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Abstract. Software-Defined Networking (SDN) continues to be deployed
spanning from enterprise data centers to cloud computing with emerg-
ing of various SDN-enabled hardware switches. In this paper, we present
Control Plane Reflection Attacks to exploit the limited processing capa-
bility of SDN-enabled hardware switches. The reflection attacks adopt
direct and indirect data plane events to force the control plane to issue
massive expensive control messages towards SDN switches. Moreover,
we propose a two-phase probing-triggering attack strategy to make the
reflection attacks much more efficient, stealthy and powerful. Experi-
ments on a testbed with physical OpenFlow switches demonstrate that
the attacks can lead to catastrophic results such as hurting establish-
ment of new flows and even disruption of connections between SDN con-
troller and switches. To mitigate such attacks, we propose a novel defense
framework called SWGuard. In particular, SWGuard detects anomalies
of downlink messages and prioritizes these messages based on a novel
monitoring granularity, i.e., host-application pair (HAP). Implementa-
tions and evaluations demonstrate that SWGuard can effectively reduce
the latency for legitimate hosts and applications under Control Plane
Reflection Attacks with only minor overheads.

Keywords: Software-Defined Networking, Timing-based Side Channel Attacks,
Denial of Service Attacks

1 Introduction

Software-Defined Networking (SDN) has enabled flexible and dynamic net-
work functionalities with a novel programming paradigm. By separating the
control plane from the data plane, control logics of different network functionali-
ties are implemented on top of the logically centralized controller as applications.
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Typical SDN applications are implemented as event-driven programs which re-
ceive information directly or indirectly from switches and distribute the process-
ing decisions of packets to switches accordingly. These applications enable SDN
to adapt to data plane dynamics quickly and make responses to the applica-
tion policies timely. A wide range of network functionalities are implemented in
this way, allowing SDN-enabled switches to behave as firewall, load balancing,
network address translation, L2/L3 routing and so on.

Despite the substantial benefits, the deployment of SDN has encountered sev-
eral problems. In particular, a major limitation is the control message process-
ing capability on SDN-enabled hardware switches of various brands (e.g., IBM
RackSwitch, Juniper Junos MX-Series, Brocade NetIron CES 2000 Series, Pica8
Series, Hewlett-Packard Series), constrained by multiple factors. First, CPUs
of hardware switches are usually relatively wimpy [1, 2] for financial reasons,
which restricts the message parsing and processing capability of software proto-
col agents in switches. Second and more importantly, flow tables in most com-
modity hardware OpenFlow switches use Ternary Content Addressable Memory
(TCAM) to achieve wire-speed packet processing, which only allows limited flow
table update rate (only supporting 100-200 flow rule updates per second [2–8])
and small flow table space (ranging from hundreds to a few thousand [1,3,9]) due
to manufacturing cost and power consumption. These limitations have slowed
down network updates and hurt network visibility, which further constrain the
control plane applications with dynamic policies significantly [10].

In this paper, we systematically study the event processing logic of the
SDN control plane and locate two types of data plane events which could re-
flect expensive control messages towards the data plane, i.e., direct data plane
events (e.g., Packet-In messages) and indirect data plane events (e.g., Statistics
Query/Reply messages). By manipulating those data plane events, we present
two novel Control Plane Reflection Attacks in SDN, i.e., Table-miss Striking At-
tack and Counter Manipulation Attack, which can exploit the limited processing
capability for control messages of SDN-enabled hardware switches. Moreover, in
order to improve accuracy and efficiency of Control Plane Reflection Attacks,
we propose a two-phase attack strategy, i.e., probing phase and triggering phase,
inspired by timing-based side channel attacks. Control Plane Reflection Attacks
are able to adjust attack stream patterns adaptively and cleverly, thus could gain
a great increment of downlink messages5. Extensive experiments with a physical
testbed demonstrate that the attack vectors are highly effective and the attack
effects are pretty obvious.

In order to mitigate Control Plane Reflection Attacks, we present a novel
and effective defense framework, namely SWGuard. SWGuard proposes a new
monitoring granularity, host-application pair (HAP) to detect downlink message
anomalies, and prioritizes downlink messages when downlink channel congests.
In this way, SWGuard is able to satisfy the latency requirements of different
hosts and applications under the reflection attacks.

5 For brevity, we denote the messages from the data plane to the control plane as
uplink messages, and the messages vice versa as downlink messages.
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To summarize, our main contributions in this paper include:

– We systematically study the event processing logic of SDN applications and
further locate two types of data plane events, i.e., direct/indirect events,
which could be manipulated to reflect expensive control messages towards
SDN switches.

– We present two novel Control Plane Reflection Attacks, Table-miss Strik-
ing Attack and Counter Manipulation Attack, to exploit limited processing
capability of hardware switches. Moreover, we develop a two-phase attack
strategy to launch such attacks in an efficient, stealthy and powerful way.
The experiments with a physical SDN testbed exhibit their harmful effects.

– We present a defense solution, called SWGuard, with an efficient priority
assignment and scheduling algorithm based on the novel abstraction of host-
application pair (HAP). Implementations and evaluations demonstrate that
SWGuard provides effective protection for legitimate hosts and applications
with only minor overheads.

The remainder of this paper is structured as follows. Section 2 introduces
the background that motivates this work. Section 3 illustrates the details of
Control Plane Reflection Attacks and Section 4 proves the harmful effects with
a physical testbed. We present our SWGuard defense framework in Section 5
and make some discussions in Section 6. Related works are illustrated in Section
7, and the paper is concluded in Section 8.

