacks, quick recovery and service

reliability are among the most important features that are
sought after by System Administrators and Internet Service
Providers. Although research has been devoted to the area
of intrusion detection and prevention, little emphasis was
made in addressing how to make a system tolerant of intru-
sions. Such a system would provide a highly efficient, non-
intervening, autonomic service recovery system. Conven-
tional service protection and recovery systems have the fol-
lowing characteristics. 1) Reliability of service, as a whole,
is favored at the cost of individual services. When a new se-

curity vulnerability is detected for a particular application,
the service is often terminated to avoid a more disastrous
security breach until a patch is available; 2) The process
is laborious and prone to human errors. After a system is
compromised, hackers often conceal their activities by mod-
ifying the system logs and installing rootkits or back-doors.
This is often accomplished through modifying some system
binaries or the system call table [14, 15]. At this point,
recovering a system after this level of compromise requires
human intervention, usually to the degree of reloading the
system.

More recently, new work [27, 21] has been initiated with
a goal of providing self-healing and automatic recovery ca-
pability based on a single-processor, single-system model.
Such an approach contains the following drawbacks. First,
the degree of security is questionable. A single system based
protection/recovery scheme places the security of the pro-
tection/recovery mechanism at the same level as the pro-
tected system. Once the system is compromised, the re-
covery mechanism could be bypassed, circumvented, or sub-
verted. Second, self-healing and increased service availabil-
ity is often achieved at the cost of performance. In order
to recover from a compromised system state, timely logs
or checkpoints must be maintained, which degrades perfor-
mance. Third, most of the proposed systems provide only
limited recovery capability. For example, [27] provides se-
curity for only selected functions.

A new class of self-healing techniques based on virtual
machines (VM) have also been studied. When compar-
ing single-system solutions with virtual machine based so-
lutions, the virtual machines will be more secure because
they provide isolation between the host system and the em-
ulated system. However, Virtual Machines are vulnerable
to network attacks when the VM along with the emulated
system is viewed as one single network application. A VM is
susceptible to network exploits such as buffer overflow just
the same as any other regular network application.1 A VM-

1Note that disabling network stack on the host side does not
solve VM security problem completely because the whole

based self-healing system usually requires switching between
native mode and VM mode. Most of the security counter-
measures are implemented in the VM mode. In order to
be fully capable of detecting and surviving any attacks, ev-
ery state change and instruction needs to be executed and
monitored by the virtual machine, leading to a substantial
performance impact. In other words, a practical self-healing
system using a VM needs to be coarse-grained or limited if
a reasonable service throughput is to be maintained.2

In this paper, we propose a new intrusion survivable com-
puting and self-healing scheme based on emerging chip mul-
tiprocessor (CMP) or multi-core platforms [16, 4]. The CMP
is a natural evolution for future processor design, which uti-
lizes the available transistors on chip and alleviate the com-
plexity of design and verification. Almost all major pro-
cessor vendors have already offered or released roadmaps
for their own CMP designs [25, 28, 13]. Most of the cur-
rent CMP designs adopt a symmetric CMP model, where
each processor core is functionally identical. As we will
show later, however, by imposing a carefully crafted secu-
rity structure to the CMP cores, a new CMP programming
model can facilitate the construction of a new wave of self-
healing and intrusion tolerant systems. Comparing these
with previous self-healing systems, our CMP-based auto-
nomic system has the following characteristics and advan-
tages:

• Processor core differentiation. In contrast to con-
ventional CMP models, our security enhanced CMP model
assigns different roles to different cores on a CMP. Through
the BIOS settings, some processor cores (or monitor cores)
can be configured to run at a higher security or privi-
leged level than the remaining cores (or protected cores).
These higher privileged cores can monitor, reset, or re-
cover the protected cores.3

• Attack/exploit/compromise insulation. The pro-
tected cores and the monitor cores have different access
privileges for hardware resources (e.g. main memory,
storage, etc.) The monitor cores also run an entirely dif-
ferent operating system from the rest. Such isolation at
both the physical layer (processor and other hardware
resources) and the system layer (different operating sys-
tems) provides protection and assurance as to the level
of security and recovery services that are available on the
monitor cores. It will be extremely hard for any compro-
mise on the protected cores to affect the monitor cores.

• Rapid logging and recovery support on closely
coupled CMP cores. Our proposed CMP model al-
lows different processor cores to share states. The mon-
itor cores can log or checkpoint states of the protected
cores for future recovery. When any protected core is
corrupted or compromised, instead of rebooting the sys-
tem or terminating the affected application, the monitor
cores can perform a quick recovery based on the logs.

• High performance intrusion tolerance and self-
healing ability. Since security tasks on the monitor

system (VM+emulated system) is one network application.
2By limited we mean that only certain types of state cor-
ruption and recovery can be supported.
3Throughout this paper, we call the processor core used for
running server applications the “protected core” or “server
core”. The processor core that runs the security monitoring
and recovery software is called the “monitor core”.

cores, and regular applications on the protected cores,
are executed concurrently, the performance overhead of
the implemented security features are minimized.

The major contributions of this paper are:

• This paper proposes a new security enhanced CMP model.
There are two classes of processor cores: monitors and
protected cores. The new computing model, equipped
with intrusion-tolerance and self-healing techniques, makes
it easy to install the operating system and software with
greater assurance of service reliability.

• This paper describes a system architecture for our model.
The proposed system uses a unique checkpoint approach
to quickly repair services disrupted by remote exploits.
It also uses a unique approach to protect the system from
kernel level rootkits and prevent hackers from taking over
the system.

• This paper evaluates the potential of such systems using
real documented vulnerabilities and exploits.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly introduce the concept of intrusion tolerant
computing and autonomic recovery and present an asym-
metric CMP model to achieve this goal. Section 3 details
the system architecture and demonstrates the capability of
intrusion tolerant computing and fast recovery. Section 4
evaluates security and performance, followed by related work
in Section 5. Finally, Section 6 presents concluding remarks.

