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Abstract—An emerging trend in corporate network admin-
istration is BYOD (Bring Your Own Device). Although with
many advantages, the paradigm shift presents new challenges in
security to enterprise networks. While existing solutions such as
Mobile Device Management (MDM) focus mainly on controlling
and protecting device data, they fall short in providing a holistic
network protection system. New innovation is needed in providing
administrators with sophisticated network policies and control
capabilities over the devices and mobile applications (apps). In
this paper, we present PBS (Programmable BYOD Security),
a new security solution to enable fine-grained, application-
level network security programmability for the purpose of
network management and policy enforcement on mobile apps
and devices. Our work is motivated by another emerging and
powerful concept, SDN (Software-Defined Networking). With
a novel abstraction of mobile device elements (e.g., apps and
network interfaces on the device) into conventional SDN network
elements, PBS intends to provide network-wide, context-aware,
app-specific policy enforcement at run-time without introducing
much overhead on a resource-constrained mobile device, and
without the actual deployment of SDN switches in enterprise
networks. We implement a prototype system of PBS, with a
controller component that runs a BYOD policy program on
existing SDN controllers and a client component, PBS-DROID,
for Android devices. Our evaluation shows that PBS is an effective
and practical solution for BYOD security.

I. INTRODUCTION

BYOD is the new paradigm in the workplace. The enter-
prise is facing growing limitations of traditional infrastructure,
rising cost overheads, and a slowing pace in adopting new
technology. In lieu of utilizing company resources to keep up
with the torrential downpour of new devices and gadgets year
after year, BYOD enables the enterprise to leverage employee-
owned devices in the workplace. This fresh concept, bring
your own device, shifts the cost overhead of device ownership
away from the corporation. No longer do administrators and
infrastructure managers handle acquisition of new hardware.
The tempting offer of offloading the cost of device acquisition
onto the employee has seen a rapid growth in adaptation
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amongst enterprise networks. In fact, studies in 2012 [16]
have shown that 44% of users in developed countries and
75% in developing countries are now utilizing BYOD in the
workplace. This adoption rate shows no signs of slowing, and
we cannot ignore this paradigm shift.

The crux of BYOD, however, is its close and convoluted
interplay with network security. While some of the physical
devices have changed ownership, the role of management
remains firmly in the realm of corporate administrators. Mis-
management by the users potentially opens the workplace to
an array of unwanted or even malicious applications. Providing
device security, traditionally fostered by administrators, is
now made significantly more complex in BYOD. Today, the
challenge for administrators is the management of dynamic
BYOD-enabled devices and the diverse apps running on them.
Migrating to-and-from work, this new breed of corporate
device leaves the safe haven of the company at the end of
the workday. These devices require additional security against
outside threats. More importantly, the corporate network itself
now needs more security and management capabilities to
handle its devices. Without proper management tools, the
benefit provided by BYOD is overshadowed by the holes
created in the enterprise security environment.

Existing solutions have sought to plug the gap in device
management through on-device administration and network-
wide device management systems. For example, Google has
provided such a system, Android Device Administration
(ADA), as early as Android 2.2. This system seeks to provide
management features via APIs [2], which facilitate the creation
of security-aware applications on the device. Capabilities such
as strong password policy enforcement and remote device wip-
ing are natively provided by ADA. However, today’s complex
deployments require more features and dynamic reconfigura-
bility in order to effectively manage and secure the evolving
network. Recent systems, such as Mobile Device Management
(MDM) solutions proposed in [3], [5], [6], [8], [4], have
come to supplement ADA and have led the technical trend
in BYOD management. These solutions provide additional
granularity and complexity in management capabilities. More
recently, Android for Work [1] introduced a dedicated “Work
Profile” to separate corporate and personal application data for
BYOD deployments. The profile supports OS-level encryption
and additional management APIs to third-party MDM/Enter-
prise Mobility Management (EMM) partners via ADA. This
enabled administrators to build new management solutions for
employee devices.



However, these solutions focus mainly on device/app data
control and protection (e.g., through domain isolation as in
Samsung KNOX [7] and Android for Work [1]). They lack
sufficient network management features, such as fine-grained
network security policy enforcement or access control, which
are imperative to a comprehensive enterprise device manage-
ment scenario. One practice may attempt to apply existing
security policies to new BYOD devices using extra network
access control solutions/infrastructure. Yet simple adoption of
traditional solutions is not well-suited to reflect dynamics of
BYOD devices.

Complementing existing work, our approach focuses on
addressing the issues posed by BYOD in the context of mobile
devices, such as phones and tablets. Our intent is to provide a
new system for BYOD management which features dynamic
programmability and security policy enforcement with un-
precedented granularity. Different from existing solutions, we
do not aim to control user actions or the device storage implic-
itly. Rather, we wish to secure and manage the network access
capabilities of the BYOD device, with high fidelity such as
individual-application-specific and device-context-aware net-
work access. We seek to provide such detailed access control
in a sophisticated and easy-to-use system, providing a holistic
network-wide management platform.

A unique requirement in today’s mobile BYOD networks is
the management of the dynamic network devices. In this case,
the device may physically move or change its run-time contexts
(e.g., add/remove applications) during its operation. While the
device exists on the network, administrators require real-time
adaptability and control of device network actions. For in-
stance, while an administrator wishes to restrict network com-
munication between specific apps/devices/network-resources,
they may not possess intricate knowledge of all applications
which enable such functionality. It may be useful to first
learn device communication behavior and context information
(e.g., location, time) and then programmatically apply a policy
which limits unwanted capability in the workplace. Thus, an
administrator requires additional capabilities to complement
existing management systems. Such capabilities require rich
granularity and dynamic configurability, which are difficult to
provide in existing, mostly static management systems.

To address these dynamic network management concerns,
we propose our system, PBS (Programmable BYOD Security),
a new security solution to bring fine-grained, programmable
network policy enforcement to BYOD devices in enterprise
networks. Our solution is inspired by the concept of Software-
Defined Networking (SDN), which provides a new networking
architecture to enable network-wide visibility, programmabil-
ity, and control. Different from existing SDN techniques that
require revolutionary changes and replacement of the network
equipment infrastructure, such as routers and switches, PBS
applies the SDN concept to the mobile-device level hardware,
and does not require any changes to the existing network
infrastructure (i.e., PBS does not require the actual deploy-
ment of SDN/OpenFlow network switches). Analogous to
conventional SDN, yet tailored to mobile environment, we
abstract a user’s mobile device as a logical switch, with apps
running on the device as logical hosts and all the available
network interfaces as logical ports. We map the user’s context
and mobile device management features to functionalities of

SDN. We extend conventional SDN flow control capabilities
to perform fine-grained app-level, context-aware, dynamic,
programmable policy control. Our remote PBS controller can
run a user-defined security policy program that controls and
monitors application-aware flows with the user’s contexts at
the mobile device level at run-time; thereby, all the flows
between applications and device network interfaces are visible
and programmable with ease. Additionally, in order to facilitate
ease of use of the remote controller, PBS introduces a rich
policy language for the configuration and management of
BYOD devices. The policy language enables the enterprise
administrator to specify device management decisions without
modifying the PBS controller program, thus allowing the easy
administration of PBS and its management devices without
intricate knowledge of SDN, lowering the barrier of entry for
real world use cases.

In summary, this paper makes the following contributions:

e  We propose a novel two-tiered network-wide policy
enforcement scheme to control BYOD devices based
upon SDN/OpenFlow techniques. Different from ex-
isting architecture of SDN/OpenFlow, our approach
leverages novel transparent application abstraction,
efficient flow-policy architecture, and optimization
schemes, which are tailored to mobile BYOD devices.
Our solution empowers global visibility and flexible
security programmability to enterprise BYOD network
administrators as well as reactive policy update in
Android devices.

e  We present dynamic and fine-grained access control
over context-aware flows at a mobile application level.
In particular, we dynamically enforce access control
logic over application flows by considering the run-
time contexts of mobile users.

e We design and implement a PBS client prototype
system on Android, called PBS-DROID, as well as
an enterprise network PBS controller instantiated in
an SDN controller. We choose Android because it is
open-source and dominating the mobile device market.
Our techniques should be applicable to other mobile
platforms, or even the regular PC platform.

e We evaluate the effectiveness and performance of
PBS-DRrROID with real-world Android applications.
The results show that PBS-DROID introduces a neg-
ligible performance overhead and minor impact to
battery life, while achieving desired policy control
functions for BYOD.

