
Enhancing Network Security through
Software Defined Networking (SDN)

Seungwon Shin
School of Computing, KAIST

Email: claude@kaist.ac.kr

Lei Xu, Sungmin Hong, Guofei Gu
SUCCESS Lab, Texas A&M University

Email: {xray2012, ghitsh, guofei}@cse.tamu.edu

Abstract—Software Defined Networking (SDN) is an emerging
technology that attracts significant attention from both industry
and academia recently. By decoupling the control logic from the
closed and proprietary implementations of traditional network
devices, it enables researchers and practitioners to design new
innovative network functions/protocols in a much more flexible,
powerful, and easier way. We believe SDN provides new research
opportunities to security, and it can greatly impact network
security research in many different ways. However, till today,
SDN has not been well recognized by the security community yet.
In this systematic survey on SDN security, we investigate how the
new features provided by SDN can help enhance network security
and information security process. By systematically reasoning the
opportunities introduced by SDN to network security, we hope to
provide new insights for future research in this important area.

Index Terms—Software-Defined Networking, Network Security

I. INTRODUCTION

Software Defined Networking (SDN) has quickly emerged
as a new promising technology for future networks. With the
separation of control plane from data plane thus enabling
the easy addition of new, creative, powerful network func-
tions/protocols, SDN has attracted significant attention from
both academia and industry. In academia, since the publication
of OpenFlow [33], which is a key component to realize the
SDN concept, many research ideas based on SDN/OpenFlow
have been proposed (and still go on) [35] [48] [6] [20] [26].
In industry, SDN is widely considered as the new paradigm
for future networks, and many companies are deploying or
plan to deploy such technology in order to strengthen their
network architectures [24], reduce operational cost [19], and
enable new network applications/functions [60].

The reason why many researchers and practitioners have
interests in SDN is mainly because by decoupling the control
logic from the closed, proprietary implementations of tradi-
tional network switch infrastructure, SDN enables us to design
and distribute innovative flow handling and network control
algorithms easily, and it helps us add much more intelligence
and flexibility to the control plane. With the help of SDN, we
can dynamically control network flows and monitor network
status easily. For example, by employing SDN, we can easily
implement a network load balancing function that is not easily
and cheaply solved with existing techniques. These powerful
and rich functions from SDN enable people to create new and
creative network services or architectures. Some researchers

propose a network virtualization service for a cloud network
or a large-scale enterprise network [47] [37], and it has come
into the spotlight due to its efficient resource management
[17] [40]. In addition, a new wireless network architecture
that can provide more robust wireless network services has
been proposed based on SDN technology [38]. Besides these
examples, there are many cases of employing SDN for a new
service or a new architecture [35] [48] [6], and some have
been already applied into real world network environments
(e.g., Google data centers [24]).

Compared with the networking community, the security
community is relatively slow in embracing SDN. As an
evidence, while there are more and more SDN research papers
appearing in top networking venues and several new SDN-
focused conferences created recently (e.g., ACM SOSR [1]),
there is still less attention from the security researchers. Why
does this happen? Is it because SDN does not provide benefit
for security applications/services? We argue that this is not
true. As a matter of fact, we believe that SDN can, in time,
prove to be one of the most impactful technologies to drive
a variety of innovations in network security. To this end, we
conduct a systematic study on the relation between SDN and
security. In general, there are two high-level areas in SDN
security research, i.e., (i) enhancing security using SDN, and
(ii) studying the security issues (e.g., vulnerabilities) inside
SDN itself. This paper focuses on the first area. In particular,
we are interested in answering the following question: Can we
(and how to) leverage the new features provided by SDN to
enhance network security? The desire to answer this question
forms the main motivations of this paper.

Overall, the main goals and contributions of this paper are
two-fold:

• First, we systematically introduce the SDN technology to
a broader range of security researchers. We believe the
reason why the security community is slow in embracing
SDN is mainly because it is currently not sufficiently
exposed to them yet. A deeper understanding of the
SDN technology will help security researchers produce
new, interesting, and better security services or intelligent
network defense systems.

• Second, we provide an in-depth investigation on how
SDN features can bring benefits to security, illustrated
with state-of-the-art research in the related areas. By
demonstrating these new opportunities brought by SDN,



we hope to stimulate new creative ideas and more future
work in this area.

II. PROBLEM STATEMENT

We believe that SDN can bring significant benefits to
security research and it can also be combined with existing
security research. We note that studying/enhancing the security
threats/vulnerabilities/issues of SDN itself (e.g., [49, 41, 28,
31, 61, 21, 59, 44]) is not the focus of this paper. Instead,
we want to systematically investigate the opportunities and
challenges on how SDN can benefit network security. To this
end, we start with reviewing the new features provided by
SDN, then study how these features can enhance specific
security functions. Finally, we will further discuss challenges
in actually implementing security applications with SDN in
the real world.

A. New Features Provided by SDN

SDN/OpenFlow provides programmability, dynamicity,
flexibility, and intelligence to current network architectures,
and its benefits can be delivered from four main features:
(i) dynamic flow control, (ii) network-wide visibility with
centralized control, (iii) network programmability, and (iv)
simplified data plane.

Dynamic Flow Control: Based on SDN’s basic charac-
teristics (i.e., ask the control plane if the data plane does
not have a flow rule to handle a network flow), a network
application can control network flows dynamically. This fea-
ture is highlighted with network applications for flow control,
such as dynamic load balancing [60] and network management
application [2].

