
NEIGHBORWATCHER: A Content-Agnostic Comment Spam Inference System

Jialong Zhang and Guofei Gu
SUCCESS Lab, Department of Computer Science & Engineering

Texas A&M University, College Station, TX
{jialong,guofei}@cse.tamu.edu

Abstract

Comment spam has become a popular means for spam-
mers to attract direct visits to target websites, or to manip-
ulate search ranks of the target websites. Through posting
a small number of spam messages on each victim website
(e.g., normal websites such as forums, wikis, guestbooks,
and blogs, which we term as spam harbors in this paper) but
spamming on a large variety of harbors, spammers can not
only directly inherit some reputations from these harbors
but also avoid content-based detection systems deployed on
these harbors. To find such qualified harbors, spammers
always have their own preferred ways based on their avail-
able resources and the cost (e.g., easiness of automatic post-
ing, chances of content sanitization on the website). As a
result, they will generate their own relatively stable set of
harbors proved to be easy and friendly to post their spam,
which we refer to as their spamming infrastructure. Our
measurement also shows that for different spammers, their
spamming infrastructures are typically different, although
sometimes with some overlap.

This paper presents NEIGHBORWATCHER, a comment
spam inference system that exploits spammers’ spamming
infrastructure information to infer comment spam. At its
core, NEIGHBORWATCHER runs a graph-based algorithm
to characterize the spamming neighbor relationship, and re-
ports a spam link when the same link also appears in the
harbor’s clique neighbors. Starting from a small seed set of
known spam links, our system inferred roughly 91,636 com-
ment spam, and 16,694 spam harbors that are frequently
utilized by comment spammers. Furthermore, our evalua-
tion on real-world data shows that NEIGHBORWATCHER
can keep inferring new comment spam and finding new
spam harbors every day.

1 Introduction

Spamdexing (also known as web spam, or search engine
spam) [25] refers to the practice of artificially improving

the search rank of a target website than it should have. The
rise of such spam causes unnecessary work for search en-
gine crawlers, annoys search engine users with poor search
results, and even often leads to phishing websites or mal-
ware drive-by downloads. In a recent study [15], Google
reports about 95,000 new malicious websites every day,
which results in 12-14 million daily search-related warnings
and 300,000 download alerts.

To boost the ranking of the target websites, spammers
have already developed lots of spamdexing techniques [25]
in the past few years, most of which also called Black Hat
SEO (Search Engine Optimization). Text and Link manipu-
lations are two main SEO techniques frequently abused by
spammers to exploit the incorrect application of page rank
heuristics. Through injecting excessively repeating contents
in their websites or changing the perceived structure of we-
bgraph, spammers have successfully improved their search
ranks in the past [6]. However, since search engines have al-
ready developed new techniques to detect these content/link
manipulation tricks [9, 11], spammers begin to change to
another new trick of spamdexing, named comment spam-
ming. Comment spamming refers to the behavior of auto-
matically and massively posting random comments or spe-
cific messages (with links to some promoting websites) to a
benign third-party website that allows user generated con-
tent, such as forums (including discussion boards), blogs,
and guestbooks. In this paper, we refer to those benign vic-
tim websites that are frequently used by spammers to post
comment spam as spam harbors (or sometimes harbors for
short). This new trick of comment spam can benefit spam-
mers in several ways: (1) spammers can easily inherit some
reputations of these harbors with nearly zero cost; (2) the
risk of being detected by search engines is reduced; (3)
spammers can easily disguise themselves as normal visitors
who also contribute content.

Most existing state-of-the-art approaches to detect com-
ment spam use three types of features: (1) content-based
features [24, 31], e.g., the utilization of certain words, con-
tent redundancy/frequency, topic or language inconsistency;
(2) context-based features [32], which mainly refer to the

existence of URL cloaking or redirection techniques (be-
cause normal URLs rarely use them); (3) behavior-based
features [33, 23], which mainly refer to the time difference
between main article and comment posting (which is typi-
cally short in normal cases). Unfortunately all of them have
their clear limitations and spammers already become more
agile in evading them. To evade content-based detection
[24, 31], spammers can artificially manipulate their posting
content by mixing spam links with normal content, or post-
ing very few content on each harbor site but spamming on
a large variety of harbors. Thus they can easily disguise
themselves as normal visitors, and remain not detected. In
[32], the authors used context-based features, i.e., checking
the use of URL cloaking or redirection tricks, which is ef-
fective for certain type of spam. However, it has a low cov-
erage in the detection scope, because most comment spam
currently is mainly used for search rank manipulation [33].
Thus, URL hiding/cloaking is no longer necessary and less
used. The limitation of time differences between main arti-
cle and comment posting [33, 23] is also clear; it is applica-
ble to only some blogs, which are time sensitive, while not
easily applicable to more broader websites such as forums,
guestbooks. As we can see, within these three types of fea-
tures, the later two typically may not work well alone, thus
they are suggested to combine with content-based features.
Finally, we note that another limitation for content-based
detection is that the training overhead is typically high; it
needs to be trained and updated constantly (with the fast-
changing web contents) and it has to be customized specifi-
cally for each individual website.

Complementary to previous work on comment spam de-
tection, we approach the problem from a new perspective,
i.e., we focus on exploiting the structure of spamming in-
frastructure, an essential component of comment spamming
(which is relatively stable), rather than the content (which
changes frequently). The intuition behinds structure-based
inference is that, while spamming content can be dynamic,
spamming campaigns and spamming structure are much
more persistent. If we can recognize spamming patterns
that characterize the structure of spammers’ infrastructure,
then we can continue to detect spam even if the spammers
frequently change their spam content.

Driven by profits, spammers always want to take full ad-
vantage of their resources (e.g., spam harbors). Usually
there are two ways to achieve this goal: massive spamming
on a few harbors, or posting few on each harbor but spam-
ming on a large variety of harbors. If spammers post sim-
ilar spam content massively on a few harbors, it is easy to
be detected by content-based detection systems. However,
if spammers post spam on a large number of harbors, the
chance of detection at individual harbor is reduced. In par-
ticular, spammers typically keep using their familiar har-
bors, because these websites may not have effective saniti-

zation/filter mechanisms or posting on them can be easily
automated, thus making a comfort zone for the spammers.