The rest of the paper is organized as follows. Section II
introduces the background of SDN/OpenFlow and problem
statement. Section III provides design details of our PBS
solution. Performance evaluations with use cases are presented
in Section IV and further discussions are addressed in Section
V. We review related work in Section VI and conclude the
paper in Section VIIL.

II. BACKGROUND & PROBLEM STATEMENT

In this section, we first briefly review the background
of SDN. Next, we motivate the need for a dynamic, pro-
grammable system for the granular management of BYOD
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Fig. 1: The Concept of SDN/OpenFlow

apps in enterprise networks. We then present the research
questions in our problem space.

A. SDN/OpenFlow Background

Software-Defined Networking (SDN) has emerged as a
promising technology to innovate the ossified network infras-
tructure. This paradigm decouples the control and data planes,
thus allows for sophisticated and flexible control plane traffic
management. As the most widely used realization of SDN,
OpenFlow defines an interface between the control plane and
the data plane.’

Figure 1 depicts the operation of an SDN/OpenFlow net-
work. A switch contains simple forwarding fabrics in the data
plane (for physical ports) and forwarding rules for ingress
packets to look up where to transmit the packets among
the ports. If a flow rule matches a specific packet, the data
plane executes one of the following actions: (i) forward the
packet, (ii) drop the packet, or (iii) send the packet to the
control plane. If no rule matches, the switch sends a new
flow request (i.e., Packet-In message) to the controller for
a flow rule installation. The control plane manages the data
plane by instructing the installation of new flow rules via
Flow-Mod messages. The control plane keeps track of the
physical information, such as ports of connected switches via
Port-Status messages. Such physical information facilitates the
flow rule decision-making process. Additionally, the control
plane maintains a holistic view of the network by requesting
and retrieving link layer discovery protocol messages (LLDP)
which aid in the construction of network topology. Lastly,
messages such as request/reply (i.e., Stat-Request/Reply) are
used to check the statistics of traffic and Packet-In messages.
The messages provided by the control plane are, in turn, used
by control applications which provide higher order logic for
network control. The applications consist of programmable,
software logic which provides SDN network management
services. The boundary between the network applications and
the control plane protocol messages is commonly referred to
as the Northbound APIL.

B. Motivating Examples

A commonplace BYOD scenario grants employees the
ability to utilize their personal devices in the workplace. By

'In this paper, we use SDN and OpenFlow interchangeably.

doing so, the employer benefits in a reduced cost overhead
associated with physical device acquisition. However, support-
ing employee-owned devices creates new issues in network
administration and security.

Application Awareness & Network Visibility. A key issue
in BYOD enterprise network administration is the maintenance
of a holistic view of devices and their application behaviors
on the network. Although it is possible to observe basic device
connection activities via traditional network monitoring tools.
Advanced information, such as device context and detailed
application-connection information is invisible to traditional
tools. For example, an application could send data through
a network interface, such as 3G/4G interfaces, normally not
visible to the enterprise network administrator. Furthermore, it
is currently not possible to correlate application network activ-
ities with the hosting device’s physical location. Such physical
information is highly useful in crafting detailed management
policies in the enterprise, but cannot be discerned by traditional
tools.

Additionally, the issue of enforcing network-wide security
policies on BYOD devices is of critical importance. For
example, a scenario in which the administrator attempts to
restrict access to company resources, such as a data server,
only to a specific enterprise-allowed application while a
device is present in the server room. Access restriction by
devices could be implemented by traditional infrastructure via
a static scheme, e.g., a network-wide firewall rule. However,
it has two limitations: First, existing methods cannot account
for device and application context, e.g., application context,
mobile location, and network flow information specific to
the device/application; Second, static policies cannot react
to changing network dynamics. For instance, events such as
new devices entering the network, device context updates or
suspicious activity analysis all require additional logic beyond
static configuration.

Dynamic Policy Programming. The ability to provide
dynamic policy programming/updates is a key motivation in
our work. For example, a network administrator may wish to
provide application-specific time and location context restric-
tion, such as allowing social media applications only during
lunch hours and in areas designated as break areas during
predefined hours. It would also be advantageous to specify
dynamic policies, capable of redirecting malicious/suspicious
traffic for further inspection or quarantine at security middle
boxes, e.g., in the case of a device/application which suddenly
exhibits suspicious network behavior.

C. Research Questions

The aforementioned functions require detailed, fine-grained
device and application monitoring not possible in existing
solutions. Motivated by the issues outlined above, we discuss
the following research questions.

e Can we use traditional solutions? Traditional secu-
rity solutions (e.g., ACLs/firewalls) are difficult and
inflexible to program, deploy, and manage in dy-
namic, network- and application-aware security policy
enforcement for BYOD scenarios. Also, traditional
access control policies are typically coupled with
physical devices/resources instead of applications. We



need a new security framework to handle BYOD-
specific access control management.

e Can we apply the legacy SDN infrastructure?
The SDN infrastructure requires network devices (i.e.,
switch and router) to be SDN-enabled. While the con-
troller can be deployed on existing commodity hard-
ware, underlying network devices must still be SDN-
enabled in order to construct programmable/SDN net-
works. For large networks, upgrading or switching
to SDN-enabled hardware can be costly. Even if we
assume that the organization is already armed with
SDN infrastructure, it is still insufficient to enable
fine-grained application control. This is because ex-
isting SDN networks have difficulty in distinguishing
the source/destination of application packets to/from
network devices. Furthermore, many modern BYOD
devices are equipped with multiple physical/logical
network interfaces capable of connecting to different
types of networks (e.g., 3G/4G, private networks using
WiFi direct or device pairing). This leads to a loss
of global network visibility in the enterprise network
because legacy SDN controllers do not manage traffic
on such additional networks/interfaces.

e  How much granularity we should provide? Existing
network information such as layer 3 and above is
required to implement basic security policies. How-
ever, this information is not sufficiently granular for
providing advanced security policies. For example, it
is necessary to include layer 2 header fields in order
to inspect and control L2VPN and VLAN tags. Such
information is useful to network administrators and
security middle-boxes such as intrusion detection sys-
tems (IDS). Moreover, network flow information alone
does not provide a full picture of BYOD devices. In
order to gain a holistic view of device activity we need
to couple application information and application-
aware user contexts with network flow information.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of our PBS system, which mainly includes PBS-DROID, an
Android version of PBS client, and PBS CONTROLLER. With
consideration for the issues described in Section II, we first
summarize our design goals as follows:

Fine-grained Access Control. Our system aims to provide
fine-grained access control to application-specific network
flows and extraction of rich application-specific details such
as context and layer-2 information.

Dynamic Policy Enforcement. Our system aims to provide
enterprise administrators with the ability to enforce dynamic
access control at run-time based on application-specific policy
and network behavior.

Network-wide Programmability. Our system aims to pro-
vide a programmable network-wide policy enforcement system
to enterprise network administrators.