2. AVAILABILITY AND SELF-RECOVERY
ORIENTED COMPUTING

In this section, we introduce the concept of self-healing
and intrusion-tolerant computing. A system with the ca-
pability of self-healing and intrusion tolerance can effec-
tively improve its service reliability. In addition, we discuss
a multi-dimensional scheme for designing and managing a
self-healing and intrusion tolerant system. We also address
why our security enhanced asymmetric CMP model is the
appropriate platform for high assurance intrusion tolerant
and self-healing systems. It is worth noting that this paper
mainly focuses on self-healing and intrusion tolerance issues
for end service systems. Improving service reliability using a
network of computers and servers such as service replication
is a separate problem and out of the scope of this paper. The
approach presented in this paper provides rapid micro-level
recovery.

2.1 Threat Model
Our threat model is based on network exploits and remote

network attacks. We assume that service application soft-
ware and parts of the OS contain vulnerabilities, including
but not limited to, various forms of buffer overflows [3, 19,
22] that can be exploited, to bring down the application, or
worse, suspend the entire system, or allow unlawful access
to the system.

2.1.1 Remote attacks
Buffer overflows have been one of the most common re-

mote intrusion techniques [3, 19]. A buffer overflow occurs
when a program tries to store data into a buffer that is too
small. Exploiting a buffer overflow allows a hacker to pos-
sibly inject arbitrary code into the execution path and gain
unauthorized access to the system resources [3]. After a sys-

tem is compromised, the adversary can hide their tracks by
altering or erasing audit or system log files. The adversary
can set up a concealed back-door by installing various rootk-
its, which he could use to return and wreak more havoc on
the system. The rootkits install modified system binaries
leaving, not only back-doors, but a means of concealing the
hacker’s activities by giving the appearance of a healthy sys-
tem [14, 15]. The hacker can then set up malicious attacks
such as distributed denial-of-service.

2.1.2 Availability and recovery
One severe consequence of network attacks is the loss of

service, reducing service reliability. The current recovery
scheme is error-prone and time-consuming, needing exten-
sive human intervention. As shown in a real case study [15],
in order to recover a compromised system and its services, it
often involves the following steps. The administrator needs
to spots the suspicious behavior in a compromised system.
The system is then examined for known exploits and rootk-
its. The detection and removal of a rootkit is a laborious
process [15] and usually requires a clean restore of the sys-
tem. By analyzing network traces or service log files (given
that these files are not deleted or altered by the hackers),
the administrator may be able to pinpoint the suspicious
activity and patch the application in question.

2.2 Self-healing and Intrusion Tolerant Com-
puting

As shown above, conventional recovery processes requir-
ing human intervention are time-consuming and expensive,
thus reducing service reliability. To increase service reliabil-
ity, a new recovery approach is required. Intrusion tolerant
computing is such an alternative. Intrusion tolerant com-
puting prolongs service reliability by running vulnerable ap-
plications or compromised systems and correcting them by
a method of self-healing and autonomic recovery. In the face
of remote exploits, instead of terminating the vulnerable or
corrupted application or system, an intrusion-tolerant sys-
tem will try to disconnect the infected service from the net-
work, repair the damage, and restore the system/application
in real-time back to normal. Typical damage caused by re-
mote exploits are memory corruption, destruction of impor-
tant data structures, system data corruption, or maliciously
patched kernel text or data. The repair is based on timely
logging of essential machine states. Intrusion tolerant com-
puting allows for continued execution of services and systems
before the nature of the exploit is fully understood. It serves
as a temporary solution before a complete solution such as
a new patch or rootkit removal utility is available. Recur-
ring attacks can continue to “wound” the system. However,
the system is capable of quickly recovering from the dam-
age and can continue to serve legitimate and well-behaved
requests. To achieve intrusion-tolerance and self-healing ef-
ficiently, the system must be supported with the following
requirements:

• Insulation. An exploit insulation or immunity compo-
nent as the host for services of self-healing and recovery.
This component provides unconditional protection and
assurance to the system that prevents the recovery and
healing services from being bypassed, circumvented or
subverted.

• Introspection. The ability to quickly detect attempted
intrusions, state corruption, or system compromises.

Core
Processor

Core
Processor

Core
Processor

.

.

.

.

.

.

L2

IL1

DL1

IL1

DL1

IL1

DL1

Figure 1: Chip Multiprocessor

• Prevention. The ability to prevent several intrusions
and reduce the workload of the recovery process.

• Recovery. The ability to recover from a damaged sys-
tem state to a known good state, and restore services to
normal in a timely manner.

• Performance. The whole detection and recovery cycle
needs to be efficient with minimal performance overhead
to the service software for practical adoption.

2.3 Security Enhanced CMP
In order to meet these requirements, we propose to use

a security enhanced asymmetric CMP platform for imple-
menting an intrusion-tolerant computing system with high
assurance. Figure 1 illustrates a conventional CMP model
where all the processor cores have equal security privileges.
Since the transistor count of a single chip doubles every 18
months, CMPs are a natural evolution of deep submicron
processor design that fully utilizes the potential of technol-
ogy advances while minimizing the complexity of design and
verification. Today’s CMP designs fall into the category of
symmetric CMPs in which all the cores have equal security
privileges. We propose a new CMP paradigm called the
asymmetric CMP model that enables self-healing and in-
trusion tolerance by imposing different security regimes on
different CMP cores. We next discuss the design principles
of an asymmetric CMP.