In this paper, starting from a seed set of collected spam,
we first perform a measurement study on spam harbors’
quality and the graph structure of spam harbors, which
reveals the structure of spammers’ infrastructure. We
find that spam harbors usually have relatively low qual-
ities/reputations, which is quite counterintuitive because
spammers are expected to spam on high quality harbors to
maximize their profits. To compensate the low reputations
of these harbors, spammers intend to keep using a large va-
riety of harbors for spamming. As for the structure of their
spamming infrastructure, we find that spam harbors in the
same campaign always post similar spam links at the similar
time, which reflects that spam harbors in the same campaign
always have close relationships while normal websites do
not necessary have such relationships.

Based on observations from this measurement study, we
design a system named NEIGHBORWATCHER. Our intu-
ition is that if the promoting link in a comment also ap-
pears in the neighbors (cliques in the spam harbor infras-
tructure) of this harbor, it has a higher possibility of be-
ing a spam message, because normal links are not nec-
essary always been posted on the specific set of harbors
that have been verified to be exploited by the same spam-
mer/campaign. NEIGHBORWATCHER uses a graph-based
propagation algorithm to characterize neighborhood rela-
tionships among collected spam harbors in order to infer the
spamming infrastructure. When a new comment is posted
with some link, NEIGHBORWATCHER performs a neigh-
borhood watch on the graph and calculates a suspicious
score based on the graph-based inference. With a prototype
implementation running on a real-world dataset, we show
that NEIGHBORWATCHER can keep finding new spam and
spam harbors everyday.

The major contributions of this paper are summarized as
follows:

• We present the first in-depth measurement study of the
quality and structure analysis of spam harbors. We ob-
serve that most of spam harbors have relatively low
reputations, which compels spammers to spam on a
large set of harbors. We also find that spammers al-
ways have a stable set of harbors and keep using them
to post spam unless they are blocked.

• We propose a graph-based propagation algorithm to
characterize spamming infrastructure and an infer-
ence algorithm to infer comment spam. Our new ap-
proach is content-agnostic and does not need train-
ing/customization on individual websites.

• We implement a prototype system and evaluate it on
real-world data. Through our evaluation, NEIGHBOR-
WATCHER has detected 91,636 spam links and 16,694

Figure 1. The Workflow of Comment Spamming

spam harbors in total. Among these, 1,364 spam URLs
have not been indexed by Google yet. In addition, 147
spammer IPs and 4,008 spammer email addresses can
not be found in existing spam blacklists. This implies
that our system can keep finding new spam, and giving
earlier warning than Google and existing spam black-
list services.

The rest of the paper is structured as follows. We de-
scribe the background and our target problem in Section
2. We discuss the measurement study in Section 3. We
describe the design and implementation of NEIGHBOR-
WATCHER in Section 4 and evaluation results in Section
5. In Section 6, we discuss various extensions and limita-
tions of NEIGHBORWATCHER. We present related work in
Section 7 and conclude our work in Section 8.

2 BackGround

In this section, we provide a brief overview of how ex-
isting comment spamming works. Then we present sev-
eral typical categories of harbors that are frequently used
by comment spamming.

2.1 Threat Model

As illustrated in Figure 1, in comment spamming, spam-
mers typical need to first find out suitable harbors, e.g.,
those with good reputations, those that can be automati-
cally spammed, or those that have weak or no sanitization
mechanisms. To achieve these goals, spammers usually use
different Google dorks [2] to find target harbors or simply
buy some harbors from underground markets. In this way,
they can get a set of harbors that can be used to automat-
ically post spam (labeled as 1⃝). These collected harbors
are usually some forums, blogs, or guestbooks that support
user contributed content, and normal users typically con-
tribute a lot on them. In this case, spammers can easily dis-
guise them as normal visitors, which makes content-based

detection inefficient. Then spammers need to verify these
collected harbors to assure that they can automatically post
spam on these harbors without being easily blocked. They
can do this by posting random normal content. After ver-
ification, spammers begin to spam on validated harbors in
a large scale (2⃝). As a result, when search engine bots
crawl these harbors, they will index the spam URLs posted
in these harbors, which can finally improve the search rank
of the promoted websites in the spam (3⃝). Thus, when
users search certain keywords through search engines, those
promoted spam websites may have higher search ranks than
they should have (4⃝), which may lead victims to click spam
websites in search results (5⃝). Or victims may directly
click the embedded spam links when they read those spam
comments, which will directly lead them to spam websites
(6⃝)

2.2 Categories of Spam Harbors

As described in Section 2.1, to launch efficient comment
spam, spammers need to carefully choose their spam har-
bors. Next, we describe three most common types of har-
bors frequently used by comment spamming.

Web blogs are typically websites where people can post
articles. Usually these blogs have comment areas for each
article, which allow visitors to comment on corresponding
articles. Thus, spammers can also use these comment space
for spamming. A possible detection feature of such spam-
ming is that spammers may post repeating spam comments,
and also the time difference between the article and the
spam comment could be longer than the normal case [33].

Forums are typically websites where people can have
conversations in the form of posting messages. Since most
forums need users to register beforehand, spammers can
also post their spam as long as they can automatically reg-
ister accounts for these websites. Since some of conversa-
tions could last for a long time, it is hard to detect this kind
of spam based on the posting time.

GuestBooks are typically platforms to let visitors to
communicate with corresponding websites. Most compa-
nies websites have their guestbook pages to let people leave
a message to their companies. GuestBooks are more agile
than blogs and forums, because there are no normal tim-
ing patterns and no conversations; everyone can leave any
message anytime with fewer restrictions.

Table 1 summarizes the effectiveness of existing differ-
ent types of detection features on different types of harbors.
We can see that content-based and behavior-based features
are relatively effective for blog spam. Articles in blogs usu-
ally have specific topics, thus it is easy to detect spam whose
content is not related to articles. Also it is less common
for normal users to comment on an out-of-date articles in a
blog. Unfortunately, most blogs still do not have any such
detection system, which leaves them still to be a good plat-
form for spammers. In the contrast, there are typically no
specific topics in guestbooks; everyone can leave any mes-
sage at any time. Thus guestbook spam is hard for all ex-
isting detection features. Context-based features, i.e., de-
tecting URL cloaking, do not have good results on all the
harbors because of the very limited effectiveness scope. In
short, as we can clearly see that existing detection features
are certainly not enough in fighting comment spam. The
need for effective and complementary techniques is press-
ing.