2 Background

Processing Logic of Data Plane Events. SDN introduces the open net-
work programming interface and accelerates the growth of network applications,
which enable network to dynamically adjust network configurations based on
certain data plane events. These events could be categorized into the following
two types: direct data plane events such as Packet-In messages, where the event
variations are reported to the controller from the data plane directly, and indi-
rect data plane events such as Statistics Query/Reply messages, where the event
variations are obtained through a query and reply procedure at the controller. In
the first case, the controller installs a default table-miss flow rule on the switch.
When a packet arrives at the switch and does not match any other flow rule, the
switch will forward the packet to the control plane for further processing. Then
the controller makes decisions for the packet based on the logics of the appli-
cations, and assigns new flow rules to the switch to handle subsequent packets
with the same match fields. In the second case, the controller first installs a
counting flow rule reactively or proactively on the switch for a measurement
purpose. When a packet matches the counting flow rule in the flow table, the
specific counter increments with packet number and packet bytes. To obtain the
status of the data plane, the controller polls the flow counter values for statis-
tics periodically and performs different operations according to the analysis of
statistics. A large number of control plane applications combine these two kinds
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of data plane events to compose complicated network functions, which further
achieve advanced packet processing.
Usage Study of Data Plane Events. Based on the event-driven program-
ming paradigm, a large number of control plane applications emerge in both
academia and industry. In academia, since the publication of OpenFlow [11],
many research ideas have been proposed to fully leverage the benefits of direct
and indirect data plane events. While the direct data plane events are needed by
almost all applications, the indirect data plane events are also widely included.
In particular, we have categorized these indirect event-driven applications into
three types, applications which help improve optimization, monitoring and se-
curity of network. Please see our technical report [12] for details. Although each
of them has different purposes, all of these works are deeply involved in the
utilization of the indirect data plane events, obtaining a large number of traffic
features and switch attributes. Meanwhile, these indirect data plane events con-
tribute a large part of communication between applications and switches. SDN
applications have also experienced great development in industry recently. The
mainstream SDN platforms (e.g. Open Daylight, ONOS, Floodlight) foster open
and prosperous markets for control plane softwares, which provide a great range
of applications with a composition of the direct and indirect data plane events.
Meanwhile, since these applications are obtained from a great variety of sources,
their quality could not be guaranteed and their logics may contain various flaws
or vulnerabilities. In particular, we have investigated all mainstream SDN con-
trollers, and discovered that indirect event-driven applications occupy a large
part of application markets in these open source controller platforms. Due to
the page limit, please see the application summary in our technique report [12].
Limitations of SDN-enabled Hardware Switches. Compared with the
rapid growth of packet processing capability in logically centralized and physi-
cally distributed network operating systems (e.g., Onix [13], Hyperflow [14], Kan-
doo [15]) and controller frameworks (e.g., Open Daylight, ONOS), the downlink
message processing capability of SDN-enabled hardware switches evolves much
slower. State-of-the-art SDN-enabled hardware switches [16] only support 8192
flow entries. To make matters worse, the capability to update the entries in
TCAM is pretty limited, usually less than 200 updates per second [2–8,10]. Ac-
cording to our experiment on Pica8 P-3922, the maximum update rate is about
150 entries per second. We observe that the downlink channel in switches is
the dominant resource in SDN architecture that must be carefully managed to
fully leverage the benefits of SDN applications. However, existing SDN architec-
ture does not provide such a mechanism to protect the downlink channel in the
switches that it is vulnerable to Control Plane Reflection Attacks.

3 Control Plane Reflection Attacks

In this section, we first provide our threat model and then describe the details
of two Control Plane Reflection Attacks including Table-miss Striking Attack
and Counter Manipulation Attack.
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3.1 Threat Model

We assume an adversary could possess one or more hosts or virtual machines
(e.g., via malware infection) in the SDN-based network. The adversary can utilize
his/her controlled hosts or virtual machines to initiate probe packets, monitor
their responses, and generate attack traffic. However, we do not assume the
adversary can compromise the controller, applications or switches. In addition,
we assume the connections between the controller and switches are well protected
by TLS/SSL.

3.2 Control Plane Reflection Attacks

Control Plane Reflection Attacks are much more stealthy and sophisticated
than previous straightforward DoS attacks against SDN infrastructure, and gen-
erally consist of two phases, i.e., probing phase and triggering phase. During
the probing phase, the attacker uses timing probing packets, test packets and
data plane stream to learn the configurations of control plane applications and
their involvements in direct/indirect data plane events. With several trials, the
attacker is able to determine the conditions that the control plane application
adopts to issue new flow rule update messages. Upon the information obtained
from probing phase, the attacker can carefully craft the patterns of attack packet
stream (e.g., header space, packet interval) to deliberately trigger the control
plane to issue numerous flow rule update messages in a short interval to para-
lyze the hardware switches. We detail two vectors of Control Plane Reflection
Attacks as follows.
Table-miss Striking Attack. Table-miss Striking Attack is an enhanced at-
tack vector from previous Data-to-control Plane Saturation Attack [17–20]. In-
stead of leveraging a random packet generation method to carry out the attack,
Table-miss Striking Attack adopts a more accurate and cost-efficient manner by
utilizing probing and triggering phases.