Minor Performance Overhead. Targeting mobile devices,
our system aims to minimize performance overhead and re-
source consumption.
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Fig. 2: Abstraction of PBS-DROID with the SDN concept

A. Trust Model

In this paper, we assume that the enterprise network is
trusted and our system is installed/enforced on BYOD Android
devices previously vetted and authenticated by the administra-
tor. As is common practice in existing MDM solutions ([1],
[3], [5], [6]), the device is only used according to the terms of
use and privacy agreement of the corporate BYOD program.
In addition, the network traffic from the users’ devices is
monitored by IT admins only at the work place as per user
agreement and apps run inside the separate domain (e.g., work
profile in Android for Work and container in KNOX) for
enterprise use. For the purposes of our system design, we
assume that the Android framework, libraries, and the kernel
layer of the Android device are not compromised, and the
Android OS is trusted. We also assume that the device does
not have root privileges. This assumption is fully valid given
that all hardware vendors disable root privileges on devices
prior to distribution. We also assume that the device has several
other apps that the user has installed in a private domain other
than enterprise-allowed apps. In addition, the communication
between PBS-DROID and PBS CONTROLLER is secured (e.g.,
by SSL). PBS does not deal with the security risks related
to data encryption and storage, which are handled by existing
complementary MDM solutions. Also, some controller-specific
deployment and scalability issues (e.g., physical/logical con-
figurations/distributions, distributed control planes, high avail-
ability) are out of the scope of this paper.

B. Modeling and Coupling Inside the Device

In this section, we describe the core design concept that
facilitates our system’s application-flow management on the
mobile device. We draw a parallel between the SDN data
plane switch and our design, which embraces the concept
of a “virtual” switch as shown in Figure 2. While an SDN
data plane facilitates communication amongst a set of network
devices via a port-host mapping, a “virtual” switch provides
communication between virtual ports and software-entities.
To enable application-flow management, we treat all mobile
device applications and network interfaces (e.g., WiFi, 3G/4G)
as network port entities on a virtual switch. By mapping
applications and network interfaces to unique virtual ports,
we enable flow management of all application network traf-
fic inside of our virtual switch. This allows for easy flow
management and efficient application flow isolation, as well
as the utilization of existing SDN concepts, which readily
function in data plane switches. Furthermore, we couple device
context information, such as time and GPS location, with each
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application network flow. In this way, the controller is granted
access to not only application network flow information but
also the context of the application during network activity. This
enables the controller to perform advanced decision making
with fine-grained connection and context information on a per-
app basis for each managed mobile device.

C. Architecture and Operation

As illustrated in Figure 3, our system consists of three key
components: PBS CONTROLLER, PBS-DROID, and BYOD
application.

High Level Composition. First, PBS CONTROLLER pro-
vides the core features needed to facilitate administration
actions such as policy definition and enforcement. Two core
controller sub-components, Flow Manager and Policy Man-
ager, provide administrators with expanded management oper-
ations. Flow Manager provides transparent flow management,
operating much like existing SDN controllers. While the Pol-
icy Manager implements BYOD-specific policy management
which cooperates with the Flow Manager. The access to the
managers is exposed by the Southbound and Northbound APIs
to PBS-DROID and controller applications respectively. The
Southbound APIs provide interfaces for registering, removing,
and modifying flow-rules and policies by PBS-DROID. The
Northbound APIs provide interfaces to define flow rules and
policies, flow handlers, and policy protocol handlers via con-
troller applications.

Second, we provide a BYOD controller application layer
which levies the Northbound APIs to provide a programmable
interface for network management operations to the admin-
istrator. The BYOD application allows operations such as
defining flow rules and policies as well as monitoring and
analyzing flows/packets and running security functions.

Third, PBS-DROID contains Data Plane which is com-
posed of a flow table and network interfaces just as in
the standard SDN architecture, however, PBS-DROID also
includes additional mappings which identify Android appli-
cations and interface bindings as discussed in Section III-B.
The Management Plane component monitors and manages
device contexts, such as time and location. The Policy Engine
maintains the policy table and executes conditional policy
actions according to the device contexts at run-time. For
example, the Management Plane will notify the Policy Engine
of a device location update, which in turn may make a new
policy action by installing a device/app flow rule.
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Fig. 4: Operations of PBS

In total, the systems which comprise PBS provide an ex-
tension to the Android platform to run dynamic, fine-grained,
context-aware policy enforcement and network access control.

Sample Operation. To show an example of the operation
of PBS, suppose that we have a device with two applications
installed, a non-business app® and an enterprise business app
as illustrated in Figure 4. The network administrator specifies
a policy to allow only the enterprise business app to access
a company network via standard wireless interface (WiFi)
while the employee is at work with the device. The controller
enforces this policy by instructing PBS-DROID to install flow
rules on the user device which restrict all user app’s network
communications while the device is in the workplace location
context. When the device leaves the workplace it resumes
normal operation, as common practice in other systems such
as KNOX [7] which provides a work and home mode.

This simple example demonstrates the basic usage of our
system, however, much more sophisticated scenarios with
dynamic device context updates and programmable policies
are possible. For example, because PBS can monitor and
manage extremely fine-grained layer-2 information, we may
implement a VLAN tag on an application specific basis,
isolating application network traffic without modifying device
network configurations. The application needs not be aware
of our modification, in its scope of operation the packets
continue to arrive normally. Furthermore, a set of devices can
be dynamically placed on an L2VPN (virtual private network)
during a context switch, such as a location change from one
building to another in the workplace. Lastly, the controller can
monitor all application flows active on the network at real-
time, thanks to the fine granularity of each flow. The controller
can reactively issue rules redirecting app traffic based on
activity, such as suspicious actions like network scanning. Such
features/actions are inspired by existing SDN security work
[24], [22], [20], [21] which addresses network threats using
SDN.

D. System Internals

PBS-DROID incorporates three components from a func-
tional perspective: Abstraction Layer, Data Plane, and Man-
agement Plane (illustrated in Figure 5).

2We assume that a user is allowed to install and run non-business apps
under enterprise permission.
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1) Enabling Fine-grained Access Control: In order to pro-
vide application-aware flow control with layer 2 granularity,
we present an Abstraction Layer and Data Plane as shown in
Figure 5.

Abstraction Layer serves two roles: (1) collecting
application-level semantics for PBS CONTROLLER, (2) adopt-
ing application-level control logic from PBS CONTROLLER.
For application-level semantics, we obtain a user identifier
(UID), a package name for each application on a device,
which is extracted from the Android PackageManager at
the framework layer as shown in Figure 6. The UID serves
the purpose of identifying application flows, this is because
the flow-connection-information is not correlated with other
application unique identification information. The package
name identifies an application by name, however it is a long
character string and sending such a long name in a packet may
unnecessarily reduce system performance. Thus, we employ a
hashing mechanism to convert the string to an unsigned integer.
The UID and package name hash are then sent to the Data
Plane for further processing.

Upon receipt of the arbiter message containing the UID
and package name hash, the Data Plane creates an internal
virtual interface using another hash value, calculated from the
concatenation of the UID and package name hash. The virtual
interface is then added to the bridge of the datapath, via the
standard Linux function. Thereby, the bridge-registered virtual
network interface name uniquely ties both the Android package
name and the Linux network stack connection flow. When the
status of an application changes, App Status Checker sends the
change of states to the Data Plane and the status is interpreted
to the status of corresponding virtual interface accordingly.

This abstraction scheme enables us to treat an application-
specific virtual interface as a normal network port with great
ease. That is, application attributes are informed to the con-
troller during a secure connection handshake through a Port-
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Status message and the equivalent status of a virtual interface
is reported to the controller seamlessly. As a safeguard, a
fingerprint of the key used to sign the package may be sent
to the PBS CONTROLLER for the purpose of application
validation, which allows for discerning of possible duplicate
identifiers which may arise from the application-level informa-
tion extraction.