Table 1. Effectiveness of Different Types of
Detection Features

Features Content Behavior Context
Blogs good good bad

Forums medium medium bad
GuestBooks bad bad bad

3 Spam Harbor Measurement

Comment spamming, as a relatively new trick of
spamdexing, has been reported for quite a while, ever since
2004 [4]. However, until recently, comment spamming has
not been sufficiently studied, and existing approaches are
clearly insufficient as discussed earlier. To gain an in-depth
understanding of the comment spamming, we study the
problem from a new perspective, i.e., spam harbors, which
form the basic infrastructure for spammers. Why spammers
choose these harbors? Are there any special properties of
these harbors? Can we use these properties to help defend
against comment spam? In this section, we will try to an-
swer these questions and present what we have learned from
these harbors.

3.1 Dataset

To collect spam harbors, we started from 10,000 veri-
fied spam links Sstudy (which are collected from our pre-
vious work [27]) and collected a dataset containing 38,913
real-world spam harbors, which are represented with unique
domain names. Specifically, we searched all these spam
links in Google and collected the search results. Among
these search results, not all of them are spam harbors, e.g.,
some are security websites that report those search links
as spam, and some are benign websites1 that link to those
search links. However, we observe that spam harbors typ-
ically contain embedded hyperlink tags (e.g., anchor tag
< a href = ”...” > and BBCode [URL]...[/URL]). This
is because spammers perform automated posting on mas-
sive websites, and typically they are unsure whether their
target spam harbors support embedded links or not. Thus,
in order to achieve a high success rate of posting the spam
links, they choose to use embedded hyperlink tags [34].
Based on this observation, we only extracted those search
results with embedded hyperlink tags in their contents as
spam harbors.2

For each spam harbor, starting from the page that con-
tains our verified spam links, we further crawled all possible
pages on that website and recorded timestamps on the page
(typically these webpages always record the time when a
message is posted). Table 2 provides an overview of our col-
lected data. To study the differences among three categories
of harbors, we roughly group the collected harbors based
on their URLs. That is, if a harbor URL contains keywords
such as “blog”,“forum”,“guestbook”, we will cluster them
in blog, forum, and guestbook category, respectively. We
do not further distinguish remaining harbors without clear
keywords (listed as “other” in Table 2), and treat them as the
mixing of these three categories. Among 38,913 spam har-
bors returned by search results, 35,931 are still active so we
can crawl further pages on these harbors. We have crawled
more than 9 million postings in total.

3.2 Quality of Harbors

Since the goal of comment spamming is to improve the
search ranks of spam websites, the higher quality spam har-
bors have, the more effective comment spamming is. In this
section, we try to evaluate the quality (e.g., reputation) of
these spam harbors in the following three perspectives.

PageRank Score is calculated by PageRank algorithm
[29], which is widely used by search engines to rank the

1Since some of those search links are compromised benign links, they
may also be linked by other benign websites.

2Note that we may not extract a complete list of harbors in this way.
Instead, our conservative goal here is to extract spam harbors with a higher
confidence.

Table 2. Data Collection of Comment Spam Harbors
blog forum guestbook other total

of search results 27,846 29,860 31,926 500,717 590,349
of harbors (domain) 4,807 2,515 3,878 27,713 38,913

of active harbors 4,685 2,185 3,419 25,642 35,931
of postings 532,413 640,073 1,469,251 6,497,263 9,139,000

importance of websites. A high PageRank score indicates
a better reputation of the website, which can lead to a high
search rank. To evaluate the overall quality of spam harbors,
we use PageRank scores of spam harbors as an indicator of
the quality of them. We randomly choose 1,000 spam har-
bors in each category, and use Google toolbar [8] to auto-
matically request PageRank scores of these spam harbors.
Figure 2 shows the PageRank scores distribution of these
harbors.

Figure 2. PageRank Score Distribution of Har
bors

We can see that spammers target on both high-reputation
and low-reputation harbors. From the graph, less than
20% harbors have a PageRank score higher than 3, which
is the average PageRank score based on [18]. The rea-
son is mainly because that websites with high PageRank
scores usually have stronger spam sanitization mechanisms
or more strict posting rules, which make it harder for spam-
mers to keep automatically spamming on these websites.
In addition, about 40% guestbook harbors have PageRank
scores of 0, because most of them are small company web-
sites that do not have notable reputations. However, spam
links can still inherit and accumulate some reputation from
a large number of such harbors. At least, they can use this
way to let search engines to index them.

Life Time is defined as the time interval between the
posting time of the first spam and the recent spam (based
on our crawled dataset). Spammers tend to find some sta-
ble harbors that they can keep using. Thus, a long life time
should be a good indication of high quality for spammers.
Since there is no ground truth for the first spam and last
spam, we randomly choose 100 harbors in each category

and manually check their postings. Since we may not be
able to crawl all the pages inside a given harbor, our esti-
mated life time based on the limited crawled dataset is sim-
ply a lower bound. Figure 3 shows the distribution of life
time of spam harbors.

Figure 3. Distribution of Harbor Life Time

We can see that for both blog and forum harbors, more
than 80% harbors have a long life time more than 1 year.
And more than 70% guestbook harbors have a life time
longer than 2 years. During the manual checking process,
we found that for most harbors, the initial postings are
benign but later these harbors are frequently exploited by
spammers for spamming. Especially for guestbook harbors,
almost all the later postings are spam, which confirms that
these spam harbors are kept being used by spammers for a
long time.

Google Indexing Interval is defined as the time dif-
ference between two consecutive Google crawling (index-
ing) time of the same spam harbor. To reduce the crawler
overhead but also keep pace with dynamically updated web
pages, search engine bots need to periodically crawl web-
sites. Thus, there always exist a time lag between posting
time and search engine indexing time. A shorter time lag
(indexing interval) should be a sign of a high quality for
spammers, because search engines can quickly index the
new spam. Google Cache[7] contains the time when Google
bot crawled the web page. Thus we randomly choose 100
active spam harbors in each category 3 and crawl their cache
pages every day. Figure 4 shows the distribution of Google

3Note that Google Cache has a request limitation per day. Thus we
only choose 100 harbors in this test. Also, Google does not cache all web
pages, so we choose those pages that are cached by Google

indexing interval.