2.3.1 Security insulation by privilege partitioning
Processor cores of a CMP can be configured with differ-

ent security privileges. The high privileged cores, or monitor
cores, are granted access to all the hardware resources in-
cluding the entire memory space, I/O devices, and all the
DMA engines. The cores with low privilege levels called
protected cores are only allowed access to certain physical
memory areas and peripherals. The monitor cores start to
boot at system startup before their low privileged counter-
parts. They boot from a light-weight secure OS (a few MB)
and grant limited hardware access rights to the protected
cores. After the monitor cores are up and running, the pro-
tected ones start to boot from a normal operating system
such as a full-fledged Windows server or Unix/Linux pro-
duction server. In terms of access rights, the monitor cores

Memory Update

FIFO

Control Transfer
Check Requests

Code Origin
Check Requests

FIFO

Check Request

Processor
Core

Processor
Core

Processor
Core

privileged

low privileged

low privileged

Performance
Recovery

Prevention

Insulation
Introspection

L2

DL1

IL1

DL1

IL1

DL1

IL1

Figure 2: Asymmetric Chip Multiprocessor Model

enjoy complete access to all the physical memory space,
I/O memories, and peripheral devices whereas the protected
cores have only limited access to those resources. In addi-
tion, the monitor cores are privy to all the system excep-
tions while the protected cores are only allowed to respond
to certain interrupts and exceptions. The access rights are
enforced through hardware protection. For example, a mem-
ory interface watchdog sitting between the processor cores
and the front side bus (FSB) can inspect memory viola-
tions and I/O access rights (request to memory or periph-
eral bus is tagged with processor core id). An intelligent in-
terrupt/exception routing controller also physically ensures
that interrupts/exceptions are received by the entitled cores.

To restrict protected cores from accessing peripheral de-
vices such as a network interface card on the PCI bus, the
monitor cores signal the FSB controller to enforce access
restrictions on the protected cores in I/O space. If an appli-
cation’s protected core violates the restriction and attempts
to read/write in I/O space, an exception will be raised and
handled by the monitor cores. In addition, the FSB con-
troller also routes the request to the monitor cores. The
monitor cores can check the request and carry out the re-
quest on behalf of the application’s protected core. This
solution uses the monitor cores as a relay for accessing I/O
devices. The monitor cores can hide certain PCI devices by
not reporting its presence to the application server system.

Such a CMP paradigm creates a hardware sandbox for
production service system running on the low privileged
cores while having a security system running on the high
privileged cores. The two systems are not only physically
insulated but also run different operating systems, a lean se-
curity runtime system and a full production server OS. This
insulation provides higher assurance for service recoverabil-
ity and reliability than a single-processor based self-healing
system or a VM-based self-healing system.

2.3.2 Fine-grained internal state logging
Implementing multiple cores in the same chip allows ef-

ficient and high speed sharing of internal state information
between processor cores. This enables the monitor cores
to pull out internal information from the protected cores
for inspection. The information pulled from the protected
cores includes memory updates, fetched instructions from
the unified L2 cache to the L1 instruction cache, 4 or other
4Hardware ensures code in the L1 instruction cannot be

monitor/recovery
/control

On Low Privileged Core
Security System

Interface(NIC)
Network

Space
Server Memory

On Privileged Core
Security System

Firewall and NIDS

Admin Console

Dual Security Insulation

Insulated Memory
Space Restricted NIC

Network
Local Area

Wide Area Network

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���

���
���
���

Figure 3: Deployment of Proposed System in a Net-
work Environment

information necessary for detecting system corruption and
compromise [12]. This capability can be easily implemented
in a CMP because it only gathers information at the in-
terface and requires no internal processor pipeline changes.
The information collected can be sent to the monitor cores
via a dedicated hardware FIFO. The monitor cores gather
the information and inspect it for any suspicious behavior.
If necessary, they use the log or checkpoint information for
quick recovery.

2.3.3 Close processor core coupling and control
The close coupling of processor cores in a CMP allows

a controlling mechanism to be easily installed so the mon-
itor cores can stall, flush the pipeline, reset, and recover
protected cores running application services. Since all the
cores are on the same die, the monitor core can send signals
to stall corrupted cores, flush its pipeline, restore its states
and restart execution from a known good state. The close
coupling among processor cores enables a mechanism of fast
recovery.

3. SYSTEM ARCHITECTURE
In this section, we discuss how to create a self-healing and

intrusion-tolerant system using the proposed asymmetric se-
curity enhanced CMP. The self-healing and recovery scheme
uses multiple lines of defenses and recovery along the five
aforementioned levels. The proposed scheme is implemented
as security software on the high privileged cores. The soft-
ware itself has been insulated from remote attacks targeting
the protected system. This type of protection is described
in Section 2.3.1. The security software on the high privileged
cores can be a stand-alone system customized through the
BIOS or configurable through a completely different man-
agement network. Figure 3 shows that a separate network
can be setup to manage the system which connects the high
privileged cores through a concealed network channel. The
management network can be physically separated from the
network used for hosting network services. Administrators
can use it to configure or manage the monitoring and recov-
ery systems. The existence of such a network is undetected
by the server systems running on less privileged cores. Now
we propose an architecture that enables two main forms of
defense: (1) Application level exploit tolerance and recovery

modified, which means that the L2 to the L1 interface is
the natural point for monitoring injected code attacks.

using checkpointing; (2) System/kernel space recovery from
rootkits.

3.1 Tolerance and Recovery from Application
Level Exploits

The application servers running on the low privileged cores
are vulnerable and subject to remote attacks. These attacks
include various forms of buffer overflows [3, 19, 22] and other
malicious exploits for gaining root level privileges. Table 1
summaries intrusion tolerance and service recovery at the
level of service applications. It shows what is done at each
of the five security levels.

3.1.1 Introspection
As indicated in [12], the majority of the remote exploits

can be detected using a simple inspection mechanism on
function call/return addresses, code origins and program
control flow transfer. Code origin inspection can detect and
prevent execution of injected code. However, only codes
originally loaded from the disk can be executed. Call/return
address checks prevent the function return address from be-
ing modified. Restricted program control flow is an effective
way to defeat modified or injected program jumps or func-
tion calls. To facilitate inspection, cores running service
applications output a trace of fetched instructions (from the
unified L2 cache to the instruction L1 cache) and control
transfer traces including call/return instructions to a FIFO
which is running the inspection software executing on the
high privileged cores. The protected cores (low privileged)
also send a trace of their memory updates to another FIFO.
Once the high privileged cores receive the information, they
maintain a log in their isolated memory space. Figure 2
illustrates such a scenario using our proposed CMP model.