Data Plane is the forwarding fabric that manages fine-
grained flows inside PBS-DROID. The functionality of the
Data Plane stems from its maintenance of flow tables which
contain flow rules, which are used for the enforcement of
access control logic as shown in Figure 7. The internal bridge
(layer-2 interface) is linked to the local network stack and
contains both physical and virtual interfaces in order to capture
layer 2 frames. When an interface receives packets, the Data
Plane checks the flow table for matching flow entries. If
there is a match (from layer 2), it executes the corresponding
actions (e.g., forwarding, drop, controller); otherwise, a new
flow request message is sent to the controller for further flow
decision making. We have two types of flow tables to store
flow entries, one in user space and the second in kernel
space. The kernel space table supports fast match lookups
via a kernel cache, while userspace table allows full match
lookups using a proactive tuple space search. Besides the
normal packet processing from a physical network interface,
an additional mechanism for handling application-aware flows
through application-specific virtual interface is required. This
is because in order for packets from an application to pass
through the corresponding virtual interface, we must hook
the packets before they reach layer 2 and forward them
to the corresponding interface. Here, we utilize netfilter to
hook packets after the local network stack completes packet
processing. To do so, we install the netfilter hook inside the
data plane and capture the packets at NF_POST_ROUTING
level. When a packet is hooked, we extract a UID from the
socket buffer (struct sk_buff) and look up a matching package
name and UID. Then, we forward it to its mapped virtual
interface through the mapper which is generated in the Data
Plane via the abstraction layer. The operation is done by
redirecting the netdev pointer of sk_buff in the kernel module.
This mechanism enables us to forward an application packet
to the virtual interface in a much faster and more effective
way than using the standard user-space network commands
such as ip, route. On the other hand, the reverse direction of
a packet from the network interface to an app is managed by
the controller by using a flow rule. The application-aware flow
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TABLE I: Policy Protocol

Message | Type | Direction | Description
OFPT_FEATURE_REPLY |OF |From Device | Device Info
OFPT_PORT_STATUS OF | From Device | App Status

PBS_REGISTER_POLICY | PBS | To Device Add Policy
PBS_REMOVE_POLICY |PBS | To Device Remove Policy
PBS_MODIFY_POLICY |PBS |To Device Modify Policy

PBS_REPORT PBS | From Device | Result, Info

management scheme provides an application-flow slicing by
the controller so that app-flows can be easily isolated among
applications by the flow rule.

2) Enforcing Dynamic Context-Aware Policy: In this sec-
tion, we describe the Management Plane which facilitates en-
terprise policy storage, device context update lookup, and PBS
CONTROLLER communication. It consists of three components
residing on the mobile device: Policy Engine, Arbiter, and
Control Channel.

The Policy Engine maintains an administrator-defined pol-
icy table on the mobile device. Note that entries in the table are
not specified by user, instead they are composed by the PBS
CONTROLLER from our High-Level Policy Language (shown
in Figure 10) discussed in Section III-E. Each composed
entry in the policy table consists of three parts: predicates,
actions, and a match field. Predicates are a set of multiple
conditions separated by conjunction, e.g., time is noon and
location is building a. Actions are associated with flow rules
for policy enforcement. For example, an action may modify the
corresponding flow rule or packet header fields in Data Plane
to redirect, mirror, or quarantine the flow. This scheme allows
us to tightly couple a flow with a user-context based policy,
which is not supported by existing SDN/OpenFlow. Lastly, a
match field is used to identify policy to flow rule associated.
The match field allows a wildcard in order for multiple flows
to be associated with a single common/global policy entry,
which saves the size of the policy table.

The Arbiter provides the function to retrieve Android
device context, which is done in real time by listening to
predefined PBS-DROID relevant events, detailed in Table II.
The Arbiter serves the function of monitoring device specific
context updates and sending them to the Policy Engine. When
a policy entry predicate is satisfied with a context event, the
corresponding policy action is carried out. Figure 8 depicts
the procedure of the policy registration from Control Plane to
Management Plane via the Arbiter. The Arbiter not only causes
the Policy Engine to perform flow-control actions in response
to context changes, but triggers the engine to notify the PBS
CONTROLLER of device contexts according to the policy via
the control channel.
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Fig. 9: PBS CONTROLLER Flow Diagram and Interfaces

The control channel facilitates the secure communication
between the Management Plane and PBS CONTROLLER. The
connection is secured via SSL/TLS and serves two purposes.
First, the control channel allows for basic OpenFlow protocol
messages, such as flow rule updates and controller decision
queries. Second, the control channel processes our policy
protocol (as shown in Table I) allowing bi-direction commu-
nication between the controller and PBS-DROID for policy
management. The protocol borrows from OpenFlow in its
design, directly utilizing two existing OF messages without
modification and adding four new PBS specific messages. This
is because we encode application information into the virtual
interface port name, feature reply and port status messages
allow us to query for the port name and status respectfully,
yielding application information transparently.

E. PBS CONTROLLER

In this section, we describe the PBS CONTROLLER which
provides a central programmable interface to the network ad-
ministrator. Our controller design involves utilizing an existing
SDN controller with new extensions, detailed as follows.

Network Programmability. As previously stated in Sec-
tion III-C, the controller provides functions via Northbound
APIs for network-flow and policy management. These API
function calls are coded into the BYOD application in the
controller implementation language (e.g., Java). The resulting
application allows for modification and enforcement of net-
work policies and actions in real time when it is loaded by
the controller. The power of our application stems from its
ability to use the controller APIs with high level language
and all of its features. Thereby, an administrator can utilize
sophisticated programming techniques to create intricate and
dynamic network policy enforcement applications. The po-
tential of such extensions is vast. For example, a network
behavior learning application can levy existing techniques such
as machine learning in order to more effectively police the
network.

In order to provide convenient facilities for BYOD ap-
plication development in the enterprise, PBS CONTROLLER
consists of three high-level components: (i) OF Channel,
(i) Core, and (iii) Admin. OF Channel establishes a secure
channel to PBS-DROID. The Core component contains Flow
Manager and Policy manager to handle flows and policies.
The Admin component includes an enterprise policy storage
database, Statistics/Context Trigger to manage device infor-
mation, statistics, and contexts as well as controller BYOD
policy applications. Figure 9 illustrates the flow diagram and
interfaces of PBS CONTROLLER. OpenFlow/PBS messages



TABLE II: Events Tracked by PBS-DROID Arbiter

Type Description

Port Status When applications and NICs up/down is modified.

Location When a device enters/leaves a specific area according to the policy.
Time When time is in a specific range according to the policy.

User Behavior | When a user changes Settings, Permissions, foreground app, etc.

Device

When the device goes into power down/up, recovery state.

Role User’s role changes (guest, employee, etc.).

Device Mode

Device switches to Normal/Sleep/AirPlane mode.

Target := APP (APP_ID | APP_NAME | ALL) |
APP_GRP (TRUST | THIRD_PARTY | UNKNOWN)
| DEVICE (DEV_ID | GROUP |
UNATHORIZED | ALL)

Match := OF_MATCH

Predicate := {Event + Condition}

Event := PORT_STAT | LOC | TIME |
USR_ROLE | DEV_MODE | CNTRL_STATE |
PKT | RATE

Condition := {Operator + Value}

Value := DECIMAL_NUMBER

Actions := Control | Manage | Trigger

Control := ALLOW | DENY |

{REDIRECT | MIRROR | QUARANTINE} +
ADDR (IP | CONTROLLER)

Manage := REPORT | OF_ACTION

Trigger := IMMEDIATE | PERIODIC + Value

Fig. 10: Syntax for High-Level Policy Language

sent by PBS-DROID are delivered to OF Channel in the
controller first. It then parses standard OpenFlow and PBS
messages, and passes them to the corresponding manager; i.e.,
the former is delivered to Flow Manager and the latter to Policy
Manager. In case of new flow request messages, Flow Manager
sends them to Policy Manager. Then, the messages (OpenFlow
statistics, PBS Report) are passed to Statistics/Context Trigger
for further monitoring, and other messages go through BYOD
applications. Apart from the message flow, applications also
have access to policies via the Northbound APIs. The inter-
faces available to administrator/app developers enable an easy
way of development to handle BYOD policy enforcement.

High-level Policy & Flow Management. The Northbound
APIs available to the controller-application provide an addi-
tional high-level abstract language, shown in Figure 10. This
policy language facilitates the network administrative policy
assignment in a simpler fashion, requiring significantly less
familiarity with SDN/OpenFlow concepts in order to manage
the network. The language serves as our BYOD manage-
ment extension to the existing SDN controller. Our language
contains four basic elements, i.e., Target, Match, Predicate,
and Actions. Target defines the specific Android application,
device, or groups which the policy targets. If APP/DEVICE
is specified as ALL, it indicates the policy is applied to all
applications/devices as a global property. Match defines a filter
to match and associate a flow with a policy. Predicate describes
a list of device context events (shown in Table II) and condition
for which the policy should react, such as time or location.
Lastly, Actions specify access control, management decision,
and trigger option the policy should enforce if the predicate is
satisfied, e.g., modifying a flow rule to limit device access to
a network resource.