Network-Wide Visibility with Centralized Control: In
SDN, all data planes are connected to a centralized control
plane to receive control messages (e.g., flow rule insertion
and data plane configuration). In addition, the control plane
collects network status information from each data plane
by sending a statistics query message. Therefore, a network
application running on the control plane naturally has a view of
all connected data plane, and it can control all data plane in a
centralized way. Several network-wide monitoring applications
with SDN (e.g., BigTap [5] and a network management
application [27]) are good examples that benefit from this
feature.

Network Programmability: Since all data planes in an
SDN network can be controlled by a network application
program, SDN provides a strong capability to program enable
new network functions. This is similar to programming a
smartphone (e.g., Android) app to enable unlimited creativity
of functionalities. To empower this feature, several network
programming languages have been proposed so far [56] [15],
[4], [57], [36], and they help us program network functions
easily.

Simplified Data Plane: Basically, the SDN architecture
separates the data plane from the control plane, and thus the
data plane only has relatively simple logic. This simplified data
plane gives us chances of adding some new features NetFPGA

[34], DevoFlow [9] are good examples of the simplified data
plane and its modification.

B. Paper Overview

We now present the overview of this paper. We first
describe the benefits that network security can obtain from
each SDN feature, and we demonstrate with example security
applications from state-of-the-art research. This systemization
of knowledge is summarized in Table I. The first column
denotes the features of SDN, and the second column presents
their functions. The third and fourth columns show the benefits
that each feature can provide to network security and example
network security applications. The last column reviews the
possible role of these SDN features in the classic defense-
in-depth framework, i.e., prevention, detection, and response.
Detailed explanation for each column will be presented in the
following sections.

III. HOW NETWORK SECURITY BENEFITS FROM SDN
FEATURES?

In this section, we will investigate how the SDN new
features, which have been discussed in the previous section,
can provide benefits to network security. In addition, we will
provide some example cases of security applications, which
have been proposed previously or can be realized in the future,
to help people understand their benefits.

A. Dynamic Flow Control

Benefit to Network Security: Controlling network flows
dynamically provides many new possibilities in network secu-
rity functions. First, we can implement a dynamic access con-
trol function, which is commonly used to protect a network.
Previously, we need to install an independent middlebox (e.g.,
firewall) to achieve in-line access control. However, with the
help of SDN, we do not need to set up additional middleboxes,
but just use a network device (e.g., an OpenFlow switch/router)
that supports SDN functions for access control. In addition,
we can control network flows with diverse granularity (from 1
tuple to 12 tuples), and it enables us to control network flows
more efficiently.

Second, it enables us to separate malicious (or suspicious)
network flows from benign ones dynamically. This ability is
quite useful when we want to differentiate security services.
Suppose we simply monitor network flows to detect malicious
(or suspicious) flows with a network intrusion detection system
(NIDS). At this time, if an NIDS detects some flows and we
want to investigate more about the flows, we may use in-
depth security services (e.g., honeypot) to do it. In this case,
we usually apply a proxy server to reroute or capture network
flows for deeper investigation. However, if we apply SDN, we
can simply build this function by controlling network flows
dynamically. This case will be shown in the example case
below (i.e., the case of intelligent honeypot).

Network Security Application Example: [Firewall Exam-
ple] Implementing a firewall function in SDN is pretty simple



SDN Feature Feature Description Benefit to Security Network/Security Application Examples Roles in
Defense

Dynamic flow
control

SDN can control (e.g.,
reroute, forward, drop)
network flows dynamically

Dynamically control malicious or
suspicious network flows (pack-
ets), separate malicious network
flows from benign flows

FlowVisor[47], OpenVirtex[3], FlowN[11],
splendid[18], NVP[30], Random route mu-
tation [12], Random host mutation[23],
Varmour[55], FlowNAC[32], PBS[20]

Prevention,
Response

Network-wide
visibility with
centralized
control

All network status and flow
information can be moni-
tored and managed by a cen-
tralized server, which we call
a controller

Monitor whole network in a cen-
tralized way for security services,
detect network flooding or net-
work anomaly efficiently and ef-
fectively (network-wide monitor-
ing)

CloudWatcher[48], NetSecVisor
[51], SIMPLE[43], FlowTags[14],
OpenNF[16], SPHINX[10], DDoS
detection/defense[6, 13, 25], Resonance[35],
NetFuse[63], FleXam[52]

Detection,
Response

Network pro-
grammability

SDN enables us to program
network functions

Develop network security appli-
cations easily, open the gate of
devising advanced network secu-
rity applications

FRESCO[50], Nettle[56] , Frenetic[15],
OpenSAFE[4], Procera[57], Controller
Programming[36]

Detection,
Response

Simplified data
plane

SDN makes the data plane
quite simple by moving out
complicated control plane
logic

Change the data plane
lightweightly as a kind of
security device by adding new
modules

Avant-Guard[46], OFX[53],
OpenSDWN[45]

Prevention,
Detection,
Response

TABLE I
OVERALL SUMMARY OF SDN FEATURES AND THEIR POTENTIAL CONTRIBUTIONS TO NETWORK SECURITY

and straightforward1, and there are real firewall cases with
SDN [55]. Figure 1 shows the implementation scenario of a
firewall function with SDN/OpenFlow. When a switch receives
a network packet (1), it reports it to an SDN controller if
there are no flow rules to handle the packet, and the controller
forwards this information to a firewall application (2). The
firewall application first parses the received packet (3), checks
whether the incoming packet violates security policies or not
(4), and enforces a flow rule based on the policies (5). Finally,
this rule is delivered to the switch by the controller (6). The
switch puts the delivered flow rule into its flow table — in
this example, the rule blocks the packet (7).