The probing phase is to learn confidential information of the SDN control
plane to guide the patterns of attack packet stream. The attacker could first
probe the usage of the direct data plane events (e.g., Packet-In, Packet-Out,
Flow-Mod) by using various low-rate probing packets whose packet headers are
filled with deliberately faked values. The attacker can send these probing packets
to the SDN-based network and observe the responses accordingly, thus the round
trip time (RTT) for each probing packet could be obtained. If several packets
with the same packet header get different RTT values, especially, the first packet
goes through a long delay while the other packets get relatively quick responses,
we can conclude that the first packet is directed to the controller and the other
packets are forwarded directly in the data plane, which indicates that the specific
packet header matches no flow rules in the switch and invokes Packet-In and
Flow-Mod messages. Then the attacker could change one of the header fields with
the variable-controlling approach. With no more than 42 trials6, the attacker is

6 The latest OpenFlow specification only support 42 header fields, which constrains
the field the controller could use to compose different forwarding policies.
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able to determine which header fields are sensitive to the controller, i.e., the
grain for routing. Then the attacker could carefully craft attack packet stream
based on probed grains to deliberately trigger the expensive downlink messages.

Counter Manipulation Attack. Compared with Table-miss Striking Attack,
Counter Manipulation Attack is much more sophisticated, which is based on
the indirect data plane events (e.g., Statistics Query/Reply messages). In order
to accurately infer the usage of the indirect data plane events, three types of
packet streams are required, i.e., timing probing packets, test packets and data
plane stream. The timing probing packets are inspired by the time pings in [5],
which must involve the switch software agent and get the responses accordingly.
However, we believe that they have a wider range of choices. The test packets are
a sequence of packets which should put extra loads to the software agent of the
switch, and must be issued at an appropriate rate for the accuracy of probing.
The data plane stream is a series of stream templates, and should directly go
through the data plane (i.e., do not trigger table-miss entry in the flow table of
the switch), which is intended to obtain more advanced information such as the
specific conditions which trigger indirect event-driven applications.

Timing probing packets are used to measure the workload of software agent
of a switch, which should satisfy three properties: first, they should go to the
control plane by hitting the table-miss flow rule in the switch, and trigger the
operations of the corresponding applications (e.g., Flow-Mod or Packet-Out).
Second, each of them must evoke a response from the SDN-based network, so
the attacker could compute the RTT for each timing probing. Third, they should
be sent in an extremely low rate (10 pps is enough), and put as low loads as
possible to the switch software agent. We consider there are many options for
timing probing packets, e.g., ARP request/reply, ICMP request/reply, TCP SYN
or UDP. For layer 2, we consider ARP request is an ideal choice since the SDN
control plane must be involved in the processing of ARP request/reply. We note
that sometimes the broadcast ARP request will be processed in the switches.
However, the corresponding ARP reply is a unicast packet so that the control
plane involvement is inevitable if the destination MAC (i.e., the source MAC
address of the ARP Request) has not been dealt by the controller before. As
a result, the attacker could use spoofed source MAC address to deliberately
pollute the device management service of the controller as well as incur the
involvement of the controller. In some layer 2 network, it is not possible to
send packets with random source MAC addresses due to pre-authorized network
access control policies. To address this, the attacker could resort to the flow
rule time-out mechanism of OpenFlow. The attacker would select N benign
hosts and send ARP request to them to get the responses. N should satisfy
that N > R ∗ T , where R denotes the probing rate and T denotes the flow-
rule time-out value7. For Layer 3, ICMP is a straightforward choice, since its
RTT calculation has been abstracted as ping command already. The attacker
should choose a number of benign hosts to send ICMP packets and get the

7 As R is less than 10 usually, and T is set as a small value in most controllers (e.g. 5
in Floodlight), thus N cannot be a large number.
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corresponding responses. As for layer 4, TCP and UDP are both feasible when
a layer 4 forwarding policy is configured in the control plane. According to RFC
792 [21], when a source host transmits a probing packet to a port which is likely
closed at the destination host, the destination is supposed to reply an ICMP port
unreachable message to the source. Similarly, RFC 793 [22] requires that each
TCP SYN packet should be responded with a TCP SYN/ACK packet (opened
port) or TCP RST packet (closed port) accordingly. With the probing packet
returned with the corresponding response, the RTT could be calculated and the
time-based patterns could be obtained.

Test packets are used to strengthen the effects of timing probing packets
by adding extra loads to the software agent of the switch. For the purpose,
we consider test packets with a random destination IP address and broadcast
destination MAC address are ideal choices. By hitting the table-miss entry, each
of them would be directed to the controller. Then the SDN controller will issue
Packet-Out message to directly forward the test packet. As a result, the aim of
burdening switch software agent is achieved.

Template
Name

Coordinate Axis Variables

Data plane 
stream with 
steady rate

(v, p)

Data plane 
stream with 
0-1 rate

(v, t, p)

T(s)

Rate
(pps)

0

v

t 2t 3t 4t 5t

T(s)

Rate
(pps)

0

v

t 2t 3t 4t 5t

Fig. 1: Templates for data plane stream

Data plane stream is a series of
templates, which should go directly
through the data plane to obtain
more advanced information such as
the specific conditions for indirect
event-driven applications. We provide
two templates here, as shown in Fig.
1. The first template has a steady
rate v, packet size p, which is mainly
used to probe volume-based statistic
calculation and control method. The
second has a rate distribution like a
jump function, where three variables
(v, t, p) determine the shape of this
template as well as the size of each
packet, which is often used to probe
the rate-based strategy.