Figure 4. Googe Indexing Interval

Compared with guestbook harbors, blog and forum
harbors have relatively shorter indexing intervals because
normal postings on them update much more frequently
than postings on guestbooks. Thus, Google bots crawl
blog/forum harbors much more frequently than guestbook
harbors. However, still nearly 80% of all harbors have an
indexing interval larger than 20 days, which indicates that
the overall indexing frequency is still not too high.

Lessons learned: Although high-reputation harbors
should be the best choice for spammers, high-reputation
websites usually have more strict spam filtering mecha-
nisms or have stronger authentication systems, which makes
it harder for spammers to automatically spam on them.
Thus, spammers tend to keep using a large number of har-
bors for spamming regardless of their reputations to com-
pensate the relatively poor quality of individual harbors.
However, our observations also convey a positive message
to the defenders: since there typically exists a long time lag
between spamming time and search engine indexing time,
if we can detect these spam before search engines index
them, we can still efficiently prevent comment spamming
from impacting search ranks.

3.3 Spam Harbors Infrastructure

After finding out qualified spam harbors, spammers in-
tend to take full utilization of these harbors for spamming.
In this section, we study how spammers utilize these har-
bors for spamming, and what are the relationships that
spammers formed on these harbors.

3.3.1 Relationship Graph

To reduce the possibility of being detected, and also to take
full utilization of their spam harbors, spammers tend to dis-
tribute their spam among multiple spam harbors. Thus, dif-
ferent spam harbors may always share similar spam, be-
cause spammers intend to recycle these harbors. This spe-
cial close relationship among these harbors, which may

rarely occur in the normal case, gives us a chance to study
the spamming behaviors of spammers. To characterize such
relationship, we build a relationship graph G = (V,E)
among these spam harbors. We view each spam harbor as
a node v and build up an edge e between two spam har-
bors if they share same spam (links) in their postings. The
resulting graph G for our entire database consists of 13 con-
nected sub-graphs, each of which has more than two nodes.
The largest connected component G0 contains 97 % spam
harbor domains.

Figure 5. Relation Graph of Spam Harbors

Figure 5 is a partial visual representation of G0. We can
see that there exists a large number of communities within
G0, i.e., a group of nodes closely interconnected with each
other and only loosely interconnected with other commu-
nities. Here, each community represents a set of harbors
in close relationships with each other, possibly used by the
same spammer. In addition, although different spammers
may have different harbors, there always exist some harbors
shared by multiple spammers, which provides us a good op-
portunity to find more other harbors (even starting from a
small seed set).

3.3.2 Spam Harbor Community

In the spamming process, spammers first need to choose
spam harbors to post their spam, and then need to distribute
their spam on these selected harbors. In this section, we will
study how spammers choose their harbors, and how they
distribute spam to selected harbors.

Choosing Spam Harbors. In this part, we analyze how
spammers choose spam harbors, i.e., we examine how many

harbors are used for spamming each time. Some spammers
may spam on all their available harbors to fully use their
resources, and some may only sample parts of their harbors
for spamming to avoid the exposure/detection of all their
resources. To measure how spammers choose harbors each
time, we define a metric named “Distribution Ratio”, which
is the ratio of the number of harbors posting same spam
over the number of harbors in their community [3]. Thus,
a higher Distribution Ratio indicates that spammers tend to
fully use their spam harbors for spamming. Figure 6 shows
the distribution of Distribution Ratio for Sstudy .

Figure 6. Spam Distribution Ratio

We can see that 80% of spammers tend to use only less
than 50% of their spam harbors for the same spam. In this
way, they can reduce the possibility of all their resources
being detected/exposed. However, since spammers always
have a limited number of harbors, to keep spamming, they
have to recycle these harbors. As a result, we will finally
observe a relatively stable relationship among harbors.

Distributing Spam. After selecting spam harbors,
spammers need to decide how to distribute their spam to
these selected harbors. For example, some spammers may
post the same spam on their selected harbors at a similar
time. In that case, posting time on these harbors should
be similar. Other advanced spammers may choose to dis-
tribute different spam on different selected harbors. In this
study, we simply consider two spam messages are posted in
a similar time if they are posted in the same month. To mea-
sure the similarity of spam posting time, we design a met-
ric, named “Time Centrality Ratio”, which is the ratio of the
maximal number of harbors that post the spam in the same
month over the total number of harbors that post this spam.
The intuition here is that if all the harbors post a spam mes-
sage in the same month, it is possible that this spam is dis-
tributed to all selected harbors. Otherwise, spammers will
distribute different spam to selected harbors. Thus, a high
Time Centrality Ratio indicates that spammers distribute the
same spam to most of their selected harbors at a similar time
(some example is shown in Appendix A). Figure 7 shows
the distribution of Time Centrality Ratio of Sstudy.

We can see that about 60% spam have a high ratio larger

Figure 7. Distribution of Time Centrality Ratio

than 0.6. This means that about 60% spam is distributed by
spammers to more than 60% of their selected harbors in one
month for spamming.

Lessons learned: To efficiently utilize spam harbors,
spammers intend to keep utilizing the spam harbors from a
relatively stable set (pool) that they own. Thus, essentially
spammers build an artificial relationship among these spam
harbors, which is considered as their spamming structure.
In addition, since spammers have a limited number of har-
bors, they must use/recycle these harbors with a large scale
of spamming to maximize their profits. Also, although dif-
ferent spammers may have different strategies to find their
harbors, there always exist some intersections among them,
which gives us a chance to find more other spam communi-
ties even starting from a small seed set.

4 Inference System Design

In this section, we present a brief overview of our in-
ference system, then describe in details its two core com-
ponents: building spamming infrastructure graph and spam
inference.

4.1 Overview

From the measurement study in Section 3, we can see
that if a link (in a comment) is posted on a set of harbors
that have a close relationship (e.g., within the same spam
community in the infrastructure graph) at a similar time, it
has a high possibility to be spam. Following this intuition,
we design a spam inference system, named NEIGHBOR-
WATCHER. NEIGHBORWATCHER infers comment spam
purely based on the links promoted in the postings, ignor-
ing other content information. An overview of NEIGH-

Figure 8. System Architecture of NEIGHBORWATCHER

Figure 9. Normalized Neighborhood Relationship Matrix

BORWATCHER is shown in Figure 8. In practice, NEIGH-
BORWATCHER keeps monitoring (and updating) spam har-
bors in our database and builds the spamming infrastruc-
ture graph based on their posting history. In the inference
phase, when a new post is given, NEIGHBORWATCHER
extracts the embedded links, and also finds out the web-
sites that have been posted with the same links (we call the
set of these websites as a “real posting structure”). Based
on the spam infrastructure and the real posting structure,
NEIGHBORWATCHER calculates a suspicious score to tell
how likely this is spam. Next, we will describe the algo-
rithms of building our spamming infrastructure graph and
inferring comment spam.