Fig. 1. Example firewall implementation with SDN.

This example scenario clearly shows that the dynamic flow
control feature facilitates us to enforce firewall functionalities.
Moreover, security policies can be easily modified by simply
changing entries in a security table in Figure 1. Moreover,
Varmour has announced its firewall product for an enterprise

1In this paper, we simply focus on the basic function of a firewall (i.e.,
drop unwanted connections), because it is supported by all firewall products.

network by using the dynamic flow control feature[55].
[Intelligent Honeypot Example] When we find some suspi-

cious (or malicious) network flows, we can handle them differ-
ently with the help of the dynamic flow control feature. It can
be explained by showing an example scenario of implementing
an intelligent honeypot architecture, shown in Figure 2. First,
the attacker A sends a scan packet to the network port 443 of
the target host B (S-1), and then such information is delivered
to the controller and the intelligent honeypot application (A).
Inside the application, four modules are working (P-1 to P-
4), and the P-2 module tries to investigate whether a flow is
suspicious or not. Since this is a normal TCP request (NO
from P-2), it simply enforces a flow rule to forward a packet
through the P-3 module and the rule is inserted into the flow
table (F-1). However, since host B does not open port 443, host
B simply returns a RST packet (R). Then, this information is
delivered to the application. Now, the application infers that
host A is likely scanning host B2. Thus, if the attacker A sends
another scan packets to the port 445 (S-2), the application
redirects this packet to a honeypot H dynamically (H).

This scenario also shows the benefit of the dynamic control
feature. To implement this kind of application without SDN,
we need to install a proxy server that can change network
packets dynamically, and a complicated application is required
to operate the proxy server as well. However, using SDN, we
can implement this function by creating a relatively simple
network application.

[Network-level Access Control Examples] SDN can also
control accesses to network entities at the right level of
privileges and policies according to network user and net-
work applications. In the literature, FlowNAC proposes a
fine-grained flow-based network access control in service
level [32]. Furthermore, Hong et al. proposes Programmable

2Note this is only a simplified synthetic example. In practice, more
evidences (e.g., more failed scan attempts) may be needed to infer a malicious
entity.



Fig. 2. Example intelligent honeypot implementation with SDN

BYOD Secrutiy [20], which embraces SDN techniques to
provide a fine-grained access control upon application-specific
network flows in BYOD (Bring Your Own Device) scenarios.
Moreover, with the dynamic flow control capability, we still
consider SDN has a potential to secure the entity accesses in
other network scenarios, such as Internet of Things (LoT) and
Wireless Sensor Networks (WSN).

[Network Separation Examples] Another network security
application example, which can show the benefit of the feature
of dynamic flow control, is a network separation application. In
traditional networks, the very basic and simple way to separate
a network is employing VLAN (Virtual LAN) technique
[54], which adds specific IDs in a packet header (12-bits
VLAN ID field) to differentiate packets for each tenant/user.
However, VLAN technology incurs scalability issues in large-
scale networks, such as data center, since it can only assign
4,096 different virtual networks. Also, typical static network
separation in practice begets error-prone, manual burden of
reconfiguration upon dynamic network/policy changes, which
falls short of promptly reactive action for security purpose.

SDN communities catch this problem and propose several
solutions [47, 18, 3, 11, 30]. Namely, SDN-based separa-
tion solutions provide the capability of different level ab-
stractions with desired security properties, which not only
separates the network segments efficiently at scale but veils
the physical view of networks to users. One representative
network separation example is FlowVisor [47], which is not
dependent on some specific network identification fields to
separate networks, instead it virtually isolates networks using
OpenFlow functions. Therefore, theoretically, there is no upper
bound in creating virtual networks with FlowVisor. To create a
virtual network for each tenant, FlowVisor receives a network
configuration policy from each tenant, and it creates routing
paths based on each tenant’s configuration. At this time,
network flows for tenant A are not forwarded to networks for
other tenants. Thus, the system guarantees that each tenant’s

network is virtually separated from others.
[Moving Target Defense Examples] The flexibility of SDN

also empowers network participants to conduct a moving target
defenses against network attacks with dynamic control fea-
tures. Jafarian et al. have proposed a new network architecture
that randomly mutates IP addresses of hosts, and thus it
makes an attacker hard to find a target host [23]. Duan et
al. proposes Random Route Mutation [12] to enable dynamic
change of route to defend against network attacks including
DoS, eavesdrop, and reconnaissance.

B. Network-Wide Visibility with Centralized Flow Control

Benefit to Network Security: Network-wide monitoring
is an important and necessary function in network secu-
rity. Traditionally, to monitor entire subnets (including both
through traffic and internal traffic), we need to install or set up
monitoring sensors and collect network information in every
network device or link, which turns out to be not easy to
realize in large-scale networks in the real world.