The insight of probing phase of
Counter Manipulation Attack lies in that different kinds of downlink messages
have diverse expenses for the downlink channel. Among the interaction ap-
proaches between the applications and the data plane, there are mainly three
types of downlink messages, i.e., Flow-Mod, Statistics Query and Packet-Out.
Flow-Mod is the most expensive one among them, since it not only consumes
the CPU of switch agent to parse the message, but also involves the ASIC API
to insert the new flow rules8. Statistics Query comes at the second, for it needs
the involvement of both switch agent CPU for packet parsing and ASIC API for
statistic querying. These two types of messages are extremely expensive when the

8 Moving old flow entry to make room for the new flow rule is an important reason to
make this operation expensive and time-consuming.
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occupation of flow table is high on the switch. Packet-Out is rather lightweight,
since it only involves the CPU of switch protocol agent to perform the corre-
sponding action encapsulated in the packet. As these three types of downlink
messages incur different loads for the switch, the latencies of timing probing
packets will vary when the switch encounters different message types. Thus, the
attacker could learn whether the control plane issue a Flow-Mod, or a Statistics
Query, or a Packet-Out. As for the indirect data plane events, the statistic queries
are usually conducted periodically by the applications. As a result, each of these
queries would incur a small rise for the RTTs of timing probing packets, which
would reveal the period of application’s statistic query. If a subsequent Flow-Mod
is issued by the controller, there would be a higher rise of RTT just following
the RTT for Statistics Query, which is named as double-peak phenomenon. Based
on the special phenomenon, the attacker could even infer what statistic calcu-
lation methods the application takes, such as volume-based or rate-based. With
several trails of two data plane stream templates above (t is set as the period
of statistic messages, which has been obtained above) and the variations of v
and p in a binary search approach, the attacker could quickly obtain the con-
crete conditions (volume/rate values, number-based or byte-based) that trigger
the expensive downlink messages. The confidential information such as statistic
query period, the exact conditions (volume/rate values, packet number-based
or byte-based) that trigger the downlink messages, helps the attacker permute
the packet interval and packet size of each flow, to deliberately manipulate the
counter value to the critical value, thus each flow would trigger a Flow-Mod in
every period. By initiating a large number of flows, Flow-Mod of equal number
would be triggered every period, making the hardware switch suffer extremely.

4 Attack Evaluation

In this section, we demonstrate our experimental results of Control Plane
Reflection Attacks with a physical testbed. The evaluations are divided into two
parts. First, we conduct our experiments for Table-miss Striking Attack and
Counter Manipulation Attack separately, to show the effectiveness of Control
Plane Reflection Attacks. Second, we perform some benchmarks to provide low-
level details of our proposed attacks.

4.1 Experiment Setup

To demonstrate the feasibility of Control Plane Reflection Attacks, we set up
an experimental scenario as shown in Fig. 2. We choose several representative
applications, and run them separately on the SDN controller. Flow tables in
the switch are divided into two pipelines, Counting Table for the indirect data
plane event, Forwarding Table for the direct data plane events. Each pipeline
contains multiple flow entries for the two data plane events, and flow tables
of each pipeline are independent and separated, which is the state-of-the-art
approach for multiple application implementations today [5, 23].
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OpenFlow Switch

Test 
Application

OpenFlow Controller Platform

OpenFlow
Controller 
Server 

Counting 
Table

Forwarding 
Table

Software Protocol Agent
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Engine

Control 
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Fig. 2: A Typical Attack Scenario
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20.0.0.1
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h1
10.0.0.1

Floodlight
Controller

Test 
Applications

h2
10.0.0.2

Fig. 3: Attack Experiment Setups

Reactive Routing is the most common application integrated into most of
the popular controller platforms. It monitors Packet-In messages with a default
table-miss in Forwarding Table, and computes and installs a path for the hosts
of the given source and destination addresses with an appropriate grain. When
one table-miss occurs, 2N downlink Flow-Mod messages would be issued to the
data plane, where N is the length of the routing path.

Flow Monitoring is another common application in SDN-based networks.
It is generally implemented with a Counting Table which counts the number
and the bytes of a flow or multiple flows. The controller polls the statistics of
the Counting Table periodically, conducts analysis on the collected data, and
makes decisions with the analysis results. Further, we extend our Flow Moni-
toring sketch into four indirect data plane events driven applications, Heavy
hitter [24], Microburst [25], PIAS [26] and DDoS Detection [27]. The im-
plementation details are illustrated in our technical report [12].

Our evaluations are conducted on a physical OpenFlow Switch, i.e., Pica8
P-3290, since it is widely used in academia/industry and supports many ad-
vanced OpenFlow data plane features, such as multiple pipelines and almost full
OpenFlow specifications (from version 1.0 to 1.4). The experimental topology,
as shown in Fig. 3, includes four machines (i.e., h1, h2, s1, and s2) connected
to the hardware switch and a server running Floodlight Controller. The HTTP
service is run on s1 and s2 separately. We consider h2 is a benign client of the
HTTP service and h1 is controlled by the attacker to launch the reflection at-
tack. All the tested applications discussed above are hosted in the Floodlight
controller. In our experiments, Reactive Routing adopts a five-tuples grained
forwarding policy, and four Flow Monitoring-based applications query the data
plane switch every 2 seconds, and conduct the corresponding control (e.g., issue
one Flow-Mod message) according to their logic separately.

4.2 Attack Feasibility and Effects

In this subsection, we conduct the experiments for Table-miss Striking Attack
and Counter Manipulation Attack separately, and show a detailed procedure for
probing phase and triggering phase.
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Fig. 4: Attack feasibility and efficiency for Table-miss Striking Attack

Table-miss Striking Attack. For the Reactive Routing application, when we
launch a new flow, the first packet is inclined to get a high RTT, and the following
several packets would get low RTTs. Since there are only three hosts on our
testbed and ping could launch only one new flow between each host pair, we
resort to UDP probing packets to cope with this problem. We compute the time
difference between the request and reply to obtain the RTT. As depicted in Fig.
4(a), we let h1 transmit 10 UDP probing packets to a destination port and then
change the destination port. The RTT for the first packet of each flow is quite
distinct from that of the other packets. When we change any field pertained
to five-tuples, the similar results would be obtained. The modification to other
packet fields would always lead to a quick response. All the phenomena indicate
that five-tuples grained forwarding policy is adopted by the Reactive Routing.