4.2 Building Spamming Infrastructure Graph

From Section 3, we know that spammers always have
their own preferred spam harbors, and they intend to keep
utilizing these spam harbors for spamming. Thus if multi-
ple harbors always share similar postings in their history, it
should be a good indication that they are exploited by the
same spammer for spamming, and also have a high proba-
bility to be spammed by the same spammer in future. In this
case, if we find a new posting occurs on these harbors at a
similar time, we could infer this posting as spam with a rea-
sonably high confidence. Following this intuition, we build
spammers’ spamming infrastructure based on shared post-
ings (in historic data) among these spam harbors. We define
the spamming infrastructure (or sometime we simply use
“spamming structure” to denote the same concept) as neigh-
borhood relationships among spam harbors. Thus, spam
harbors spammed by the same spammers should have close
neighborhood relationships, because they always share sim-

ilar spam postings in history. To quantify such relationships,
given an input harbor, we calculate neighborhood scores for
all other spam harbors. A higher neighborhood score of a
harbor indicates a much closer neighborhood relationship
with the given (input) harbor.

To formalize the above intuition, we view all neighbor
relationships among spam harbors as a weighted undirected
graph G = (V,E), in which V denotes the set of all spam
harbors, and each link (i, j) ∈ E denotes that harbor vi and
harbor vj share at least one common posting. The weight
on the edge should reflect the strength of the relationship
between two harbors. In our case, let Li be the set of post-
ings (represented with their embedded URLs) in node vi
and Lj be the set of postings in node vj , then we define
weight wi,j as |Li

∩
Lj |. Thus, the more postings two har-

bors share, the much closer they are. We further normalize
wi,j by dividing

∑n
j wi,j as shown in Figure 9.

Next we design a graph-based propagation algorithm to
propagate neighborhood score from the input harbor(s) to
its neighbors based the neighborhood relationship graph G.
Table 3 shows the notations used in our algorithms.

Before propagation, we first assign an initial score Ii to
each node Vi. For the input harbor j, Ij is assigned with 1,
and others are assigned with 0. Then we calculate neigh-
borhood scores for all harbors as follows:

N = I ·W (1)

Eq.(1) can capture the immediate neighbors of the input
harbor. In this case, each immediate neighbor is assigned
with a neighborhood score based on the number of common
postings shared with the input harbor. The more common
postings they share, the higher score they should have. As
shown in Figure 9, node 3 has a higher score than node 1,

Table 3. Notations Used in Our Paper
W Normalized adjacency matrix of the neighbor graph
I Input harbor vector, Ii = 1 if i is a input harbor
N Neighbor score vector. Ni is the neighbor score of harbor i
R Real spam posting vector. Ri = 1 if harbor i posts the same input link
α Dampen factor. α = 0.85
n The number of spam harbors

because node 3 shares more common postings with the in-
put harbor node 1 in history. However, as we show in Sec-
tion 3, spammers might not always spam on all their harbors
for each message, and our observed history relationships
may be only a subset of the spammers’ real relationships.
To illustrate this scenario and demonstrate how we handle
this problem in a generalized way, we show a case study in
Figure 10.

Figure 10. A Case Study of Comment Spam
ming on Different Subsets of Harbors

For this example, in the spamming process, a spammer
first spams on node 1,2,3 for one spam message. And then
the spammer spams on node 2,4,5 and node 3,5,6 with dif-
ferent spam messages. The neighborhood graph based on
the history information is shown in solid circles. Now if
the spammer spams on node 1, 4, 5, 6 (as seen in dashed
circles), applying Eq.(1) with node 1 as the input harbor
will assign score 0 to node 4, 5, 6, because they are not di-
rectly connected with the input harbor node 1. This makes
neighborhood score less efficient to capture potential rela-
tionships between the input harbor and other harbors that
will possibly be spammed by the same spammer. To over-
come this problem, we need to deeply propagate the neigh-
borhood relationship, similar to the page rank algorithm.
Specifically, if we propagate the neighbor scores one further
hop, this gives us I ·W ·W = I ·W 2, which will propagate
neighbor scores from node 1 to 4. Thus the average received
score for each node in this case is (IẆ +I ·W ·W)/2. Nat-

urally, the propagation scores should decay along with the
distance from the input harbor. To achieve this goal, we
dampen matrix W by a constant α (0 < α < 1).4 Thus
the farther the distance between a harbor and the input har-
bor, the less neighbor score it can inherit. Based on all of
above, we propagate neighborhood scores for each harbor
as follows:

N =

∑t
i=1 I · (α ·W)i

t
(2)

Once the neighbor score vector converges after t propa-
gation steps, we can obtain the final (stable) neighborhood
scores for each harbor, and this score reflects how close the
neighbor relationship is between the input harbor and the
corresponding harbors. Next, we will present how to use
these scores to infer a given new spam message.

4.3 Spam Inference

To infer whether a given new message/posting is spam or
not, we also need to crawl other harbors to check if the link
in the given posting also appears on them. Thus, we obtain
a real posting structure vector R, Ri = 1 if harbor i is also
posted with the given link. Now we have both real posting
structure and neighborhood scores for each harbor, next we
present how to combine them to infer spam.

Intuitively, if harbors with high neighborhood scores
have also been posted with the same messages, it has a
high possibility that the input message is spam. Neigh-
borhood scores reflect the neighbor relationships between
other harbors and the input harbor. Thus, if harbors have
high neighbor scores, they may have a high possibility to
be spammed by the same spammer, which means if we
find the input message appears in these harbors, it should
have a high possibility to be spam. Thus, we infer the
spam by computing how real posting structure and neigh-
borhood scores combine together to contribute to a suspi-
cious spam score. Specifically, we use a modified cosine
similarity function F (R,N) to characterize the similarity
between the real posting structure and the learned neigh-
borhood relationship in the spamming infrastructure. We

4We empirically set α = 0.85 based on [21].

define the final spam score for the input message/URL i as
follows:

Scorei = F (R,N) =
R ·N∑n

i Ri
(3)

Here, a higher spam score means that the real posting
structure matches very well with closer neighbors of the in-
put harbor. Thus we should have a higher confidence to
infer the input message as spam.