<Policy PolicyID=Emplyee>
<Target app=com.facebook.android app_grp=THIRD_PARTY>
<Match>nl_dst=66.220.144.0</Match>

<Predicate>USR_ROLE=Business, TIME ge 0800, TIME le 1800

</Predicate>
<Actions>
<Control>REDIRECT=CONTROLLER</Control>
<Manage>REPORT</Manage>
<Trigger>IMMEDIATE</Trigger>
</Actions>
</Target>
</Policy>

Fig. 11: Policy Example 1

<Policy PolicyID=All_Unauth_Dev>

<Target device=UNAUTH app=ALL>
<Match>x</Match>
<Predicate>TIME ge 0800,TIME le 1800</Predicate>
<Actions>
<Control>REDIRECT=123.45.67.8</Control>
<Manage>OF_ACTION (set_vlan_id)=UNAUTH_VID</Manage>
<Trigger>IMMEDIATE</Trigger>
</Actions>

</Target>

</Policy>

Fig. 12: Policy Example 2

Figure 11 illustrates a use case of our policy language. The
policy is defined via XML and stored in the policy database.
The example policy (Figure 11) implies that the administrator
disallows an employee access to Facebook during work hours.
Another example of a policy in practice is BYOD with NAC
(Network Access Control). The enterprise may attempt a com-
bination of the existing/outsourced NAC solution and MDM
to apply traditional network policies to new BYOD devices.
In such case, NAC can be used to check for the presence of
an MDM agent. Endpoints that do not have the agent can be
blocked or granted limited access (e.g., Internet access only).
NAC can ensure that employees must comply with MDM
policies if they wish to gain access to the corporate network.
Building operational processes (e.g., automating mobile device
registration and granting access) is key to scaling a BYOD
solution. This approach can be easily implemented with our
system in an incorporated way. The authentication is handled
during the initial setup process (Figure 14) and network access
control is automatically handled by BYOD applications devel-
oped for the enterprise. The example of the policy in Figure 12
shows a similar scenario that if a user’s device is not registered,
all packets are quarantined towards a middlebox via different
VLAN?. More complex management is possible by utilizing
multiple policies working in conjunction. By leveraging device
context information, a static policy, or a set of policies, can

3Use cases in Section IV show more BYOD-specific policies in detail.



<Policy PolicyID=Building Dev_Allow>
<Target device=grp_accounting app=ALL>
<Match>*</Match>
<Predicate>LOC = Building A</Predicate>
<Actions>
<Control>ALLOW</Control>
<Manage>REPORT</Manage>
<Trigger>IMMEDIATE</Trigger>
</Actions>
</Target>
</Policy>

<Policy PolicyID=Building_Dev_Deny>

<Target device=grp_accounting app=ALL>
<Match>x</Match>
<Predicate>LOC = Building B</Predicate>
<Actions>
<Control>DENY</Control>
<Manage>REPORT</Manage>
<Trigger>IMMEDIATE</Trigger>
</Actions>

</Target>

</Policy>

Fig. 13: Policy Example 3

describe device access controls dynamically, such as when the
device moves from one physical location to another in the
enterprise. Figure 13 illustrates this example. We specify two
policies for devices which fall into a hypothetical accounting
group. This group of devices is allowed full network access
in the location of building a, and no network access in the
location of building b. This example demonstrates the config-
uration potential and extensibility of our policy language. The
policy can be easily adapted to other enterprise scenarios by
administrators, with the key advantage of not requiring SDN
specific domain expertise, or PBS CONTROLLER application
source programming (e.g., Java).

PBS Protocol. As shown in Table I, the PBS protocol
consists of four new messages: PBS_REGISTER_POLICY,
PBS_REMOVE_POLICY, PBS_MODIFY_POLICY, and
PBS_REPORT. The PBS protocol is designed to provide
PBS-defined functions wupon the existing OpenFlow
protocol. Types of PBS messages are newly added as
an extension. The protocol format is included in the payload
of OpenFlow messages. Figure 14 depicts the sequence
diagram that describes the procedure of communication via
OpenFlow and PBS messages between PBS-DROID and
PBS CONTROLLER. PBS-DROID and PBS CONTROLLER
establish a secure connection with each other using SSL/TLS
via the standard OpenFlow handshake. In this procedure,
the difference from the OpenFlow handshake is that an
OFPT_FEATURES_REPLY message contains mobile device
information such as a unique device ID and installed
app information. Namely, all the OpenFlow messages are
tailored to PBS, not to the standard OpenFlow specification
(i.e., traditional network-oriented specification). PBS-
DRrROID then sends a PBS_REPORT message with user
context information as shown in Table II for further
authentication. Next, PBS CONTROLLER installs initial
proactive flow rules and policies including global properties
via OFPT_FLOWMOD and PBS_REGISTER_POLICY.
Once the initial setup is completed, PBS-DROID sends
an OFPT_PACKET_IN message to PBS CONTROLLER for
reactive policy management. In the mean time, OpenFlow (i.e.,
controller-to-switch, asynchronous, and asymmetric messages)
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Fig. 14: Communication via PBS Protocols

and PBS messages (i.e., register, modify, remove, and report
messages) can be sent to the controller simultaneously for
further management.

FE. Optimization Schemes

A significant challenge in Android devices is limited re-
sources. In this section, we discuss how PBS-DROID mini-
mizes the overhead while running on mobile devices.

Message PushDown. Due to our empirical experience with
SDN, we found that the message handling overhead (e.g.,
processing frequent new-flow requests and periodic statistical
messages) greatly throttles the performance of both a network
device and the controller. A simple mitigation for the overhead
can be addressed by controller applications by increasing
the flow timeout and statistics request period. However, a
high timeout period can cause the device flow table quickly
occupied to the limited size. A typical limitation in SDN
requires the application or controller to choose between a time
trade-off in flow rule persistence in the table by adjusting the
request period to an optimal request period. We mitigate this
trade-off by utilizing the policy table to specify a more detailed
flow timeout value which alleviates the burden of specifying
a trade-off optimal request period. For example, the device
context such as location or time can automatically remove a
rule when it is no longer needed, thus we do not need to guess
how long such a rule is relevant in the device table.

Two-tiered Programming Model. Although the message
pushdown scheme reduces the burden of handling new flow
requests using device context information, the administrator
may require detailed, active monitoring of device network
information. This entails sending flow information to the
controller in real time, undermining our previous pushdown
optimization. To mitigate this, we utilize minimum intelligence
to the device, which can react/program upon device events in



real-time to efficiently reduce communication overhead and
save processing overhead in the controller. Different from
the existing SDN switch software which has no conditional
logic, PBS-DROID maintains policy engine in the management
plane, where the policy table is managed. The policy language,
as shown in Figure 10, enables the administrator to define
complex predicates/conditions varying from user context to
packet statistics in conjunctive forms. Also, our actions support
OpenFlow actions and flow modification schemes as well as
BYOD security-related actions. Thereby, with low interaction
with PBS CONTROLLER the flow can be efficiently managed
inside the device.

Tailor to Mobile Device. When it comes to the mobile
device environment, simple adoption of existing SDN software
does not fit well on the device. This is because the SDN
specification targets traditional network devices and operations,
not the mobile device environment. For example, periodic
operations such as port monitoring, reconfiguration checking,
and LLDP (Link Layer Discovery Protocol), specified by
OpenFlow, can adversely affect the battery life and band-
width available to mobile devices, which is not a concern
in traditional network switches. However, many of the pe-
riodic operations (e.g., reconfiguration checking, LLDP) do
not impact the basic functionality of PBS-DROID. Rather,
those operations are not required for BYOD contexts. Also,
operations dedicated merely to traditional networks can be
ruled out or tailored to the mobile device. For instance,
emergent flow and fail-open/over mode are not required for
PBS. The operation of rate limit is redesigned to work as
a conditional rate limit by policy. Thus, we do not need the
full set of the specification functionalities. We remove such
periodic operations and facilitate an event-driven approach to
improve PBS-DROID performance. For instance, the userspace
daemon does not check port status and statistics in a while
loop; rather, the status checking is notified in an event-driven
fashion through a netlink from the Arbiter and a statistics
message is sent to the controller only when a policy action
is designated as Report.