When a server application starts for the first time, the
server core sends necessary security information to the mon-
itor core by writing to a shared buffer. This information in-
cludes execution attributes associated with the application’s
memory pages, symbol table, and import/export function
list. The monitoring software stores the received informa-
tion in its private and protected memory space and orga-
nizes it on a per-application basis. It uses the information
to search for signs of intrusion when the server application
is running. Introspection is performed concurrently with
application execution. When the server application issues
major I/O operations or raises a system call or exception,
it stalls until the FIFO containing the information trace is
drained by the monitor core. This synchronization between
the application and monitoring software reduces the scope
of the damage done by remote exploits before they are dis-
covered.

Once an intrusion has been detected, certain damage has
already been inflicted on the system. There are two specific
types of damage. First, the system might be compromised
by hackers who have installed a root shell to gain access
to the system. Second, the system has been damaged by
the intruders, e.g. corrupted memory data, run-away pro-
gram flow, and so on. Synchronization between the server
and the monitoring software prevents server compromise in
the event that an unauthorized shell is executed. This is
caught by the monitor because execution of a shell requires
a system call. This is the first line of defense. Our sys-
tem also uses two other techniques to repair a damaged or
compromised server. The first one uses a checkpoint based

recovery scheme to repair damages done by intrusions. The
second one is a kernel space protection/recovery mechanism
to prevent adversaries from installing rootkits.

To support introspection, applications have to commu-
nicate certain information such as function export/import
table, addresses of original executable code pages, etc. to
the monitor core. This can be achieved through shared
memory. For each server application, OS on the protected
core can write required information for security inspection
in a restricted memory location accessible by the monitor
core and the privileged OS before the server application is
started. The design allows only high privileged OS code to
send information to the monitor cores. Also certain informa-
tion such as important static OS kernel data, once recorded
by the monitor core, cannot be changed without a system
reboot. Alternatively, certain inspection information can be
downloaded to the monitor core through the administration
network separate from the application services.

3.1.2 Checkpoint-based recovery
Our checkpoint-based recovery system has been designed

and configured with network based service applications in
mind. Upon receipt of a new network request by a server
application, the server takes a snapshot of its process con-
text and incremental memory state. The logging process
captures the register states, program counter, open file de-
scriptors, sockets, pipes, etc. The request is then handled by
the application. If later, a buffer overflow or other type of in-
trusion is detected by the monitoring software, the monitor
cores will interrupt the application’s protected core(s). The
application’s memory state is rolled back to a state before
the malicious request was handled. Its backed up process
context is then compared with the current context. It re-
leases system resources allocated after the checkpoint and
prepares to restore the application to a known good state
based on the backed up (or logged) process context. This ap-
proach attains intrusion tolerant computing and self-healing
by nullifying the damage of network requests containing ma-
licious contents. If the next request is from a legitimate and
well behaved client, the application would continue as ex-
pected based on the communication protocol. It should be
noted that the server does not undo all the socket reads or
file descriptors when rolling back the malicious request. Af-
ter rollback, the server application is ready to handle the
next request.

It is important to note that if the server terminates the
application and restarts it, the previous context, including
file buffers with requests, from well-behaved clients will be
lost. There is also no guarantee on the recovery time. Un-
der repeated attacks, without the ability to quickly recover,
legitimate users will suffer from service disruption.

In order to log memory states more efficiently, our sys-
tem uses copy-on-write techniques. When the application
issues a request for a checkpoint through a system call, the
server will mark the memory pages of the entire applica-
tion’s address space including data, stack, and heap. When
the application has resumed, it starts to modify data in its
memory space, the attempt will trigger a memory fault, and
will be handled by the server. At that time, the server will
allocate a backup page and copy the data to it. It then
changes the page attributes to writable and resumes ap-
plication execution. Each checkpoint results in one set of
logged information. To avoid running out of resources, the

Table 1: Rapid Recovery From Exploits on Service Applications
Security Function Implementation

Insulation physical memory insulation, memory state of security
software on privileged cores are invisible to the protected
system that is exposed to potential exploits and compromises

Introspection function call/return address, code origin,
call control flow matched with (import/export) function table [12]

Prevention stall system calls and file operations until
application codes executed are verified to be benign.

Recovery maintain a log of memory updates or
take checkpoints after service requests, iteratively roll back to
to a known good state or checkpoint

Performance concurrent verification and state inspection

server only supports a limited window of certain number of
checkpoints, for instance five. When more are requested,
information older than the original five will be overwritten.

With respect to process context and resources, our sys-
tem maintains register context, the program counter, file
descriptors, the process environment, and other allocated
system resources. During recovery, resources allocated after
the checkpoint are freed. Files opened after the checkpoint
are closed. Files opened before the checkpoint will remain
open after the rollback. All child processes (one might be
malicious) spawned by the application after checkpointing
will be killed and any new memory pages they allocated are
reclaimed.

However, our system does not backup or restore all the
possible memory states. States associated with inter-process
communication, messages, and signals are not recovered.
The system does not undo any changes to the files, or mes-
sages and signals already sent. If the application logs the
malicious request to a file, the information will remain in the
file. It is important to point out that our checkpoint based
recovery approach is designed for network oriented server
applications and remote exploits. It is not meant to be a
general recovery solution for any type of application. Our
study shows that the proposed scheme is sufficient to heal a
majority of applications. In case the application cannot be
properly recovered, the system will use the traditional ap-
proach, i.e. terminate the application and start over again.

3.2 Recovery from Kernel Level Rootkits
A kernel level rootkit modifies the OS kernel code and

data in its memory space. This is often accomplished through
malicious loadable kernel modules (LKM) residing in the
kernel space or directly patched kernel text code through
/dev/kmem accessible to user-space processes [23]. Mali-
cious LKMs, if loaded, can modify the kernel’s critical data
such as the system call table and the interrupt descriptor
table (IDT). A typical malicious act imposed by a kernel
level rootkit is to redirect a system call to custom kernel
code that hide illegitimate files and processes. It also cre-
ates a concealed communication channel (back-door). Most
rootkits are capable of hiding themselves from system report
utilities and removing currently loaded security modules.