With the inference of forwarding grain, the attacker is able to carefully craft
a stream of packets whose header spaces vary according to the grain. In this
way, each attack packet could strike the default table-miss in the switch, thus
triggering Packet-In and Flow-Mod in the control channel. Data-to-control Plane
Saturation Attack resorts to a random packet generation approach, making the
attack not so cost-efficient for the attacker. As we can see in Fig. 4(b), Table-miss
Striking Attack is much more efficient than Data-to-control Plane Saturation
Attack. Further, we also compare the RTTs and bandwidth for normal users
under the saturation attack and the striking attack. As shown in Fig. 5, the
striking attack could easily obtain a higher RTT and a lower bandwidth usage
for normal users with the same attack expense, which demonstrates that our
Table-miss Striking Attack is much more cost-efficient and powerful.

Counter Manipulation Attack. For the Flow Monitoring-based applications,
we first supply a steady rate of test packets at 300 packets per second (pps)9,
which would put appropriate loads on the control plane as required in [5]. The
rate of timing probing packets is set as 10 pps. The results for four applications

9 300 pps is a pretty secure rate, since a legitimate host could issue packets at thousand
of pps under normal circumstance.
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Fig. 5: RTTs and Bandwidth for normal users under the saturation attack and
the striking attack

are similar, as shown in Fig. 6(a). As we could conclude, Flow Monitoring-based
applications poll the switch for statistics every 2 seconds. In particular, the
double peaks in red rectangle (double-peak phenomenon) denote two expensive
downlink messages are issued successively. The first peak is attributed to the
periodical Statistics Query message, while the second is caused by the Flow-Mod
message for the control purpose. We make this inference because both Flow-Mod
and Statistics Query are much more expensive than Packet-Out while they two
have a similar expense for the downlink channel.

Furthermore, more confidential information could be obtained with the joint
trials and analysis of data plane stream and double-peak phenomenon. If the
attacker obtains a series of successive double-peak phenomenon (as shown in
Fig. 6(b)) with the input of data plane stream template1, where v is a big
value, and obtains a series of intermittent double-peak phenomenon (Fig. 6(c))
with template2, where v is also a big value, she/he could determine that packet
number volume-based statistic calculation method is adopted. This is because
packet number volume-based statistic calculation approach is sensitive to stream
with a high pps. The other three cases are also listed in Table 1. From this
table, we can conclude the concrete statistic calculation approach the application
adopts. Furthermore, with the variations of v and p, the attacker could infer the
critical value of volume or rate. In addition, we can verify our inference with
a lot of other ways, not only the proposed two data plane stream templates as
shown above. We are planning to develop more representative templates in our
future works. In particular, we test our four indirect event driven applications,
and find them fall into the distribution in Table 2. This is consistent with the
policies of each application, which demonstrates the effectiveness of our probing
phase.

With the results and information (query period, packet number/byte-based,
volume/rate values) obtained from the probing phase, we move to the second
step and start to commit our Counter Manipulation Attack. We select one ap-
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Fig. 6: Timing-based Patterns for Counter Manipulation Attack

plication, PIAS, setting its priority as 3 levels, and initiate 10 new flows per
second. We carefully set the sent bytes of each flow in each period (2s), which is
bigger than the critical value we probed. As a consequence, a number of Flow-
Mod messages are issued to the switch when statistic query/reply occurs. As
shown in Fig. 7, the number of Flow-Mod messages could increase as high as
60 at the end of each period. This would incur pretty high loads to the soft-
ware agent of the switch at this moment. Even in some cases, when the attacker
controls thousands of flows intentionally and manipulates all the flow to reach
the critical values simultaneously, thousands of Flow-Mod messages are directed
to the switch, which would cause catastrophic results such as the disruption of
connections between the controller and the switches.

Table 1: Relationship between data plane stream and double-peak phenomenon
Volume-based Rate-based

Packet Number
Template1(v↑, p)→ patterns 1
Template2(v↑, p)→ patterns 2

Template1(v↑, p)→ patterns 3
Template2(v↑, p)→ patterns 1

Packet Byte
Template1(v, p↑)→ patterns 1
Template2(v, p↑)→ patterns 2

Template1(v, p↑)→ patterns 3
Template2(v, p↑)→ patterns 1
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Table 2: Distribution of the four indirect event driven applications
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Fig. 7: Attack effect
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Fig. 8: Timing probe RTTs as
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4.3 Attack Fundamentals and Analysis

In this subsection, we study more about low-level details of Control Plane
Reflection Attacks.