Short-circuit Operation. A performance bottleneck of
PBS-DROID is drawn from the packet processing pipeline.
The pipeline processes a packet from an app as such: (i) a
mapping of application ID to a virtual interface, (ii) redirection
of the packet to the virtual interface, (iii) a flow table lookup
(further sk_buff copy and communication overhead in case
of miss), and (iv) a policy lookup. As defined in Figure 10,
our policy language allows the administrator to define global
properties that can apply to all devices or all applications. We
note that pipeline performance can be optimized by checking
global properties early in the pipeline. The short-circuit op-
eration thus checks for such bulk cases, allowing a skip of
subsequent pipeline steps where appropriate. This optimizes
the performance and saves CPU cycles, which is important to
the mobile device battery.

G. Implementation

Our prototype implementation of PBS CONTROLLER is
built as an extension to Floodlight v1.0. The extension runs
as Floodlight modules without impacting existing Flood-
light components and provides northbound APIs to BYOD
controller-applications we author. Although we currently only

10

support Floodlight, it is not difficult to extend PBS CON-
TROLLER to other SDN controllers, which we aim to address
in future work. PBS-DROID currently supports OpenFlow 1.0
and above for a secure communication between PBS-DROID
and PBS CONTROLLER. This can also be extended in the
future through the use of additional controller implementations.
Our prototype implementation of PBS-DROID leverages an
existing software switch, Openvswitch, which consists of three
core components: (i) ovs-vswitchd, (ii) datapath, and (iii)
ovsdb. ovs-vswitchd is a userspace daemon that establishes
a secure communication channel to the controller and inter-
communicates with the kernel datapath. The userspace datap-
ath maintains the full flow table and the kernel datapath keeps
a cache for microflow and megaflow for lookup speedup. ovsdb
maintains a persistent local database to store network config-
urations (i.e., bridge, ports, etc.). Beyond this architecture, we
modified the architecture with our optimization schemes ded-
icated to mobile devices and added new components designed
in Section III. For the new components, we implemented: (i)
application abstraction layer in the framework layer to provide
application awareness, (ii) PBS protocol handler in our secure
control channel, (iii) PBS-DROID Data Plane and Management
Plane in the kernel space, and (iv) Arbiter to manage various
user/device contexts at run-time.

IV. EVALUATION

Our design goals are fine-grained access control, dynamic
policy enforcement, network-wide programmability, and min-
imal performance overhead impact. In accordance with these
goals, our evaluation is two-fold: (1) to measure its perfor-
mance overhead (network level and system level) and (2)
to demonstrate use cases which showcase our capabilities to
enforce security policies on mobile devices.

A. Performance Overhead

Testing Environment. To measure the performance over-
head imposed by PBS-DROID on a real Android Device, we
use an LG Nexus 5 equipped with a Qualcomm MSM8974
Snapdragon 800 CPU and an Asus Nexus 7 tablet with an
ARM Cortex-A9. Both testing devices run Android system
version 4.4 (KitKat). Our network controller runs on Ubuntu
Linux x64 with a Quad Core CPU with 8 GB of memory.

1) Network Performance Overhead: The network overhead
of PBS is mainly incurred by the flow installation and policy
enforcement processes. These processes are always accompa-
nied by a flow lookup, a new flow request, and a flow/policy
installation between the device/controller over the network.
Thus, it is imperative that the network performance evalua-
tion should include flow and policy processing overhead. We
measure this processing delay by testing the average round trip
time of 100 packets from our testing devices (with and without
PBS) to popular high availability servers (e.g., google.com).
As shown in Table III, there is no notable increase in packet
round trip time introduced by PBS. We also note that these
delays include the flow installation overhead for the first
unknown incoming packet which is much higher than the
processing time for the following known packets. Once the
flow rule is installed all packets in the same flow will no longer
need to go through the controller. Both devices with PBS show



Server | NX5 | NX5(PBS) || NX7 | NX7(PBS)
google.com | 16ms | 18ms 18ms | 20ms
facebook.com | 43ms | 47ms 45ms | 49ms
yahoo.com | 59ms | 64ms 40ms | 42ms

TABLE III: Average Packet Processing Overhead

BW/0 PBS

BWw/ PBS

Fig. 15: Throughput Benchmark

similar packet processing delay. The overhead incurred by PBS
is negligible for both devices, inline with our goal.

In addition to packet processing overhead measurement, we
also test the overhead for PBS system on network throughput
by using a standard tool, iperf. In particular, we open the iperf
server as a communication port to listen to the client applica-
tion on the device, and set test duration as 10 minutes with
a two-second interval between periodic bandwidth reports.
As shown in Figure 15, the average overhead of bandwidth
for the Nexus 5 shows approximately 9% overhead and 7%
for the Nexus 7. Our evaluation results demonstrate that the
network bandwidth overhead is acceptable. We attribute this
performance impact to the implementation of the flow cache
and policy tables in the operating system kernel space.

2) System Performance Overhead: We evaluate the system
performance in the following order. (1) We compare the overall
system performance scores with and without PBS as measured
by standard Android benchmark tools. (2) We break down
and compare the overall scores into individual performance
metrics: CPU, memory, and battery overhead.

Benchmark Tools. We use four representative Android
benchmark tools for the evaluation: Antutu, Geekbench, Vel-
lamo, and PCMark. Antutu is one of the most popular
benchmark tools and comprehensively tests all aspects of the
device, including CPU, RAM, I/O, etc. Geekbench provides a
comprehensive measurement relative to other Android devices
in a scaled cumulative-score-manner. Vellamo* encompasses
several system-level performance metrics such as I/O, mobile
processor, and browsing. PCMark>’s tests are based on every-
day activities and reflect real-world performance by measuring
the battery life of the device.

Overall System Performance Overhead. In Figure 16a
and 17a, we show the overall benchmark scores. A higher
score denotes better performance in each scale/category. Based
on our evaluation, we observe an overall overhead of 5.3%
in Antutu, 1.1% in Vellamo, 6.0% in GeekBench, and 5.7%
in PCMark, introduced by PBS-DROID on the Nexus 5 as
depicted in Figure 16a. On the Nexus 7, the overheads are 1.4%
in Antutu, 5.3% in Vellamo, 5.0% in Geekbench, and 2.2%

4We use two metirics, Multicore and Metal, from the Vellamo benchmark.
SWe use all metrics of Work Performance (Browsing, Writing, Video
Playback, and Photo Editing).
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Attribute | NX5 |NXS PBS |Over. ||NX7 |NX7 PBS | Over.
Browsing | 3741 |3926 4.95% || 1972 | 2176 10.34%
Writing | 3174 | 3436 8.25% || 2202 | 2301 4.50%
Video 4118 |4276 3.84% || 3739 | 3893 4.12%
PhotoEdit | 4804 | 4948 2.99% || 2591 |2597 0.23%
Total 15837 | 16586 4.73% || 10504 | 10967 4.41%

TABLE IV: Battery Overhead Measurement (lower is better)

in PCMark respectively as shown in Figure 17a. The slight
differences between two Nexus platforms are mainly due to
the different hardware specifications and software/application
environments. Overall, the overheads for both devices are in a
reasonable range, no larger than 6% for either devices. Thus,
PBS-DROID does not exhibit significant system overhead from
our benchmark results.