Recently, there has been a great deal of research done in
addressing the issue of kernel level rootkits [15, 21]. The
authors in [21] categorize rootkits according to the way they
infect a system’s kernel space. A rootkit can 1) modify the
interrupt handler for system calls (0x80) to use a different
system call table (called table redirection), or 2) alter syscall
entries to redirect individual calls to hacker supplied code

(called entry redirection), or 3) patch or replace kernel code
used for handling system calls with the hacker’s malicious
code. Note that enforcing write-protection on ktext and
syscall table does not necessarily prevent rootkit installation
because it can be subverted or bypassed.

Many tools and utilities have been developed to detect or
prevent kernel rootkits including Chkrootkits [5], KernCheck [11],
check-IDT [10], etc. Chkrootkits can detect rootkits using
rootkit signatures. KernCheck compares infected machine’s
system call table with information defined in the system map
to uncover entry redirection. CheckIDT is a tool to detect
table redirection. In [21], the authors provide details on how
administrators can detect and recover systems compromised
by kernel level rootkits. They mention that virtual machines
might be useful for automatic recovery from these rootkits.
Later we will demonstrate that an asymmetric CMP is an-
other platform for carrying out rapid recovery from kernel
level rootkits.

3.2.1 Introspection and Recovery
To detect the presence of kernel level rootkits and recover

from malicious changes to the kernel space, the monitor
cores must maintain a clean copy of each protected core’s
kernel image. This includes a clean version of the system
call table (system call target addresses), a clean map of the
kernel symbols, and a clean copy of kernel text code. The
monitor cores keep this information in their protected mem-
ory and storage space, which is insulated from the rest of
the system. Monitoring software inspects memory updates
on the server and tries to spot attempts to modify the sys-
tem call table or ktext. It also checks the kernel text and
syscall table fetched from the external memory to prevent
the system from loading modified system binaries from out-
side. For example, hackers may modify the kernel image
stored in a networked file system. Next time, when the sys-
tem is rebooted, the malicious kernel will be loaded. This
suggests that a simple solution of enforcing a non-writable
kernel text/syscall table by the monitor core is insufficient
for protection.

Once these kernel level rootkits are installed, the informa-
tion provided by the server can no longer be trusted. Our
scheme is capable of recovering from kernel level rootkits
effectively because the monitor cores have direct access to
each protected core’s kernel space. Moreover, the monitor
cores maintains a clean copy of the protected core’s kernel
data/text code for an immediate recovery of the modified
syscall table and ktext. The monitor cores can be trusted
to provide introspection and recovery services even when the
server has been compromised.

Since the monitor cores maintain a clean copy of the ker-
nel text code and syscall table, they can quickly repair the
compromised protected server core’s kernel when the kernel
level rootkits are detected.

3.3 Limitation
The proposed hardware model and system architecture

are capable of providing intrusion tolerance and service re-
liability better than previous approaches. However, our ap-
proach is not a cure-all for all network based exploits. The
proposed scheme does not guarantee that all conceivable at-
tacks are caught or that recovery is possible from every cor-
rupted machine state. However, it does create a hardware
and system architecture that allows for future or more ad-
vanced intrusion tolerant and autonomic techniques to be
deployed. Note that the proposed protection and recovery
scheme is end-system based. It does not address vulnerabil-
ities or exploits that target the network itself. For example,
it does not solve denial-of-service attacks that saturate the
network. Also note that the security software in the moni-
tor cores is insulated from remote exploits, it is subject to
potential local physical tampering such as replacing or re-
flashing the memory that holds the monitoring and recovery
software. Furthermore, the proposed scheme is not designed
to replace the conventional process of fixing software bugs
and vulnerabilities. It is an intrusion tolerant and recovery
technique that prolongs service availability under remote at-
tacks. Before a new patch is released, service providers can
use our approach to recover from corrupted state and con-
tinue serving clients and customers.

Although rootkit use has been significantly impacted un-
der our scheme, the rapid kernel recovery procedure does
not completely remove all the rootkit files from the system.
Since they can no longer hide from system auditing and in-
spection facilities, administrators can easily spot them and
remove them from the system.

It is possible to design an independent and separate in-
trusion detection agent and recovery system for the persis-
tent storage using our asymmetric CMP model. The system
would provide similar services as described in [18].

4. EVALUATION AND ANALYSIS
We carried out our study with a whole system emulator.

As such, we can evaluate our proposed hardware architec-
ture, its supporting system components, and the service ap-
plications altogether. We first describe the implementation
of our system and software followed by the security evalu-
ation using real cyber exploits. We also discuss the perfor-
mance impact for four server applications.

4.1 Implementation

4.1.1 Emulation environment
We used an in-order x86 whole system simulator derived

from a whole system emulator called Bochs [9]. Bochs is an
open source IA32 processor emulator capable of performing
full system emulation. It provides modeling of the entire
PC platform including hard drive, VGA monitor, network
device, and other devices to support the execution of a com-
plete operating system and its applications.

Our simulator emulates two processor cores concurrently
with shared memory for synchronization and data commu-
nication. One core is configured to run a full-blown Linux

OS (RedHat 6.0 distribution, kernel version 2.2) and net-
work applications. The second core is designated as the
monitor processor. It runs a simple runtime system based
on a stripped-down tiny Linux stored in a flash memory.
The monitor core that boots from the runtime system and
the entire system including the security software is less than
10MB. We implemented our proposed hardware support to
enable internal state inspection. This included automatic
L2 cache to instruction L1 cache tracing, memory update
inspection, processor state control. An example of the later
includes the ability to stall and reset a protected processor
core from its monitor counterpart.

The underlying machine that Bochs is running on, is a
dual 2.4GHz Intel Xeon processor machine with 2GB RAM.
The emulated platform and applications can respond to net-
work requests in real time.

4.1.2 Monitor and recovery software
On the security programming side, we implemented a sim-

ple software security monitor. The program runs in the
monitor core and receives logged instructions and memory
updates from the other processor cores through designated
I/O ports.