Test packet rate and test packet type. Fig. 8 shows the timing probe RTTs
as the rate of test packets varies where the controller is configured to issue a
Flow-Mod message for each test packet. Fig. 9 shows the timing probe RTTs as
Statistics Query rate varies. Fig. 10 shows the timing probe RTTs as the rate of
test packets varies where the controller processes each test packet with a Packet-
Out message. As we can conclude from these figures, different downlink messages
have diverse expenses for the downlink channel, and all of the three scenarios
encounter a significant nonlinear jump. In particular, when the controller gen-
erates Flow-Mod message for each test packet, the RTTs can reach 1000 times
higher at approximately 50 pps. For Statistics Query messages, the RTTs are
about 100 times at 100 pps. And for Packet-Out messages, the RTTs double
100 times at about 500 pps. Meanwhile, we measure the resource usage of the
hardware switch and the controller, and find that the CPU usage of the switch
could reach above 90% at the point of the nonlinear jump, while the memory us-
age of the switch, the CPU and memory usage of the control server is relatively
low (at most 30%). In addition, we have a conservation with the Pica8 team
via email, and obtain that the switch control actions (e.g. Flow-Mod, Statistics
Query) must contend for the limited bus bandwidth between a switch’s CPU
and ASIC, and insertion of a new flow rule requires the rearrangement of rules
in TCAM, which lead to the results that the expense of Flow-Mod >= Statistics
Query >> Packet-Out.



14 Menghao Zhang and et al.

0 40 80 120 160 200
statistic− query Rate(pps)

100

101

102

103

104

P
ro

b
in

g
 R

T
T
s(

m
s)

average
probing RTT

Fig. 9: Timing probe RTTs as
statistic query rate varies

0 200 400 600 800
packet− out Rate(pps)

100

101

102

103

104

P
ro

b
in

g
 R

T
T
s(

m
s)

average
probing RTT

Fig. 10: Timing probe RTTs as
Packet-Out rate varies

The impact of background traffic. The background traffic has two impacts
for the Control Plane Reflection Attacks. First, it may affect the accuracy of
probing phase. In fact, a moderate rate of background traffic would not weaken
the effectiveness of the probing. Conversely, it amplifies the probing effect. The
reason behind this is that the effect of background traffic is somewhat like the
role played by test packets, and it would put some baseline loads to the switch
protocol agent, which would make the probing more accurate. An excessively
high rate of background traffic would certainly lower the probing accuracy, since
there is already a high load for the protocol agent of the switch. As a consequence,
the loads incurred by Statistics Query would not cause the obvious and periodical
peaks for the RTTs of timing probing packets, instead, the patterns may become
random and irregular. However, in such cases, the switch is already suffering, thus
the aim of the attack has already been achieved. Second, the background traffic
may also affect the trigger phase. Actually, this influence is positive, too. The
existence of the background traffic would inevitably bring about some downlink
messages to the control channel, which would boost the effects of Control Plane
Reflection Attacks.

5 Defense Approach

5.1 Countermeasure Analysis

The control plane reflection attack is deeply rooted in SDN architecture since
the performance of existing commodity SDN-enabled hardware switches could
not suffice the need of the SDN applications. A straightforward method to miti-
gate this attack is limiting the use of dynamic features for network applications,
nevertheless, this comes at the expense of less fine-grained control, visibility,
and flexibility in traffic management, as evidently required in [2, 28, 29]. An-
other straightforward defense approach is limiting the downlink message trans-
mission rate directly in the controller, preventing the switches from being over-
whelmed. However, the exact downlink message processing capabilities for dif-
ferent switches vary, even for a specific switch, the rate control in the controller
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cannot precisely guarantee underload or overload for the remote switch10, mak-
ing the unified control inaccurate and complicated. Adding some latency to ran-
dom downlink messages seems feasible, which can make the patterns/policies
of direct/indirect data plane events difficult to sniff and obtain. Nevertheless,
this technique increases the total latency for the overall downlink messages,
and would inevitably violate the latency requirements of some latency-sensitive
downlink messages, making it high cost and infeasible.

To address the challenges above, we propose SWGuard to mitigate the reflec-
tion attack and fulfill the requirements of different downlink messages. Our basic
idea is to discriminate good from evil, and prioritize downlink messages with dis-
crimination results. To this end, we propose a multi-queue scheduling strategy, to
achieve different latency for different downlink messages. The scheduling strategy
is based on the statistics of downlink messages in a novel granularity during the
past period, which takes both fairness and efficiency into consideration. When
the downlink channel is becoming congested, the malicious downlink messages
are inclined to be put into a low-priority scheduling queue and the requirements
of good messages are more likely to be satisfied.

5.2 SWGuard: A Priority-based Scheduler on Switch

The architecture of SWGuard is shown in Figure 11. SWGuard mainly re-
designs two components of SDN architecture. On the switch side, it changes the
existing software protocol agent to multi-queue based structure, and schedules
different downlink messages with their types and priorities. On the controller
side, it adds a Behavior Monitor module as a basic service, which collects the
downlink message events and assigns different priorities to different messages
dynamically.

Flow 
Tables

Update/InsertFinish Signal

……

Software 
Protocol 
Agent

controller

Reactive
Routing

Flow
Monitoring

Other 
Applications

Event Collector

Priority Composition

Behavior Monitor

Other Network 
Services (Topology 
Discover, Device 

Management)
Forwarding Engine

Packet Stream Packet Stream
switch

Classifier

Scheduler

MSM CM CRMSQM

controller

Downlink Messages

Fig. 11: SWGuard Framework Design

10 There may be several hops between the switch and the controller, and the network
condition is unpredictable.
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Multi-queue based Software Protocol Agent. In order to prioritize the
downlink messages, we redesign the software protocol agents of the existing
switches. A naive approach is to modify the existing single queue model directly
into priority-based multi-queue model, and enqueue all the downlink messages
into different queues with their priorities and dequeue at different scheduling
rates. However, the types of downlink messages vary, and different message types
have diverse requirements, for example, if Handshake messages and Modify State
messages are put into the same queue, the latency requirement of the former may
be delayed by the latter so that the handshakes between the controller and the
switches could not be established timely.