Using SDN can ease the network-wide monitoring and
the detection/defense of network-wide attacks. Based on the
SDN’s basic characteristics (i.e., control and monitor whole
networks in a centralized way), we can monitor each network
device easily by collecting network statistics information from
them and receiving flow request messages from each network
device. Network statistics information can be easily captured
by sending request messages from a network application,
and a network application can understand overall network
topology and routing information by analyzing flow requests
from network devices. The holistic network view also fa-
cilitates the detection and defense of network attacks. The
network administrator can adopt anomaly analysis to pinpoint
network-wide attacks by monitoring the network state change.
Moreover, he/she can reorganize and tune network resource to
mitigate those large-scale network attacks.

This feature can also improve the utilization of security de-
vices by assigning specific network flows to necessary/specific
security appliances, e.g., hardware devices, middleboxes, and
virtual network functions. In a complicated network envi-
ronment, it is not easy to configure a network architecture
to let all (or most) network flows be monitored by certain
security appliances, because some (or many) network flows
are hard to be delivered to the installed (physically fixed)
location of security appliance. In this case, with the help of
the network-wide visibility of SDN, we can understand where
network flows are passing and where security appliances are
installed, and we can reroute network flows to make them pass
through certain required network security appliances. We show
later how this feature can improve the utilization of security
appliances by presenting the approach of the recent research
work [48, 43, 14].

Network Security Application Example: [Network-Wide
Flow Monitoring Examples] We can write a simple network
application that monitors multiple network devices and detect
attacks, and this example application is shown in Figure 3.
This application consists of 5 modules (P-1 to P-5), and each



module conducts the following operations. P-1 module sends a
request for network status information to each network device
frequently, P-2 module receives a response of network status
from each device, P-3 module analyzes the collected status in-
formation, P-4 module detects some anomalous network flows,
which will be considered as attack flows, and P-5 module
finally enforces a flow rule to block detected flows. Here, we
can observe that this application can easily collect network
status information by simply sending a request message (i.e.,
an OpenFlow message).

Fig. 3. Example Network-Wide Flow Monitoring Application with SDN.

In this scenario, the more interesting thing is that we can not
only monitor network switches, but also other devices, such
as a home gateway system, a hypervisor installed in a desktop
computer, and a smart phone. Since the data plane for SDN
functions (e.g., OpenFlow switch) can also be implemented
as a software program, we can install this program into most
devices for network communication, such as home gateway
[7], hypervisor [58], and smart phone [62]. Therefore, a
network-wide monitoring function can be realized in including
most network related devices, and we believe that it can
improve the effectiveness of and efficiency of security moni-
toring systems. Moreover, for efficient information collection,
FleXam [52] proposes a sampling extension to OpenFlow
protocol to facilitate security applications.

[Network Attacks Detection/Defense Examples] With holis-
tic network view and centrality of network control logic, SDN
provides powerful solutions to monitor and detect network
attacks by collecting useful network information (i.e., statis-
tics, control messages) and allowing security applications to
take instant, smart actions on their own logic. SPHINX [10]
presents a flow-graph model learned from SDN/OpenFlow
messages to detect various network-level attacks on network
topology and the data plane forwarding. Braga et al. have
suggested an application that monitors network flows to detect
a network flooding attack with OpenFlow [6]. NetFuse [63]
monitors network devices to find some suspicious network
flows with this feature.

SDN also exhibits a potential to tackle infamous network-
level attacks, such as DDoS attacks, since SDN can catch im-
portant information from the entire network in a timely manner

and facilitate defense algorithms customized/programmable
to detect such attacks. Bohatei [13] proposes to mitigate
several DDoS attacks by leveraging the flexibility of SDN.
SPIFFY [25] utilizes holistic topology view of SDN to provide
a Temporary Bandwidth Expansion (TBE) scheme to detect
bots blamed for Link Flooding attacks.

[Security Appliances Deployment Examples] SDN can also
leverage the global network view for more advanced security
enforcement by providing more network information and
primitives to better deploy/place/control security appliances
and virtual functions, such as Firewall, Deep Packet Inspection
(DPI). CloudWatcher [48] and NetSecVisor [51] provide
approaches to force network flows under the inspection of
certain required network security appliances. SIMPLE [43]
and FlowTags [14] enforce security policies by efficiently
steering traffic to security middleboxes. Currently, SDN is
an important complementary to NFV to enforce security
policies. [13] also showcases this point by utilizing SDN
to steer suspicious traffic to defense VMs running security
virtual functions. OpenNF [16] provides a new control plane
architecture that supports coordinated controls of the internal
state of security virtual functions and network forwarding state
through its own primitives/APIs, thereby maintaining the up-
to-date security virtual functions dynamically along with flow
control without losing performance.

C. Network Programmability

Benefit to Network Security: Network security functions
are usually built by deploying some hardware middleboxes
or installing some software programs. They have predefined
functions for network security, and commonly it is not easy
to change or modify these functions. However, sometimes, it
is hard to predict necessary security functions for a network.
Then, in this case, what if it turns out that deployed security
boxes are not so necessary to secure a network but need to
install a different security function? We could dispose of the
old boxes and buy a new box, which causes additional cost.

The network programmability feature of SDN can help us
in this situation by enabling us to program network security
functions easily. For example, we can create a network scan
detection SDN application, and we can even implement an
intelligent network security application in SDN control plane,
such as a DDoS detection application. Programming network
security applications is very useful and cost effective, because
we do not need to buy additional hardware boxes or software
programs to deploy network security services, but create and
deploy network security applications running on a controller.