Upon receipt of a new instruction, the monitor first ver-
ifies the code’s origin against the recorded code page at-
tributes. When an application is created and started by the
protected core, the system specifies page attributes, and the
import/export call table, and posts them to the monitor
core via a FIFO. Applications are distinguished according
to information in CR3 control register. In the IA32 archi-
tecture [8], CR3 is used to store the physical address of a
process’s page table, which is unique for each process. Each
instruction received by the monitor core is paired with its
corresponding CR3 value so that the monitor core can decide
which set of information should be used for security checks.
The monitoring software then decides whether the instruc-
tion is a function call or the type of control transfer that
requires further security checks based on the instruction’s
opcode. For control transfer, the program uses the recorded
application’s symbol table, function export/import lists to
verify the legitimacy of the control transfer. The program
also records a stack of expected function return addresses
and verifies each function’s return. The monitor core also
manages a small buffer of memory logs (a windowed history
of memory updates — several million most recent updates).
The memory log is required when the monitor core detects
errors, corruption, or compromise in the server’s application
and decides to rollback the application’s memory state.

The Linux kernel is modified to support the rollback of
applications. We implement a new system call for appli-
cations to capture checkpoints of their internal state. We
used four open source network server applications to evalu-
ate both security and performance. They are Wu-ftpd’s file
transfer protocol server software (FTPD daemon), Apache
web server software (HTTPD daemon), email server soft-
ware (Sendmail daemon), and Bind’s domain name server
software (Named daemon). We modified these applications
so they could make use of the recovery mechanism supported
by the hardware and system. Before the next client request
is handled by these applications, it invokes the new system
call to take a snapshot of its state. It then reads the next
request and starts processing. If an intrusion is detected by
the monitor cores, it will first verify the integrity of the sys-

tem’s recovery routine (rotate detection and recovery) and
interrupts the protected core. The core’s OS invokes the
recovery routine and rolls back the state of the application,
re-schedules the application, and then resumes execution.

4.2 Security Evaluation
We validate our recovery approach using a set of real ex-

ploits against selected popular server applications.

4.2.1 Attack on server applications
Real exploits were applied to attack a few popular server

applications: Apache, Bind, and FTP.5 Attack codes or
scripts are collected from various hacker websites and se-
curity agent websites.6

For Apache service, we used an exploit reported at (CAN-
2003-0651) [1] that overflowed the buffer in the mylo log

logging function (my sql real escape string) for mod mylo

0.2.1 and earlier. This exploit allows remote attackers to
execute arbitrary code with user privileges via a long HTTP
GET request. This exploit actually only affects the logging
process of the web server. This attack can be detected be-
cause it overwrites the return address and executes injected
code. Applications can recover from this attack by rolling
back the application’s state to that of one before the exploit
was executed.

BIND8 (domain name server) contains a buffer overflow
attack associated with the processing of the request transac-
tion signature (VU#196945) [2]. BIND uses the same stack
buffer for storing the request and generating the response.
It composes a response by appending a transaction signa-
ture to an existing request. However, during this process,
BIND does not properly update the size of the packet buffer.
This potential attack can also be detected by checking code
origin and return address overwrites. Recovery from this at-
tack can be done by going back to the previous checkpoint
and processing the next request.

Wu-ftpd FTP server (wu-ftpd 2.5.0 through 2.6.2) con-
tains a remotely exploitable off-by-one bug in the fb realpath()

function which allows attackers to execute arbitrary code
(CAN-2003-0466) [1]. The overflow occurs when the length
of a constructed path is equal to the MAXPATHLEN+1, one
character larger than the size of the buffer. The bug stems
from the misuse of the rootd variable in the calculation of
the concatenated string length. Hackers can exploit this
vulnerability by sending certain FTP commands to trigger
buffer overflow. This attack can be detected when hackers
try to gain root access. Recovery is possible by restoring
the application’s state back to the state prior to the FTP
commands.

4.2.2 RootKits
We used real rootkits available from the Internet to exam-

ine the effectiveness of our design for detecting and recov-
ering from rootkit. We infected the emulated Linux server
with kernel rootkits and tested our detection and recovery
scheme. We used five rootkits, SucKIT, heroin, adore, itf,
and knark.

SucKIT [23] is loaded through /dev/kmem. It supplies
hackers with a password protected remote back-door, and

5All selected server applications are executed as standalone
daemons.
6We acquired these codes from www.k-otik.com/exploits/,
www.insecure.org/sploits.html, and www.securiteam.com

can hide processes, files and connections. Except SuckIT, all
the rest rootkits use syscall table modification to subvert a
system. Rootkit heroin hides files and processes. Adore can
also hide files and processes. It provides a local back-door
for hackers to execute a process with root privileges. Rootkit
itf [20] installs a back-door and hides files and processes, and
redirect commands. Knark is another rootkit that can hide
itself and give root privilege to an intruder. All rootkits
use kernel modification to hide themselves and cannot be
removed by using system utilities such as rmmod (remove
kernel module).

In our implementation, the monitoring system keeps a
clean image of the syscall table, IDT entry, and ktext. The
server sends a trace of memory updates to the monitor core
for inspection. When any attempt to modify syscall, IDT
entry or ktext is detected, the monitor core will stall the
execution of its protected server core, drain the update trace
FIFO and undo all the changes to the syscall table or ktext,
then signal the protected core to resume execution. In our
experiments, none of the rootkits succeeded in altering the
application kernel.

In summary, our design prevents rootkits from modifying
a known good system kernel and quickly patches the com-
promised kernel text and system table by restoring them
back to a known good image.

4.3 Performance Analysis
We incorporated an accurate cache and SDRAM memory

emulation into our performance emulator. Each processor
core has its own L1 instruction and data cache. By de-
fault, each one is a direct-mapped 8KB cache with a 32B
line. Each core has a four-way unified 512KB L2 cache. La-
tency of the L1 cache is one cycle and 8 cycles for the L2
cache. The emulated memory system runs at 200MHz and
the emulated processor runs at 1GHz. The FIFO between
the cores for storing trace information has 64 entries. The
monitoring software on the monitor core fetches data from
the FIFO through dedicated ports. When the FIFO is full
and the monitored core has data to be pushed into the FIFO,
it stalls and waits until a FIFO slot becomes available.