CPU and RAM Overhead. To evaluate the CPU overhead
introduced by PBS-DROID, we run two benchmarking tools,
Geekbench and Vellamo, which include corresponding metrics
in comparison. As shown in Figure 16b, Geekbench shows an
overhead of 5.9% and Vellamo shows 2.7% overhead against
the without-PBS case on the Nexus 5. Also, we observe 5.3%
overhead in Geekbench and 7.3% in Vellamo on the Nexus 7
as shown in Figure 17b. In addition, we run two benchmarks,
Geekbench and Antutu, to evaluate RAM overhead. We observe
4.2% overhead in Antutu and 4.8% overhead in Geekbench for
the Nexus 5 and 0.8% overhead in Antutu and 0.2% overhead
in Geekbench for the Nexus 7 as shown in Figure 16c and 17c
respectively. The results for both devices showed negligible
overhead on CPU and RAM evaluation. Overall, we conclude
that PBS-DROID poses a reasonably low impact on CPU/RAM
overhead.

Battery Overhead. In order to verify our goal, we evaluate
the battery overhead to show its feasibility on a resource-
limited mobile device. We use PCMark for the evaluation.
Before testing, we charge the battery to full capacity (100%)
and test until the charge drops below 20%. Table IV summa-
rizes the overhead by battery attribute from work performance:
browsing, writing, video playback, and photo editing. The
writing metric shows the highest overhead of 8.25%, browsing
attribute incurs 4.95%, and the rest of evaluation attributes
show less than or around 4% on the Nexus 5. Additionally,
we note that PBS shows the highest overhead of 10.34% for
Browsing, while all other metrics show less than or around 4%
overhead on the Nexus 7. Overall, we note an average of 4.73%
battery overhead on the Nexus 5 and 4.41% on the Nexus 7
when using PBS-DROID. Accordingly, the evaluation shows
that PBS-DROID does not incur significantly greater battery
consumption compared to the stock Android device.

B. Use Cases

In this section, we demonstrate that security policies can
be effectively enforced with PBS.

Deployment Environment. In the scope of our eval-
uation, we deploy PBS-DROID to manage three buildings
in our campus facilities. Figure 18 shows the PBS-DROID
enabled scenario, designating the buildings as (B,, By, B.)
which together form our central controller-managed network
policy deployment. The colored areas of Figure 18 designate
the local-based enforcement radius of each building. Devices



BINXS

BNX5 PBS

BNX5 BNX5

B NX5 PBS E3INX5 PBS

3 3185
Geekbench gy J904
Geekbench

PCMark bz

Vellamo

1644
Vellamo

Antutu 1599

(a) Benchmark Result

(b) CPU Overhead

Geekbench

3] 2205
Antutu

(c) RAM Overhead

Fig. 16: PBS System Performance Evaluation (Nexus 5)

BINX7

BEINX7 PBS
Geekbench g2
Geekbench
PCMark

Vellamo g5

Vellamo

Antutu

(a) Benchmark Result

(b) CPU Overhead

BNX7 B@NX7

@ NX7 PBS BNX7 PBS

Geekbench

Antutu

(¢) RAM Overhead

Fig. 17: PBS System Performance Evaluation (Nexus 7)

Ce

b?

Fig. 18: Managed Facilities

within the radius will fall under location-specific context
policies, as measured by on-device high-accuracy GPS. Note
that the additional elevation sensitive radius is not shown in
the figure, which forms a location sphere encompassing the
entire building roughly.

Admittedly, building dimensions are seldom regular, mak-
ing it difficult to achieve perfect coverage. We note that a more
fine-tuned area specification with multiple overlapping, smaller
coverage areas can provide a higher resolution coverage of
building volume. However, since we seek to demonstrate our
system capability in a simple and concise fashion, we utilize
a basic building coverage designation for the sake of clarity.

Each building provides independent network connectivity
via multiple short range wireless 802.11g access points (APs).
In order to ensure device control, connectivity between the
PBS-DROID managed devices and the controller is maintained
throughout the devices life cycle in the network.

1) Use Case 1: Network Activity Logging: Network log-
ging and measurement is an essential feature in network
administration. The ability to monitor and log detailed net-
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work connection information is extensively useful in network
debugging, configuration validation, and security audits.

We evaluate the capability of PBS-DROID to easily facili-
tate device network activity logging, by developing a demon-
stration controller application, called netlog. While simple in
construction, less than 300 lines of Java code, netlog facilitates
both network view in depth and breadth. We provide the
administrator a view of network-wide information, participat-
ing device coverage across multiple buildings, subnetworks
and locations, while we simultaneously enable deep, device-
application specific connection information and network uti-
lization statistics in real time.

Our application logs our testing environment device con-
nection activity, network history, and location updates. The log
data provides an insight into detailed device activity on the
network previously invisible, such as the device-application
specific connection information. For example, we can observe
the time and location a device invoked specific applications
(email, social, enterprise specific, etc.). Furthermore, we utilize
a simple filter which narrows our gaze to individual devices
and provides an invaluable tool in formulating and fine-tuning
detailed network policies.

2) Use Case 2: Network Policy Enforcement: Although
network logging is essential to the passive administrator, it is of
little value without realtime context-specific programmability
to act upon it. The key insight is, PBS-DROID is capable of
reacting based on the device’s network and context specific
information.

We assess the ability to provide such capability by defining
a dynamic network policy to be enforced by our prototype
SDN controller application, netpol. Our policies demonstrate
useful and contextual device specific attributes such as Appli-



cation Specific Policy, Device Context Policy, and Device Role
& Authorization.

In our test case, we use two network mobile devices
(D1, D2), across multiple buildings described earlier. The
devices run several common android applications, (Dng p,c,q)-
Taking on the administrative role, we specify a simple network
policy designed to control communication between two devices
on the network based on device, application, and time context.
The policy aims to restrict inner network device and host

connections, specified in Table V.

Policy Action | Flow Application | Context

Deny D1 to/fro D2 | a is 08:00-12:00
Deny D1 to/fro D2 | a is 12:00-17:00
Allow D1 to/fro D2 | a is 12:00-13:00
Deny D1 to H1 b in B,

Deny D2 to H1 b in B,

TABLE V: Policies specifying
restrictions by context.

application, device, and time

When running application a, all network connection at-
tempts are monitored by the central network controller pro-
vided by PBS-DROID. When an instance of a attempts to
establish a connection between either device, the policy en-
forcement is triggered via a flow table lookup. If no rule exists,
the controller is queried for a policy decision. In the case of the
time context, the controller will issue a proactive rule update
precisely at noon, updating the policy table on each device.
We may also restrict application access to specific hosts or
services based on their location. For example, application b
may not access host H1, a secure database, unless the device
is present in the designated building.

An alternative policy scenario specifies location-based con-
nection management based on device role. We designate device
D1 as a trusted supervisor while D2 remains in a standard
employee role.

Connection Policy | Device Location | Application
Allow By D1,

Deny By D2,
Allow all c

Deny all b

TABLE VI: Location and Role Restriction

When the device context switches from one location to
another the controller (app) is notified, which in turn triggers a
local policy modification in the device flow table (as indicated
in Figure 19). In our scenario (as specified in Table VI),
application a has context-specific access based on the device
utilizing the app. While allowed by the supervisor D1 in
building B, an authorized device D2 may not run a in
By. Wildcard policies may also be applied. For example, we
never allow application b to access the network regardless of
its location, while an enterprise-authorized application, c, is
granted all accesses.

3) Use Case 3: Application Flow Path Management: In
addition to simple blocking based policies we also evaluate
more sophisticated actions, such as traffic redirection for the
purpose of security and network load management.
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Fig. 19: Inner Network Communication Restriction

We demonstrate such capability at device-application level
by implementing a load balancer controller-application, called
netbal. In addition to supporting device traffic routing, we
also leverage our ability to differentiate among application-
specific data flows. In our scenario, we attempt to balance
the bandwidth utilization across two applications a and b,
regardless of their host devices. Because we have access to
network connection statistics at run time, netbal can make the
decision to reroute all traffic originating from application a to a
different network end point. Another interesting application of
BYOD-enabled facilities is to use existing, dedicated, security
middle-boxes to inspect suspicious device/app activity when
necessary. To do so, we modify netbal to facilitate a different
type of network rerouting, i.e., quarantine redirection. We
create a basic white-list of authorized applications (a,b,c) and
redirect all other application traffic to a middle-box running
Snort for inspection.