Network Security Application Example: [Network Ap-
plication Programming Examples] Shin et al. have proposed
a new framework (named FRESCO [50]) for creating security
applications with SDN. This framework provides a script
language and a modular composable programming model to
help programmers easily develop SDN network security appli-
cations. Suppose a network administrator wants to implement
a network intrusion detection system (NIDS) with a FRESCO
script. He simply writes a script to coordinate several modules



to compose a network intrusion detection function. Likewise,
we can write scripts to make any desired network security
applications, such as network scan detection and reflector
networks [50]. We also note several works [15, 56, 4, 57, 36]
propose to enhance the programming paradigm of SDN ap-
plication, which facilitate network administrators to enforce
their security policies in an efficient, secure and cost-effective
manner.

D. Simplified Data Plane

Benefit to Network Security: Compared with the previous
generation network devices, the hardware (i.e., the data plane)
for SDN can be easily modified, because it consists of rela-
tively simple hardware modules and moves out complicated
control plane modules. It provides a chance of extensions of
new network functions (e.g., [9]). This concept can also be
applied to security. We can extend the data plane of SDN to
make it more suitable for security purposes.

Network Security Application Example: [Flexible Data
Plane Security Extensions] To date, researchers have proposed
several new data plane architectures for SDN community
to make the data plane suitable for security usage. Avant-
Guard [46] adds some new simple components (e.g., logic for
migrating TCP connections), which make the data plane more
scalable and provide new security functionalities. OFX [53]
extends SDN/OpenFlow switches with customized security
functionalities and enables the control plane to manage those
addon security features. OpenSDWN [45] further extends
a wireless access point as SDN/OpenFlow switch to better
control the wireless transmission with virtual middleboxes
inside the data plane of Click software router [29]. Despite
the non-trivial extension to the data plane, it opens up the
new opportunities of SDN security applications for wireless
networks.

E. Final remark

While we discuss each feature individually, we acknowledge
that in reality, it is usually hard to separate them for specific
security applications. For example, distributed firewall [22]
can naturally combine multiple features, e.g., dynamic flow
control and network-wide visibility with centralized control.
We envision future SDN security applications could combine
any set of SDN features to achieve their desired capabilities.

IV. HOW SDN FEATURES ENHANCE INFORMATION
SECURITY PROCESS?

Previously, we have discussed how SDN features benefit
network security and we will now address how these features
enhance the information security’s basic triad: (i) prevention,
(ii) detection, and (iii) response, which is a basic, well-known
framework to enable defense in depth.

A. Prevention

Prevention is a process to stop attackers from contacting
targets for protection, and usually it is realized by setting some
security policies that define who (or what) can (or cannot)

access whom (or what). This process requires careful planning
and investigation to minimize mistakes because it is possible
that security policies block benign users or accept malicious
ones. Therefore, determining security policies is the most
important job, and security policies are usually not changed
after they are decided. However, many existing network archi-
tectures are quite complicated and varying continuously, and
thus access control based on static policies may not be enough
to protect and manage a large, dynamic network [35]. In this
case, we need a dynamics access control method, which some
recent network devices support [8], and it typically requires
the installation of additional middleboxes into a network.

The dynamic flow control feature of SDN can enhance
the prevention process by realizing dynamic access control
functions without adding middleboxes. With the help of this
feature, we can virtually turn each network device into a
network security device that can prevent network attacks
dynamically. As shown in the previous firewall example in
Figure 1, we can simply change security policies dynamically
by modifying a security policy table, and the changed policies
are automatically enforced when the data plane asks for a rule
to handle a network flow. It makes our network management
simple and efficient.

However, although this feature enhances the prevention
process, we could face another new problem, which is called
dynamic flow tunneling [41]. Unless we use this feature care-
fully, it is possible that the dynamic flow control feature could
let a malicious flow evade defined access control policies. This
evasion scenario is shown in Figure 4. We assume that there
is a buggy load balancing application that changes packet
headers, and there is a firewall that blocks all connection
attempts from host A to host B. In this case, when host A
sends a packet to host B (1), this information is delivered to the
application (2) and the application processes a particular logic
and enforces flow rules (3 - 6). When the enforced flow rules
change the source IP address and the destination IP address
(7), the final packet is changed as a packet sent from host D to
host B. Since this packet does not violate the security policy
of the firewall, the packet is finally delivered to host B.

This issue has been revealed by Porras et al. [41], and some
controllers (e.g., Floodlight and NOX) add a patch to address
this issue [39] [41]. However, we have not heard news that
other network controllers (e.g., POX [42]) address this issue.
If one wants to use the dynamic flow control feature to build
a dynamic access control method, one needs to keep in mind
this issue not to make additional security holes.

B. Detection

Detection is a basic security process to discover network
intrusions, and two types of detection methods are commonly
used: (i) misuse detection and (ii) anomaly detection. Misuse
detection detects attacks based on known patterns (a.k.a.,
signature), and anomaly detection finds attacks by finding
malicious patterns in network traffic that do not conform to
expected normal behaviors.



Fig. 4. Example Dynamic Flow Tunneling Scenario.

In the case of anomaly detection, the network-wide visibility
with centralized control feature can enhance the performance
of detection because this feature enables a detection system
to monitor all (or most of) network devices and thus can
have a global view of network status, which provides much
more information than local views. For example, to detect
flooding attacks, a prompt detection system needs to monitor
as many network links as possible because a flooding attack
usually comes from many different sources (e.g., botnets). In
this case, thanks to the feature of network-wide visibility with
centralized control, we can easily achieve the goal in SDN.