5 Evaluation

In this section, we evaluate our system in two stages. For
the first stage, we evaluate NEIGHBORWATCHER regarding
its inference stability and effectiveness. We also measure
how many new spam and harbors can be inferred everyday,
and the topic diversity of these spam postings. In the sec-
ond stage, we discuss possible applications of our inference
results.

5.1 Dataset and Ground Truth

To build the neighborhood relationship graph, we use
the collected spam harbors in Section 3. After that, we
keep monitoring these spam harbors everyday and extract-
ing new postings from them for spam inference. Also, af-
ter inference, we search inferred spam links in Google and
use the same way in Section 3 to extract new harbors from
search results. To evaluate the effectiveness of our infer-
ence system, we need to choose true spam links and benign
links for testing. For the former, we extract random post-
ings from harbors and manually choose 500 verified spam
messages (that contain spam links). To find a normal post-
ings set, we assume domains in Alexa [1] top 20,000 are
highly-reputable websites that have less chance to be posted
in comment spam. Thus, we check how many links in our
collected postings have intersection with these domains. In
this way, we get 754 normal postings and combine them
with 500 spam postings as our testing dataset Stest.

5.2 Stability of Spamming Structure

Our system exploits spammers’ posting infrastructure (or
spamming structure) to infer spam. Thus, if such infrastruc-
ture changes frequently, it will make our system less effec-
tive. For example, if spammers keep using new harbors for
spamming everyday, our system cannot infer their spam. To
evaluate the stability of spamming structure, we essentially
examine how the neighborhood relationship among spam
harbors change over the time. We build the neighborhood
relationship graph of spam harbors by setting wi,j = 1 to in-
dicate that two spam harbors share at least one common link
and wi,j = 0 to represent no relationship between two har-
bors. Then we consider such relationship graph in the time

window [t, t + ∆t5] as the initial spamming structure and
the relationship graph in the next window [t+∆t, t+2∆t]
as the testing spamming structure. Thus, the difference be-
tween two structures indicates the instability of the spam-
ming structure. To quantify such instability, we use Ham-
min Distance [12] to measure the number of changed rela-
tionships CR between these two time window, as shown in
Eq.(4). Here n is the number of total harbors.

CRi =
n∑
j

|W t+2∆t
i,j −W t+∆t

i,j | (4)

Thus, a smaller value of CR implies a much more sta-
ble spamming structure. For each spam harbor i in our
database, we calculate its changed relationship CRi. Fig-
ure 11 shows the distribution of changed relationships for
all spam harbors.

Figure 11. Changed Relationship Distribution

We can see that about 40% harbors do not change their
neighbor relationships because spammers keep utilizing the
same harbors. In addition, about 80% spam harbors change
their relationships less than 20, which is also less than half
of the average community/clique size 50. Thus, even if a
community loses 20 harbors, we can still infer spam with
the remaining 30 harbors as long as spammers keep recy-
cling their harbors. Furthermore, the continuous updating
of our harbor database can somehow compensate such in-
stability, we will discuss more about this in Section 6.

5.3 Effectiveness of Inference

To evaluate the effectiveness of our system, we test our
system with Stest. We consider both the number of cor-
rectly inferred spam, termed as “Hit Count”, and the ratio
of this number to the total number of inferred spam, termed
as “Hit Rate” (i.e., accuracy). Thus, a higher value of Hit
Count indicates that our system can catch more spam; and a
higher value of Hit Rate indicates that our system can infer
spam more accurately.

5We empirically set ∆t 1 month here.

Table 4. Sensitivity of the Hit Rate and Hit
Count to the Choice of Similarity Threshold

Sim. Threshold Hit Rate Hit Count False Positive
0.3 57.29% 432 322
0.4 75.93% 426 135
0.5 97.14% 408 12
0.6 97.8% 360 8

Since we infer spam based on the spam score threshold,
we also check how the threshold contributes to the infer-
ence results, a way similar to [19]. In our case, a higher
(thus more conservative) threshold may lead to a higher hit
rate but with a lower hit count. Table 4 shows how Hit Rate
and Hit Count vary with different settings of the threshold.
We can see that a spam score threshold of 0.5 yields to a rel-
atively high hit rate (97%) with a relatively high hit count.
Also, there are still 92 links that can not be correctly in-
ferred as spam (i.e., false negatives) and 12 incorrect in-
ferred links based on our labels (i.e., false positives). We
further check these links, most of false negatives only ap-
peared in its input harbor, which means these spam links do
not appear in other harbors in our database. This is possible
because our database is relatively small and may not cover
all spammers’ harbors. However, the effectiveness could be
easily further improved if one can build a larger dataset,
e.g., by recursively updating the spam harbors database,
which will be discussed in Section 6. Among 12 false pos-
itives, 5 are actual benign websites posted by spammers in
order to conduct harbor testing (as discussed in Figure 1).
7 of them are those link to some Alexa top 20,000 web-
sites and we expected (labeled) them to be non-spam as ex-
plained in our test dataset preparation. However, they turn
out to be actual spam posted on reputable websites (e.g., in
some Google groups). If we exclude them, our actual false
positives are only five, which is pretty low. Finally, we note
again that our inference algorithm only uses the spamming
structure information, and it does not leverage other existing
content features yet. Once combined with existing features,
we surely can expect a better performance.

5.4 Constancy

To evaluate the constancy of our system, we essentially
examine whether our system can continue finding new spam
over time. We keep monitoring spam harbors everyday to
check new postings. These new postings are submitted to
our system for spam inference. For each new inferred spam,
we further search it in Google to find new spam harbors
(using the same method mentioned in Section 3) that are
not included in our database, then add them in our database

everyday.6 After 3 weeks’ study, we have totally inferred
91,636 new spam and 16,694 new spam harbors. Figure 12
is the distribution of new inferred spam and new spam har-
bors over time. We can see that our system can constantly
find new spam and spam harbors as long as spammers keep
posting new spam and also spamming on new harbors.