To this end, we summarize the downlink messages into the following four
categories: (1) Modify State Messages (MSM), (2) Statistic Query Messages
(SQM), (3) Configuration Messages (CM), and (4) Consistency Required Mes-
sages (CRM), and design a Classifier to classify the downlink messages into
different queues accordingly. The first two types are related to the behaviors of
hosts and applications, so we design a multi-queue for each of them. The multi-
queue consists of three levels (quick, slow, block), and each level is designed for
the corresponding priority. The third type serves for basic services of the con-
troller (e.g., Handshake, LLDP), while the detail of the last type is illustrated in
Section 5.2, and both of them inherit from the original single queue. Classifier
makes use of ofp header field in OpenFlow Header to distinguish message type,
and a 2-bit packet metadata to obtain priority.

With the downlink messages in the queues, a Scheduler is designed to de-
queue the messages with a scheduling algorithm. In order not to overwhelm the
capability of ASCI/Forwarding Engine, a Finish Signal should be sent back to
the Scheduler once a Modify State/Statistic Query message is processed. Then
the Scheduler knows whether to dequeue a next message of the same type from
queues. We design a time-based scheduling algorithm, setting different strides
for different queues. For the last two queues (Configuration Messages, Consis-
tence Required Messages), the stride is set as 0, which means whenever there
is a message, it would be dequeued immediately. For the first two multi-queues,
the stride for the queue of quick level is set as 0, for that of slow level is set as
a small time interval, while for that of block level is set as a relatively bigger
value. With the principles illustrated above, we design the scheduling algorithm
as Algorithm 1.

Behavior Monitor. In order to distinguish different downlink messages with
different priorities, an appropriate Monitoring granularity is in urgent need. Pre-
vious approaches mainly conduct the monitoring with the granularity of source
host [27,30], and react to the anomalies on the statistics. However, in the control
plane reflection attacks, these approaches are no longer valid and effective. For
example, if we only take the features of the data plane traffic into consideration,
and schedule with the statistics of source hosts [31], it would inevitably violate
the heterogeneous requirements of various applications.

To address this challenge, we propose the novel abstraction of Host-Application
Pair (HAP), and use it as the basic granularity for monitoring and statistics.
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Algorithm 1: The Scheduling Algorithm for Protocol Agent

// Initialization

foreach que ∈ queues do
set que.stride;
que.time = getcurrenttime();

// Enter the Scheduler thread

while true do
foreach que ∈ queues do

if que.stride ≤ getcurrenttime()− que.time then
if que.empty() == false then

que.time = getcurrenttime();
que.dequeue();

else
que.time = getcurrenttime();

These two dimensions are easy to be obtained from the uplink messages and
the configurations of the controller. Considering K applications exist on the
control plane, their requirements for downlink messages are represented as vec-
tor a0 = 〈a1, a2, . . . aK〉, and N hosts/users in the data plane, corresponding
requirements vector h0 = 〈h1, h2, . . . hN 〉. a0 and h0 are both set by the net-
work operators, depending on the property of the applications and the pay of
hosts/users. Thus the expected resource allocation matrix is R0 = a0

T ·h0. And
the expected resource allocation ratio matrix is I0 = R0∑K

k=1

∑N
n=1 akhn

. During

the past period (T seconds), the statistics of HAP is represented as resource

occupation matrix R =


r11 r12 . . . r1N
r21 r22 . . . r2N
...

...
. . .

...
rK1 rK2 . . . rKN

. And the sum of the elements in

R is denoted as Sum =
∑K

k=1

∑N
n=1 rkn. Suppose the maximum capability of

downlink channel in T seconds is Sum0, Sum
Sum0

denotes the resource utilization
rate of the downlink channel. In order to save resources of the control channel,
we design our SWGuard system as attack-driven, which means when Sum

Sum0
< α,

SWGuard is in sleep state except for Event Collector. All the downlink messages
flow through the third queue (queue for Configuration Messages). α is a danger
value between 0 and 1, set by the network operators.

When the reflection attacks are detected, the Priority Composition Module
is wakened and starts to calculate the penalty coefficient of each HAP, βkn =
rkn−iknSum0

rkn
. ikn, rkn denote the corresponding element in matrix I0,R. If βkn

is negative, we set it as 0. Then we use two thresholds (thh, thl) to map the
penalty coefficient βkn into priority (00, 01 or 10) and tag a 2-bit field into
packet metadata to encapsulate priority.
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Policy Consistency. Multi-queue based software protocol agent may violate
the consistency of some downlink messages. For example, some control messages
need to be sent in a particular order for correctness reasons, however, in this
multi-queue based software agent, if a previous arriving message is put into a
queue with high load while a later arriving message is put into a queue with low
load, the order to maintain correctness may be violated.

To address this issue, we design a coordination mechanism between the Be-
havior Monitor and Classifier in software protocol agent. If a series of downlink
messages require consistency, they are supposed to reuse the 2-bit priority packet
metadata (fill it with 11) in the packet header to express their intents. Then the
Classifier in the software protocol agent will check the label to learn whether
the message has the consistency demand. If consistency demand is confirmed,
this message will be scheduled to the queue for consistency required messages.

5.3 Defense Evaluation

We implement the prototype of SWGuard system, including Behavior Moni-
tor and Software Protocol Agent, on Floodlight [32] and Open vSwitch [33] with
about 4000 Lines of Code. We use Open vSwitch and set corresponding thresh-
olds to limit its control channel throughput, making its flow rule update rate
(130 pps) and flow table size (2000) analogous to the hardware switches.