Moreover, SDN/OpenFlow can also contribute to misuse
detection with the network information support (specifically,
packet payload). A intuitive way in current SDN/OpenFlow is
to instruct the data plane to pass all network packets with their
payloads to the SDN control plane, in which the SDN control
plane can conduct some in-depth inspections. However, we
consider such solution is not practical/efficient in scalability.
In this case, we consider a smart way to realize the misuse
detection, as an NIDS illustrated in Figure 5. When an attacker
sends a packet (1), the data plane delivers this information
to the control plane since it is a new flow (2). Then, the
NIDS application parses the information (3), and enforces a
flow rule to realize network mirroring function if it considers
the network flow is suspicious(4, 5). In this case , the flow
rule forwards the following packets to two network ports;
(i) toward original target host and (ii) toward the control
plane for mirroring (6). Then, all packets (including payloads)
are delivered to the control plane and the NIDS application
(7). This application checks delivered packets by inspecting
whether the packets include any patterns defined in signatures
(8). If it can find any packets that match some signature, it
generates alerts (9).

In terms of the role of each SDN feature in the detection
process, the network-wide visibility with centralized control
can allow us to implement distributed network intrusion detec-
tion system easily. The dynamic flow control can be used for
collecting packet information efficiently, and we can devise

Fig. 5. Example SDN of Implementation of Network Intrusion Detection
System.

an advanced intrusion detection system with the network
programmability feature.

C. Response

Response to attacks (e.g., attack mitigation) is an essential
part in the defense-in-depth security framework. However,
historically it is the toughest one to actually achieve. Tradi-
tionally, to respond to attacks, we may install middleboxes that
drop or reject attack trials and/or isolate/quarantine compro-
mised hosts to protect other hosts in the network. The dynamic
flow control feature of SDN can be used to significantly
enhance this process. Detected attack trials can be easily
dropped by this feature, and network isolation or quarantine
can be also easily implemented with SDN.

The network programmability feature can enrich the re-
sponse functionality dramatically because various flow han-
dling schemes for response (e.g., network isolation and quar-
antine) can be easily implemented with this feature. For
example, with FRESCO [50], which we have introduced in
the previous section, we can quarantine or isolate infected
hosts (or networks) by simply composing modules with tens of
lines of scripts. This makes the response process, traditionally
recognized as a difficult job, simple and easy.

Readers may notice that the simplified data plane feature has
not been mentioned yet. This is mainly because this feature
does not directly provide new functions but instead provides a
possibility of adding new functions, which can bring benefits
to the entire prevention-detection-response framework. For
example, in order to enhance prevention (of information leak),
we may add encryption/decryption operation components into
the SDN data plane. Similarly, for enhancing detection, we
many add a component that can hold simple intrusion signa-
tures into the data plane.

V. DISCUSSION

The main goal of this paper is to draw some reasonable
answers to our main research question - can we (and how to)



leverage the new features provided by SDN to enhance network
security?. Based on our serious surveys and in-depth analysis
of SDN features and their applications discussed in this paper,
we claim that SDN can clearly enhance network security
functions in the following points. First, its ability of controlling
network flows dynamically can provide more flexible deploy-
ments of security functions on a network because it allows
us to enable security functions on SDN-enabled network de-
vices without installing additional devices (e.g., middleboxes).
Second, its network-wide visibility can realize network-wide
monitoring in terms of security. This ability provides a holistic
view to us, and thus we can comprehend network attacks
widely distributed in the Internet (e.g., network-wide scanning
or DDoS) much more efficiently than legacy network mon-
itoring systems. Third, its programmability helps us develop
more advanced network security functions. We can (relatively)
easily implement a prototype security system without putting
much effort. As such, SDN features can be leveraged in
accelerating the development of new and advanced network
security functions.

VI. CONCLUSION

In this paper, we introduce the SDN technology and sys-
tematically investigate its usage for security. Although many
people have interests in this technology, until now, it is not
yet well embraced by security researchers. We believe that
SDN can, in time, prove to be one of the most impactful
technologies to drive a variety of innovations in network
security. We hope this study can not only provide a quick
introduction and systematic survey but also give significant
insights for using SDN for better security applications and
stimulate more future research in this important area.

REFERENCES

[1] ACM. Acm sigcomm symposium on sdn research (sosr). http:
//www.sigcomm.org/events/SOSR.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath
Raghavan, Nelson Huang, and Amin Vahdat. Hedera: Dynamic
Flow Scheduling for Data Center Networks. In Proceedings of
the 7th USENIX Conference on Networked Systems Design and
Implementation, 2010.

[3] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka
Koshibe, Guru Parulkar, Elio Salvadori, and Bill Snow.
OpenVirteX: Make Your Virtual SDNs Programmable. In
HotSDN’14, 2014.

[4] Jeffrey R. Ballard, Ian Rae, and Aditya Akella. Extensible and
Scalable Network Monitoring Using OpenSAFE. In Usenix
INW/WREN, 2010.

[5] BigSwitch. Bigtap: Monitor traffic everywhere. http://www.
bigswitch.com/products/big-tap-network-monitoring.