We wrote a set of scripts to automatically send network
requests to the emulated platform and handle the responses.
For DNS service, the script sends a sequence of queries to
the server. For FTP, the script automatically logs into the
emulated machine, downloads and uploads a few files. For
Apache (HTTPD), wget is used to download a set of web-
pages from the emulated server recursively. For Sendmail, a
shell script is used to continuously send a sequence of text
mail files to the server. We implemented a packet log sys-
tem similar to tcpdump inside the emulation software that
can record receive and send time (in emulation time) for
each request and response. This way, we can measure the
time taken by each server application to respond to user’s
requests.

We evaluated the overhead introduced by our system for
the selected applications, by measuring the time required to
complete a set of service requests. The results are based on
multiple runs of the test scripts (average of five runs). Fig-
ure 4 shows normalized execution time (normalized against
un-instrumented server applications without security moni-
toring) when the server’s OS does the copy-on-write to log
the application’s memory space. The figure indicates the
slowdown for each application with our scheme. The result

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

httpd
ftpd

bind
sendmail

average

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Slowdown

Figure 4: Normalized Service Time

 0

 0.2

 0.4

 0.6

 0.8

 1

httpd
ftpd

bind
sendmail

average

B
re

ak
do

w
n

of
 ti

m
e

ov
er

he
ad

memory_copy inspection rest

Figure 5: Breakdown of Latency Overhead

shows that Bind has the greatest overhead and that Send-
mail has the least. HTTP and FTP are in the between. On
average, the service times double and in some cases triple.
To locate the main sources of slowdown, we broke the ser-
vice time into pieces: 1) the time spent on copying an ap-
plication’s memory pages by the kernel (copy-on-write); 2)
the delay introduced by inspecting traces; and 3) the time
overhead (shown as “rest”) including syscall for initiating
backup and etc. Figure 5 shows the breakdown. It clearly
points out that memory state logging of the application is
the dominant performance overhead. Figure 6 displays the
average interval between two consecutive checkpoint opera-
tions from the same server application.

Without using CMP, the memory state logging bottleneck
is hard to remove. However, in our design, this overhead can
be handled by using the monitor core to concurrently keep
a memory update log for each server application between

 0

 500

 1000

 1500

 2000

httpd
ftpd

bind
sendmail

average

In
te

rv
al

 B
et

w
ee

n
C

he
ck

po
in

t (
10

00
 ti

ck
s)

Ticks_Between_Checkpoint

Figure 6: Average Interval Between Checkpoint

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

httpd
ftpd

bind
sendmail

average

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e

Slowdown

Figure 7: Normalized Service Time

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

httpd
ftp bind

sendmail

average

L
1

In
st

ru
ct

io
n

C
ac

he
 M

is
s

R
at

e

L1_icache_miss

Figure 8: L1 Instruction Cache Miss Rate

checkpoint requests. The log only keeps the original values
of modified memory locations instead of copying the entire
page (copy-on-write duplicates the whole page even though
only one byte is changed). Figure 7 shows the results of the
new service times after the memory state log is captured
by the monitoring software. According to the results, the
overhead significantly decreases. The monitoring software
uses an efficient way to store memory logs. It aggregates
memory update information inside its processor core. The
non-temporal memory updates are written to memory.

One indicator of the workload on the monitoring software
is the L1 cache instruction cache miss rate, because instruc-
tions fetched from the unified L2 cache are subject to code
origin inspection. Figure 8 shows the L1 miss rate.

5. RELATED WORK
There are prior studies on the subject of detecting re-

mote attacks [17, 12], prevention, rootkits discovery and re-
moval [21]. The purpose of our study is to demonstrate the
possibility of including security related features in an asym-
metric CMP which will provide intrusion tolerance and self-
healing computing. Since we are not providing another new
detection technique, our analysis of related work will mainly
focus on previous research involving recovery and service re-
liability.

5.1 Self-healing and Intrusion Tolerant Sys-
tems

In this paper, we categorize intrusion tolerant end systems
into three area, single processor and single system based,
single processor and multi-system based, and CMP multi-
system based. Virtual machine based systems can be viewed
as a single processor, multi-system based where one proces-

sor is used to run both a host and at least one client system.
For this kind of system, security measures such as inspection
and repair can be implemented as services within the emu-
lation software on the host system [7]. Single processor and
single system based solutions do not use a full-fledged virtual
machine. Instead, they incorporate inspection and recov-
ery codes into the application or system itself [27]. Those
approaches often require availability of the system or the
application source codes so that the applications can be in-
strumented and re-compiled.

5.2 Virtual Machine Based Security Model
Virtual machine emulation of a full system including hard-

ware architecture has been used for many security tech-
niques including honeypots [24], remote attack behavior anal-
ysis, and attack replay [6]. In [6], a virtual machine mon-
itor called ReVirt is proposed to log detailed execution in-
formation and later used as a forensic tool to replay and
identify steps involved in an intrusion. In [7], a virtual ma-
chine monitor based intrusion detection system (IDS) is pro-
posed to isolate IDS from the monitored host. Researchers
in [21] used virtual machine to recover systems infected with
rootkits. What we propose in this paper differs from vir-
tual machine in many ways. First, our CMP based system
runs production services in native mode without using any
emulation. Therefore, it has less overhead than VM-based
approaches. Second, our system uses secure insulation to
isolate security software on the monitor cores and the appli-
cation systems. It is more secure and more reliable than vir-
tual machines at detecting and recovering from remote and
local attacks. It is important to note that virtual machine
emulators and the client system together can be viewed as
one networked application. The application as a whole, just
like other service applications, is subject to remote exploits.
Third, our system does not require frequent switching be-
tween native execution mode and virtual emulation mode.
Fourth, our approach is capable of doing fine-grained inspec-
tion and micro-level recovery which a VM-based approach
cannot accomplish unless every instruction and memory up-
date is emulated, which is very costly.