Diversity of New Spam. To have a sense of the vari-
ety of spam content we inferred, we surveyed 10,000 ran-
domly chosen spam postings and clustered them in 7 cate-
gories based on their anchor keywords. Table 5 shows the
keywords we used for clustering spam, and Figure13 shows
the category results. We can see that pharmacy is still the
most popular spam, and spammers always try to promote
them to have a higher search rank [30]. On the other hand,
our system can keep capturing general spam (other than just
pharmacy) in terms of their spam content.

Table 5. Keywords for Different Spam Cate
gory

Categary Terms
Rogue Pharmacy cialis,viagra,prescription,levitra ...
Rogue software virus,windows,desktop,software...

Porn porn,sexy,fuck,adult...
Gambling casino,poker,roulette,gambling...

Money insurance,debt,mortgage,credit...
Accessories handbag,dress,luxurious,louis...

Figure 13. Spam Category

Context-based Analysis of Spam. For those newly in-
ferred spam, we randomly sample 1,000 spam links and
use the same method in [32] to find out URL-redirection
and cloaking spam. Specifically, we send requests to each
link 3 times by setting different HTTP header parameters

6We may add a few normal websites in our database in this way because
our inference hit rate is not 100%. However, we note that these websites
most likely will not have close relationships with other spam harbors, thus
will not impact our inference results much.

(a) New Spam (b) New Spam Harbors

Figure 12. Constancy of NEIGHBORWATCHER

to emulate Google Bot crawling, directly visiting, and vis-
iting through search result clicking, respectively. We con-
sider it as cloaking spam if any of two visits lead to differ-
ent websites through redirection. In this case, among 1,000
spam links, we only see 34 spam using clocking techniques,
which also reflects that context-based detection has a low
coverage in face of current comment spam. However, we
test these 34 spam links with Google Safe Browsing (GSB)
[10], none of them has been reported. Thus context-based
detection is still an effective way to find new spam within
their limited scope, and our system also can cover such
spam (but can detect more other spam that the context-based
detection can not).

5.5 Applications of Our System

In this part, we will evaluate how our inference results
can be applied to provide early warning for search engine
bots, and to complement current BlackList services.

Early Warning. “nofollow”[13] is a HTML tag which
is designed to instruct search engines that the correspond-
ing links should not be counted for ranking. Usually dif-
ferent search engines have a little different policies in face
of “notfollow“ tags. As for Google [14], it will not trans-
fer PageRank or anchor text across corresponding links. In
this case, search engines can efficiently filter comment spam
if webmasters attach each posting with a “nofollow“ tag.
However, among 35,931 spam harbors we found, only 4,367
harbors contain such tags, which means spam on other har-
bors can be successfully exploited for search rank manipu-
lation. Fortunately, according to our measurement study in
Section 3, there always exists a time lag between the time
that spammers post spam and the time search engines index
the spam. Thus, if we can detect the spam before Google
indexes them, we can also efficiently filter comment spam.
To measure this timeliness, we examine the number of “zero
day spam”, which is the spam that can not be searched out

by Google at the time. Totally we collected 1,364 “zero
day spam” in our test using NEIGHBORWATCHER. Inter-
estingly, when we manually check these “zero day spam”,
we find that some spam messages contain randomly gener-
ated domains that have not been registered yet. Thus, it is
possible that spammers may first promote these links and
then register them later based on their promoting results.
Figure 14 shows the distribution of daily “zero day spam”.

Figure 14. Zero Day Spam Distribution

We can see that currently we can only detect few “zero
day spam”, because most spammers intend to promote cer-
tain set of spam links that may have already been indexed
by Google before (but search ranks were probably not good
enough). However, as long as spammers begin to promote
new links, our system can quickly find more “zero day
spam“. In this case, we can give an early warning to search
engine bots, or search engine bots can integrate our infer-
ence system to help better filter these comment spam.

BlackList. Existing comment spam blacklists usually
provide a collection of source IP addresses, register emails,
or usernames of spammers. Most of existing online black-
lists [17, 16, 5] collect such spammer information by build-
ing honey blogs/forums. However, we can early imagine

that honey blogs could only collect a limited number of
spam, thus limiting the effectiveness of such approaches.

To measure our inference approach can complement ex-
isting solutions, we compare it with 3 popular online Black-
List services. Note that since our system targets on more
general spam harbors, not all of the harbors provide com-
plete IP and email information of the posting users in public.
Luckily, there does exist some spam harbors in our database
that provide IP or email address information. Thus, we can
compare these inferred IPs and emails with these 3 Blacklist
services.

Table 6 shows the comparison result. We can see that
for both IP and email, our system can always infer new
spammers that are not observed by existing services. Figure
15 shows the daily comparison with these 3 BlackList Ser-
vices. From the figure, each day we can find new spammers
that are not labeled by any of these existing BlackLists. In
addition, considering the dynamic property of IP addresses,
most IP-based BlackLists need to be daily updated. Thus,
for IPs detected by these existing systems, we further check
their “last seen time”, the time of last observation by these
existing services. We find most of them are out of date,
which means existing BlackLists observe these spammers
long time ago but in fact they are still active at the moment.
In summary, our system could be a good complement to ex-
isting BlackList systems to actively find new spam and to
improve the coverage of existing systems. Furthermore, we
find some constant email addresses and IPs keep contribut-
ing to spam, which also reflects that spammers intend to
keep utilizing these spam harbors.

Table 6. Comparison with Existing Blacklist
Systems

BlackList # of IP # of Email
NeighbourWatcher 378 5,945

StopForum 231 1,937
SpamBust 185 122

GlobalSpyware 29 3

6 Discussion

Although NEIGHBORWATCHER shows promise for in-
ferring new spam and spam harbors, there is still much room
for improvement. In this section, we discuss several specific
improvement areas, and the possible evasions to our current
inference algorithm.

6.1 Improvement

Combining More Features. NEIGHBORWATCHER
only uses spamming structure information to infer spam,
other spamming behaviors could also be incorporated to-
gether to help improve the accuracy. For example, we find
some spammers post their spam with both < a href =
”...” > tags and BBcode tags to assure they can embed
spam links, because they have no idea about what kind of
method the target spam harbors support to embed links. In
addition, some spam links are posted on websites with dif-
ferent languages because spammers do not care about har-
bor’s native languages. For example, some spammers post
Russian spam in Chinese websites, Korean websites, and
English websites, which is extremely unlikely to be normal
postings. In this case, we can incorporate these features to
improve the overall inference accuracy.