[6] R. S. Braga, E. Mota, and A. Passito. Lightweight DDoS Flood-
ing Attack Detection Using NOX/OpenFlow. In Proceedings of
the 35th Annual IEEE Conference on Local Computer Networks,
LCN, 2010.

[7] Kenneth L. Calvert, Rebecca E. Grinter, W. Keith Edwards,
Ye Deng, Nick Feamster, and Xuzi Zhou. Instrumenting Home
Networks. 2010.

[8] Cisco. Cisco ios security: Access control lists.
http://www.cisco.com/en/US/docs/ios/12 2/security/
configuration/guide/scfacls.html.

[9] Andy Curtis, Jeff Mogul, Jean Tourrilhes, Praveen Yalagandula,
Puneet Sharma, and Sujata Banerjee. DevoFlow: Scaling Flow
Management for High-Performance Networks. In Proceedings
of ACM SIGCOMM, 2011.

[10] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay
Mann. SPHINX: Detecting Security Attacks in Software-
Defined Networks. In NDSS’15, 2015.

[11] D.A. Drutskoy. Software-defined network virtualization with
flown. Master Thesis, 2012. ftp://ftp.cs.princeton.edu/
techreports/2012/929.pdf.

[12] Qi Duan, Ehab Al-Shaer, and Haadi Jafarian. Efficient Random
Route Mutation considering flow and network constraints. In
CNS’13, 2013.

[13] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael
Bailey. Bohatei: Flexible and Elastic DDoS Defense. In Usenix
Security’15, 2015.

[14] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing network-wide policies in the presence of dynamic
middlebox actions using FlowTags. In NSDI’14, 2014.

[15] Nate Foster, Michael J. Freedman, Rob Harrison, Jennifer
Rexford, Matthew L. Meola, and David Walker. Frenetic: a
high-level language for OpenFlow networks. In Proceedings of
the Workshop on Programmable Routers for Extensible Services
of Tomorrow, 2010.

[16] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan
Prakash, Robert Grandl, Junaid Khalid, Sourav Das, and
Aditya Akella. OpenNF: Enabling Innovation in Network
Function Control. In SIGCOMM’13, 2014.

[17] Gigaom. Why Network Virtualization is Important.
http://gigaom.com/2009/02/02/why-network-virtualization-
is-important/.

[18] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster.
Splendid Isolation: A Slice Abstraction for Software-Defined
Network. In HotSDN’12, 2012.

[19] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis
Yiakoumis, Puneet Sharma, Sujata Banerjee, and Nick McK-
eown. ElasticTree: Saving Energy in Data Center Networks.
In Proceedings of the 7th USENIX Symposium on Networked
Systems Design and Implementation, NSDI, 2010.

[20] Sungmin Hong, Robert Baykov, Lei Xu, Srinath Nadimpalli,
and Guofei Gu. Towards SDN-Defined Programmable BYOD
(Bring Your Own Device) Security. In NDSS’16, 2016.

[21] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. Poi-
soning Network Visibility in Software-Defined Networks: New
Attacks and Countermeasures. In NDSS’15, 2015.

[22] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin,
and Jonathan M. Smith. Implementing a distributed firewall.
In Proceedings of the 7th ACM conference on Computer and
communications security, 2000.

[23] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow
Random Host Mutation: Transparent Moving Target Defense
using Software Defined Networking. In Proceedings of the
First Workshop on Hot Topics in Software Defined Networks,
HotSDN ’12, 2012.

[24] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer,
Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart,
and Amin Vahdat. B4: Experience with a Globally-deployed
Software Defined Wan. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, 2013.

[25] Min Suk Kang, Virgil D. Gligor, and Vyas Sekar. SPIFFY:
Inducing Cost-Detectability Tradeoffs for Persistent Link-
Flooding Attacks. In NDSS’16, 2016.

[26] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. VeriFlow: verifying network-wide invari-
ants in real time. In NSDI’13, 2013.

[27] Hyojoon Kim and N. Feamster. Improving network man-



agement with software defined networking. Communications
Magazine, IEEE, 2013.

[28] Rowan Kloti, Vasileios Kotronis, and Paul Smith. OpenFlow:
A Security Analysis. In Proceedings of the 8th Workshop on
Secure Network Protocols (NPSec’13), October 2013.

[29] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click Modular Router. ACM Trans.
Comput. Syst., 2000.

[30] Teemu Koponen, Keith Amidon, Peter Balland, Martn Casado,
Anupam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross,
Natasha Gude, Paul Ingram, Ethan Jackson, Andrew Lambeth,
Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pet-
tit, Ben Pfaff, , Rajiv Ramanathan, Scott Shenker, Alan Shieh,
Jeremy Stribling, Pankaj Thakkar, Dan Wendlandt, Alexander
Yip, and Ronghua Zhang. Network Virtualization in Multi-
tenant Datacenters. In NSDI’14, 2014.

[31] Diego Kreutz, Fernando M. V. Ramos, and Paulo Verissimo.
Towards Secure and Dependable Software-Defined Networks.
In Proceedings of ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN’13), August 2013.

[32] Jon Matias, Jokin Garay, Alaitz Mendiola, Nerea Toledo, and
Eduardo Jacob. FlowNAC: Flow-based Network Access Con-
trol. In 3rd European Workshop on Software-Defined Networks,
2014.

[33] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev., 38, March 2008.