5.3 Single Processor, Single System Based
In [26, 27], several techniques are proposed to automat-

ically evolve source codes and patch faulty software appli-
cations in the face of attacks. In [27], an on-line recovery
technique derived from [26] using source code instrumenta-
tion and selective emulation is described. Our approach has
several advantages over the technique in [27]. First, [27] uses
instruction emulation which could undermine server perfor-
mance. Second, [27] uses selective emulation. As a conse-
quence, the protection and recovery are only applied to the
selected functions. This reduces both its security and abil-
ity to recover cleanly. Third, single processor, single system
based approaches do not provide an exploit insulated com-
ponent for reliable security services. This limits the reliabil-
ity of the security service provided by this kind of system.
This, in turn, limits its capability of self-healing and being
intrusion tolerant. Fourth, [27] mainly focuses on applica-
tions while our system provides a multi-line and multi-point
defenses against remote exploits.

6. CONCLUSION
This paper presents an intrusion tolerant and self-recovery

architecture that uses a unique security enhanced asym-
metric CMP model in order to provide highly reliable net-
work services and systems. In contrast to previous single-
processor, single-system and single-processor, multiple-system
(VM) based approaches, our approach uses an asymmetric
security enhanced CMP based multi-system to achieve self-
healing and intrusion-tolerant computing. The new model
provides three main advantages which ensures self-healing
and intrusion tolerance: (1) the monitor cores are insulated
from the rest of the system to ensure resistance from remote
exploits and attacks; (2) the close coupling between the pro-
cessor cores of a CMP system enables rapid logging, fine-
grained inspection and fast recovery of a corrupted or com-
promised system; and (3) the concurrent and fine-grained
inspection, logging and recovery techniques that are off of
the critical path. Our system provides a high level of service
reliability and recoverability by deploying inspection and re-
covery agents to several vulnerable points in a system. It
uses a checkpoint based approach to recover server applica-
tions and quickly repairs the kernel in an event of a rootkit
installation.

7. REFERENCES
[1] Common vulnerabilities and exposures.

http://cve.mitre.org/.
[2] US-CERT Vulnerability Notes.

http://www.kb.cert.org/vuls.
[3] Aleph One. Smashing The Stack For Fun And Profit.

Phrack, 7(49), November 1996.
[4] L. A. Barroso, K. Gharachorloo, R. McNamara,

A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and
B. Verghese. Piranha: a Scalable Architecture based on
Single-chip Multiprocessing. In Proceedings of the 27th
International Symposium on Computer Architecture, pages
282–293. ACM Press, 2000.

[5] Chkrootkit. http://www.chkrootkit.org/.

[6] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. In Proc. of the 2002
Symposium on Operating Systems Design and
Implementation, Dec 2002.

[7] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection based Architecture for Intrusion Detection. In
Proc. of the Internet Society’s 2003 Symposium on
Network and Distributed System Security, February 2003.

[8] Intel. Intel Architecture Software Developer’s Manual
Volume 3: System Programming Guide, 2002.

[9] K. Lawton. Welcome to the Bochs x86 PC Emulation
Software Home Page. http://www.bochs.com.

[10] Kad. Handling Interrupt Descriptor Table for Fun and
Profit. Phrack, 11(59), 2002.

[11] Kerncheck. http://la-samhna.de/library/kern check.c.

[12] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
Execution Via Program Shepherding. In Proc. of the 11th
Usenix Security Symposium, Aug 2002.

[13] K. Krewell. Sun’s Niagara Pours on the Cores.
Microprocessor Report, September 13 2004.

[14] S. Labs. Loadable Kernel Module Rootkits.
http://la-samha.de/library/lkm.html, July, 2002.

[15] J. G. Levine, J. B. Grizzard, and H. L. Owen. A
Methodology to Detect and Characterize Kernel Level
Rootkit Exploits Involving Redirection of the System Call
Table. In Proc. of the 2nd IEEE International Information
Assurance Workshop, pages 107–128, 2004.

[16] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The Case for a Single-Chip Multiprocessor. In
Proc. of the 7th International Conference on Architectural

Support for Programming Languages and Operating
Systems, pages 2–11. ACM Press, 1996.

[17] V. Paxson. Bro: A System for Detecting Network Intruders
in Real-Time. In Computer Networks, 31(23-24), pages pp.
2435–2463, 14 Dec. 1999.

[18] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. Soules,
G. R. Goodson, and G. R. Ganger. Storage-based Intrusion
Detection: Watching Storage Activity for Suspicious
Behavior. In Proc. of the 12th USENIX Security
Symposium, August 2003.

[19] J. Pincus and B. Baker. Beyond Stack Smashing: Recent
Advances in Exploiting Buffer Overruns. In IEEE Security
and Privacy, 2(4), pages 20–27, 2004.

[20] Plaguez. Weakening the Linux Kernel. Phrack, 8(52), 1998.

[21] P. Samarati, D. Gollmann, and R. Molva, editors.
Computer Security - ESORICS 2004, 9th European
Symposium on Research Computer Security, Sophia
Antipolis, France, September 13-15, 2004, Proceedings,
volume 3193 of Lecture Notes in Computer Science.
Springer, 2004.

[22] Scut. Exploiting format string vulnerabilities. 2001.

[23] Sd and Devik. Linux On-the-fly Kernel Patching without
LKM. Phrack, 11(58), 2002.

[24] K. Seifried. Honeypotting with VMware: Basics.
http://www.seifried.org/security/ids/20020107-honeypot-
wmware-basics/html.

[25] A. Shilov. Amd targets quad-core microprocessors for 2007.
http://www.xbitlabs.com/news/cpu/display/
20040813040951.html.

[26] S. Sidiroglou and A. D. Keromytis. A Network Worm
Vaccine Architecture. In Proceedings of the 12th
International Workshop on Enabling Technologies, page
220. IEEE Computer Society, 2003.

[27] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a Reactive Immune System for
Software Services . Report CUCS-038-04, Columbia
University, Newyork, NY, 2004.

[28] J. M. Tendler, J. S. Dodson, J. S. Fields, H. L. Jr., and
B. Sinharoy. POWER4 System Microarchitecture. IBM
Journal of Research and Development, 46(1), 2002.