To demonstrate the defense effect of SWGuard, we use the average value of
flow rule installation/statistic query latencies of normal users/applications as
the representative metric, which is named as Event Response Time in our fig-
ures. As shown in Figure 1211, with native system, event response time becomes
extremely large when the rate of downlink messages is above 110 packets per
second. While with SWGuard, event response time is nearly unchanged. All of
these are due to the limited capability of SDN-enabled switches for processing
downlink messages. The experimental results illustrate that our SWGuard pro-
vides effective protection for both the flow rule installation and statistics query.

For the overheads of SWGuard, we measure the latency introduced by SW-
Guard. Compared with native OpenFlow, packets in SWGuard need to go through
two extra components, Event Collector of Behavior Monitor and Configuration
Message queue of Software Protocol Agent under normal circumstance, since
other components are in sleep state when no attack is detected. When an at-
tack happens, packets must pass a full path in Behavior Monitor and Software
Protocol Agent. As shown in Fig 13, the latency is almost the same for native
OpenFlow and SWGuard under normal circumstance. Even under attacks, Be-
havior Monitor and Software Protocol Agent only incur a latency less than 100
us. All of these demonstrate that SWGuard only brings about a negligible delay
for the control channel messages.

11 Since this experiment is conducted on the software environment, the nonlinear jump
point is a little different from the previous hardware experimental results.
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Fig. 13: Defense Overhead

6 Discussion

Emerging programmable data planes: Current prototypes, attacks and de-
fenses are based on OpenFlow-based hardware switches. We believe the core
idea of Control Plane Reflection Attacks is applicable to the emerging genera-
tion of programmable data planes, e.g. P4 and RMT chips [34], because these
platforms also use traditional TCAM-based flow tables and Control Plane Re-
flection Attacks address a property of TCAM that is invariant to underlying
TCAM design.
Generality of the SWGuard system: SWGuard is also applicable for no-
adversary circumstances, such as flash crowds of downlink messages under nor-
mal conditions. By prioritizing the downlink messages, SWGuard can provide
lower latencies for more important messages under the congestion status of con-
trol channel.
Source address forgery problem: One concern is that an attacker may forge
another host’s source address to pollute the HAP statistics of other hosts. Nev-
ertheless, in SWGuard, we can also harness the edge switch port to identify a
host. As the header fields of the upstream messages are assigned by the hardware
switch, the attacker is not able to forge or change this field.

7 Related Work

DoS attacks against SDN: Shin et al. [17] first proposes the concept of Data-
to-control Plane Saturation Attack against SDN. To mitigate this dedicated
DoS attack, AVANT-GUARD [18] introduces connection migration and actu-
ating triggers to extend the data plane functions. However, it is applicable to
TCP protocol only. Further, a protocol-independent defense framework, Flood-
Guard [19], pre-installs proactive flow rules to reduce table-miss packets, and
forwards table-miss packets to additional data plane caches. To gain the benefit
of no hardware modification and addition, FloodDefender [20] offloads table-
miss packets to neighbor switches and filters out attack traffic with two-phase
filtering. Control Plane Reflection Attacks distinguish themselves from previous
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works in both attack methods and attack effects. On one hand, the saturation
attack uses a pretty straightforward attack method that attacker just floods ar-
bitrary attack traffic to trigger the direct data plane events while the reflection
attacks resort to more advanced and sophisticated techniques, and a two-phase
probing-trigger approach is specially developed to exploit both direct and indi-
rect data plane events. On the other hand, since the simplicity of the saturation
attack, it is not hard to capture the attack, thus it could have limited attack
effects. By contrary, the reflection attacks are much more stealthy and the same
attack expenses of the attacker could cause more obvious attack effects for vic-
tims. Scotch [2] alleviates the communication bottleneck between control plane
and data plane leveraging a pool of vSwitches distributed across the network,
and it shares the same observation that SDN-enabled hardware switches have a
very limited capacity for control channel communications.

Timing-based side channel attacks: Side channel attacks have long existed
in computer systems, and they are usually used to leak the secret information
(e.g. secret cryptographic keys) of dedicated systems. Publications more related
to our work are various works applying side channel attacks to SDN. Shin et
al. [17] presents an SDN scanner which could determine whether a network is
using SDN or not. Leng et al. [35] proposes to measure the response time of
requests to obtain the approximate capacity of switch’s flow table. Sonchack
et al. [5] demonstrates an inference attack to time the control plane, which
could be used to infer host communication patterns, ACL entries and network
monitoring policies. Liu et al. [36] permits the attacker to select the best probes
with a Markov model to infer the recent occurrence of a target flow. Our attack
methods are somewhat inspired by these previous works. However, all of them
only focus on the direct data plane events, and remain at a low level to infer the
existence of network policies/device configurations. To the best of our knowledge,
our work proposes the exploitation of indirect data plane events for the first time
and take the next step that we not only take the existence into consideration, but
also obtain more concrete policies and policy thresholds to promote the attack
effects.

8 Conclusion

In this paper, we present Control Plane Reflection Attacks to exploit the
limited processing capability of SDN-enabled hardware switches by using direct
and indirect data plane events. Moreover, we develop a two-phase attack strategy
to make such attacks efficient, stealthy and powerful. The experiments showcase
the reflection attacks can cause extremely harmful effects with acceptable attack
expenses. To mitigate reflection attacks, we propose a novel defense solution,
called SWGuard, by detecting anomalies of control messages and prioritizing
them based on the host-application pair. The evaluation results of SWGuard
demonstrate its effectiveness under reflection attacks with minor overheads.
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