V. LIMITATIONS AND DISCUSSION

Although PBS is able to provide dynamic fine-grained
policy enforcement with low overhead impact in BYOD
devices, there still remain hurdles in our current prototype
implementation. Here, we discuss those limitations and our
future work.

System Circumvention. Some malicious user activities
may intentionally seek company policy circumvention/vio-
lation. For example, in order to gain access to otherwise
restricted services/accesses, a user could attempt to simply
turn off their context function such as GPS. PBS-DROID,
however, is aware of such context switch updates, in which
case the device can be quarantined until GPS function is
restored. Furthermore, although our system drops all packets
in case of loss of secure connection, a user may attempt to
turn off our system by killing its associated processes and the
kernel module. However, this requires a user to obtain root
privilege on the device. Furthermore, a user may attempt to
ignore company policies by utilizing a device with no PBS-
DROID installation or an existing work device tampered to
remove PBS-DROID. We note that our system can operate
in conjunction with existing complementary MDM solutions.
The network administrators can rely on many available MDM
systems [5], [8], [4] for the assurance that a device used in
the workplace is properly authenticated, equipped with the
proper software client, and vetted for operation in the network,
a common BYOD enterprise practice [7].

Portability. Portability is an important factor in achieving
the necessary coverage in a BYOD deployment, which may



be composed of a multitude of operating system versions
and mobile devices. In order to support multiple versions
of Android, our system requires a few minor modifications.
Unavoidably, tightly integrated Android components, such as
the Arbiter, may require some source code modification to
support system/device specific information (e.g., PackageM-
anager, GPS, etc.). While PBS-DROID is an Android specific
implementation, our underlying design principle is portable
to other platforms. PBS-DROID can be extended to Linux,
Windows and Apple devices/machines with additional engi-
neering efforts. We acknowledge that not all BYOD devices
may support the full range of our context-based policies, e.g.,
devices that lack GPS capability will be limited in location-
based policy enforcement. In such a case our system may
utilize a more rudimentary location based check, e.g., grasping
information from the physical network connection of the
device, such as wireless access point or subnet information.

Protocol and Interface Coverage. First, our current im-
plementation of PBS-DROID only covers TCP network flows.
While many Android applications utilize standard TCP net-
work communication, it is possible to circumvent our prototype
via other protocols such as UDP. We note that SDN/OpenFlow
does support both TCP and UDP, as well as ICMP. Extending
our system to provide more comprehensive protocol coverage
is not difficult and merely needs more engineering effort,
which is a focus of our immediate future work. Second, as
noted in our design section we support both WiFi and 3G/4G
interfaces on the mobile device. There are, however, other
interfaces which an application may utilize for communication
such as Bluetooth and NFC (near field communication). Our
intention is to achieve greater interface coverage in future
work, which couples with broader protocol support as not all
interfaces may utilize the TCP/IP network stack.

Scalability of Controller. We assume that a BYOD ap-
plication is working on a normal-size enterprise network since
the BYOD application running on top of a controller is treated
just as a normal SDN controller application. Our components
to handle enterprise policies on top of flow management
incur not much performance overhead compared to normal
SDN applications running on a single controller. We note
that supporting large-scale enterprises is still an important
matter, which attributes to the scalability performance of
SDN controllers/networks. Existing research [14], [10], [28]
on SDN already shows promising results in reasonably large
enterprise/cloud/data-center networks.

SDN Attacks. Since PBS-DROID utilizes SDN concepts,
this might make it vulnerable to existing SDN attacks, such
as control plane saturation, which denies controller availability
[24]. An administrator, however, could mitigate such a threat
through the use of network policies which limit device-specific
network traffic or temporarily block offending devices. Exist-
ing SDN security systems [22], [24], [20], [13], [11] can aid
in the protection of a PBS managed network. Thus, security
concerns on SDN-centric vulnerabilities are not the focus of
this paper.
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VI. RELATED WORK

In this section, we review several relevant existing work.

Android Systems at Enterprise. Android Device Admin-
istration provides an API [2] which facilitates the creation
of stronger, security-aware Android applications. The API
provides a succinct number of static security functions, such
as limiting the minimum on device password length, disabling
the camera, and imposing shorter inactivity lock-out timers.
The static policies, however, fall short in addressing aforemen-
tioned issues, lacking the ability to provide reactive, or real-
time programmable policies or features. Android for Work [1]
and Samsung KNOX [6] provide a dedicated profile/container
system which separates corporate data from personal data
on the users’ devices. These systems expose APIs to MDM
solutions, which combined present a unified management
framework/platform for IT admins. Yet their feature set is
limited in functionalities for dynamic, fine-grained network
policy management, which is the focus of this work.

Some existing work [12], [9], [18], [27], [17] provides
device access restriction via policy enforcement. Operating at
kernel and application layer instead of network level, however,
these solutions do not provide access control to device-external
resources such as remote host communication. Despite using
policies, the above solutions do not support dynamic pro-
grammability, limiting their functionality to only passive static
policy enforcement. AirBag [26] uses a virtualization-based
approach to achieve isolation of trusted applications. This
solution can be extended to isolate personal apps from those
managed by the enterprise. Such approach is complementary
to PBS-DROID. Another recent work, DeepDroid [25], also
addresses the problem of BYOD policy enforcement in the
enterprise. By tracking the system APIs (system_server, zy-
gote, binder transactions), DeepDroid can enforce app-context-
aware policies. However, DeepDroid is limited by static policy
configuration, much like other previous work. Without the abil-
ity to offer a programmable management interface, DeepDroid
cannot account for scenarios which require reactive network
action, such as application-specific load balancing, quarantine
and context switch response in real time.

Lastly, meSDN [15] is another work which adopts the
concepts of SDN in the Android environment. The authors
solve a different problem where they use SDN in order to op-
timize interaction between cloud infrastructure and wirelessly
connected devices. They focus on WLAN virtualization by
moving app logic into the central controllers. Our solution is
broader in that we consider all network interfaces and data
flowing through each of these interfaces. We also provide
context-aware policies and network access control in PBS-
DRroOID, which is not provided at all by meSDN.

SDN/OpenFlow Security. Insufficient security consider-
ations in SDN/OpenFlow has led to an increased focus in
recent research. FRESCO [22] presents an OpenFlow security
application development framework which provides modu-
lar composable security services for application developers.
Avant-Guard [24] provides connection migration techniques to
solve the challenge of scalable control plane saturation attacks.
TopoGuard [13] is designed to solve new topology poisoning
vulnerabilities/attacks. SPHINX [11] provides a flow-graph
model to detect various traffic flow related attacks in SDN.



FortNox [20]/SE-Floodlight [19] support role-based authoriza-
tion and security constraint enforcement in order to solve flow
rule contradictions in real time, as well as providing several
other security protection at the control plane. Rosemary [23]
is a new security-oriented SDN controller which strengthens
the control plane. Different from all existing work, our paper
focuses on providing a network security policy enforcement
system for BYOD devices in enterprise networks.

VII. CONCLUSION

In this paper, we propose a new network security frame-
work for BYOD in enterprise networks, i.e., PBS (Pro-
grammable BYOD Security). Motivated by the new concept
of Software-Defined Networking (SDN), we provide an ap-
plication and network mobile devices management and policy
enforcement system PBS-DROID on the Android platform. We
achieve dynamic, fine-grained network control of applications
on mobile devices. With PBS, administrators also benefit
from the global network visibility and fine-grained policy
programmability. We introduce PBS-DROID as a concrete
client implementation for Android platforms. Without im-
posing much performance overhead, PBS-DROID can effec-
tively enforce the dynamic network access control policy with
consideration of users’ context information. We believe PBS
greatly complements existing security solutions and represents
a new direction for the important BYOD security domain.
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