[34] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown.
NetFPGA: reusable router architecture for experimental re-
search. In Proceedings of the ACM workshop on Programmable
routers for extensible services of tomorrow, 2008.

[35] Ankur Nayak, Alex Reimers, Nick Feamster, and Russ Clark.
Resonance: Dynamic Access Control for Enterprise Networks.
In Proceedings of WREN, 2009.

[36] Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler,
and Shriram Krishnamurthi. A Balance of Power: Expressive,
Analyzable Controller Programming. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, 2013.

[37] Nicira. Network virtualization platform. http://nicira.com/en/
network-virtualization-platform.

[38] Openflow.org. Pantou. http://www.openflow.org/wk/index.php/
Pantou : OpenFlow 1.0 for OpenWRT.

[39] OpenFlowSec.org. Se-floodlight. http://www.openflowsec.org/
Technologies.html.

[40] Oracle. The Growing Importance of Network Virtual-
ization. https://blogs.oracle.com/drcloud/entry/the growing
importance of network.

[41] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin
Fong, Mabry Tyson, and Guofei Gu. A Security Enforcement
Kernel for OpenFlow Networks. In Proceedings of the first
workshop on Hot topics in software defined networks, HotSDN
’12, 2012.

[42] POX. Python network controller. http://www.noxrepo.org/pox/
about-pox/.

[43] Zafar Ayyub Qazi, Chent-Chun Tu, Luis Chiang, Rui Miao,
Vyas Sekar, and Minlan Yu. SIMPLE-fying Middlebox Policy
Enforcement Using SDN. In Sigcomm’13, 2013.

[44] Christian Rpke and Thorsten Holz. SDN Rootkits: Subverting
Network Operating Systems of Software-Defined Networks. In
RAID’15, 2015.

[45] Julius Schulz-Zander, Carlos Mayer, Bogdan Ciobotaru, Stefan
Schmid, and Anja Feldmann. OpenSDWN: Programmatic
Control over Home and Enterprise WiFi. In SOSR’15, 2015.

[46] Seungwon Shin and Vinod Yegneswaran and Phil Porras and
Guofei Gu. Avant-guard: Scalable and vigilant switch flow

management in software-defined networks. In Proceedings of
the 20th ACM Conference on Computer and Communications
Security (CCS13), November 2013.

[47] R Sherwood, G Gibb, K K Yap, and G Appenzeller. Can the
production network be the testbed. In Proceedings of USENIX
Operating System Design and Implementation, OSDI, 2010.

[48] Seungwon Shin and Guofei Gu. CloudWatcher: Network
Security Monitoring Using OpenFlow in Dynamic Cloud Net-
works (or: How to Provide Security Monitoring as a Service
in Clouds?). In Proceedings of the 7th Workshop on Secure
Network Protocols (NPSec12), co-located with IEEE ICNP12,
October 2012.

[49] Seungwon Shin and Guofei Gu. Attacking Software-Defined
Networks: A First Feasibility Study (short paper). In Proceed-
ings of ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN’13), August 2013.

[50] Seungwon Shin, Phil Porras, Vinod Yegneswaran, Martin Fong,
Guofei Gu, and Mabry Tyson. FRESCO: Modular Composable
Security Services for Software-Defined Networks. In Pro-
ceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS’13), February 2013.

[51] Seungwon Shin, Haopei Wang, and Guofei Gu. A First
Step Toward Network Security Virtualization: From Concept
To Prototype. In IEEE TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY 2015, 2015.

[52] Sajad Shirali-Shahreze and Yashar Ganjali. FleXam: Flexible
Sampling Extension for Monitoring and Security Applications
in OpenFlow. In HotSDN’13, 2013.

[53] John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan M.
Smith. Enabling Practical Software-defined Networking Secu-
rity Applications with OFX. In NSDI’16, 2016.

[54] IEEE Standard. 802.1q vlan. http://www.ieee802.org/1/pages/
802.1Q.html.

[55] VArmour. http://www.varmour.com/.
[56] Andreas Voellmy and Paul Hudak. Nettle: Taking the Sting Out

of Programming Network Routers. In PADL, 2011.
[57] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera:

A Language for High-level Reactive Network Control. In
Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, 2012.

[58] Open vSwitch. An open virtual switch. http://openvswitch.org/.
[59] Haopei Wang, Lei Xu, and Guofei Gu. FloodGuard: A DoS

Attack Prevention Extension in Software-Defined Networks. In
DSN’15, 2015.

[60] Richard Wang, Dana Butnariu, and Jennifer Rexford.
OpenFlow-Based Server Load Balancing Gone Wild. In
Proceedings of Workshop on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services,
HotICE, 2011.

[61] Xitao Wen, Yan Chen, Chengchen Hu, Chao Shi, and Yi Wang.
Towards A Secure Controller Platform for OpenFlow Appli-
cations (short paper). In Proceedings of ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(HotSDN’13), August 2013.

[62] Kok-Kiong Yap, Te-Yuan Huang, Masayoshi Kobayashi, Yian-
nis Yiakoumis, Nick McKeown, Sachin Katti, and Guru
Parulkar. Making use of all the networks around us: a case
study in android. SIGCOMM Comput. Commun. Rev.

[63] Vishal Singh Cristian Lumezanu Geoff Jiang Ye Wang,
Yueping Zhang. NetFuse: Short-circuiting Traffic Surges in the
Cloud. ICC, IEEE, 2013.