Improving Algorithms. In Eq.(3), we assume these
postings on different harbors have the same weight. How-
ever, postings on different harbors are not necessary equal.
For example, if postings on a harbor have a similar posting
time, same email, or same IP address with the input post-
ing, then it has a high possibility that they are spammed by
a same spammer at the same time. Thus we could assign
different weight to different harbors by considering these
factors.

Updating Spam Harbors. In our system, we find new
spam harbors by recursively searching inferred spam in
search engines. Thus, as long as spammers keep utiliz-
ing these spam infrastructures, we can always find out new
spam harbors. However, our current system cannot infer
those spam posted on only one harbor in our dataset, thus
we cannot find out other harbors that are also posted with
this spam. In this case, we could use the following strategy.
From the search results of the posting link, we attempt to
build a relationship graph among returned websites based
on whether they already share similar postings (excluding
the searched link) on existing pages on the websites. If these
websites show very close relationships (e.g., dense connec-
tions), the searched link has a good chance to be spam (and
thus the corresponding search result websites are possible
spam harbors). The intuition here is that although a few
normal links may appear on a variety number of websites,
it is extremely unlikely that normal users will keep post-
ing similar postings on certain websites. Our ongoing work
will design and test new algorithms to efficiently update our
spam harbors dataset.

6.2 Possible Evasion

Evasion by exploring new harbors. Obviously spam
harbors that we collected are only the subset of spammers’
harbors. Thus if spammers know our collected harbors, they

(a) Daily IP (b) Daily Email

Figure 15. Daily Comparison with Existing Spam Blacklists

may try to spam on other harbors that are not included in our
database, or they may find brand new harbors. In this case,
our neighborhood-based inference algorithm could not de-
tect their new structure. However, as long as spammers also
post spam on both these new harbors and old harbors, we
can still find out their new harbors by keeping updating our
database. Otherwise, spammers need to keep finding new
harbors and give up existing qualified harbors, which is less
likely to happen considering the cost.

Evasion by changing spamming behaviors. If spam-
mers know that we use spam links to build up relationship
graphs, spammers may spam different links on different har-
bors. Thus we can not build up their spamming structure.
However, in this case, spammers need to keep finding more
harbors to post their variety links, which will increase their
cost and time. Otherwise, they need to post the same spam
several times on certain harbors (in order to boost search
ranks), which will increase the possibility of being detected
by content-based detection systems.

Evasion by spamming polymorphic URLs. Our algo-
rithm relies on grouping identical URLs (e.g. we infer a
possible spam message if the spamming URL also appears
on many of its neighborhood clique harbors). Thus, spam-
mers may try to evade our system with polymorphic URLs
(i.e., each URL can be different on different harbors). How-
ever, in general, it is not always possible to make full poly-
morphic URLs for a given spam URL to be promoted. If
spammers choose URL shortening services to achieve poly-
morphic URLs, we can always use the resolved final URLs
in our system. Furthermore, we can use the domain of a
spam URL instead of the full URL as input, which is rela-
tively stable if spammers want to promote certain domains.

7 Related Work

In this section, we discuss related work in the following
two perspectives.

Comment Spam: To detect comment spam, a few stud-
ies have been done previously. Kolari et al. [31] proposed
to detect blog spam based on only content. They use a
machine-learning based method to detect spam by extract-
ing features from the posting content, such as bag-of-words,
bag-of-anchors, and bag-of-URLs. Mishne et al. [24] pro-
posed a language model based approach to detect comment
spam. They generate a language model for the blog posts,
the comments, and the pages linked by spam, and then use
language model divergences to classify spam.

Recently, to overcome the pitfalls of content-based de-
tection systems, Niu et al. [32] studied comment spam
in both legitimate and honeypot forums, and proposed a
context-based detection method that looks for redirection
and cloaking for forum spam. Shin et al. [33] studied the
characteristics of spam from a research blog for 286 days,
and developed a light-weight SVM classifier to detect fo-
rum spam. Their features include 16 different features ex-
tracted from spammer origins, comment activities, URLs in
spam comments, and textual contents. Tan et al. [23] con-
ducted a comprehensive analysis of spamming activities on
a commercial blog site covering over 6 million posts and
400,000 users. Through studying on non-textural patterns,
such as posting activities, spam link metrics, they devel-
oped a realtime system to detect spam postings based on 13
non-textual features. Kantchelian et al. [28] define spam as
uninformative content, and thus they proposed a machine-
learning based method to detect spam based on the content
complexity of comments in social medias.

Most of these existing research studies the problem from
certain blogs or honeypot blogs. However, we study from
a large number of spam harbors that are frequently used

for spamming. We present an in-depth study of these
harbors, which could not be observed from only a few
blogs. Furthermore, complementary to content-, context-
, and behavior-based detection features, our system ex-
ploits the spamming infrastructure to detect comment spam,
which is much more stable in the spamming process. Thus
our system is a good supplement to existing research.

Graph-based algorithm: Graph-based algorithms have
been previously applied in spam detection. Pagerank [29]
and Trustrank [35] have been widely used by search engines
to determine the search ranks of search results. Zhao et al.
[22] proposed a spam detection system by exploring link de-
pendencies and content similarities among web pages. The
system first clusters the hosts based on content features and
assigns labels for clusters using majority voting. Then the
system propagates these labels to their neighbor hosts and
uses predicted labels as new features to retrain the classi-
fier. Different from these work, our paper uses a different
graph-based algorithm to characterize the spamming struc-
ture, and combines with the real posting structure to infer
spam.

Our inference algorithms are motivated by the following
two studies [26, 20]. Ramachandran et al. [20] proposed
an email spam filtering system. The system takes email-
sending patterns of all senders as input and builds clusters
of sending patterns from a small seed of spammers. Thus, it
classifies senders as spammers if their behaviors are similar
to the patterns of known spammers. Zhang et al. [26] built a
system to predict blacklist based on attackers’ history. Their
intuition is that if two hosts are frequently attacked by an
attacker in history, it has a high probability that they will
be attacked by the same attacker in the future. Our work
shares a similar intuition with these two studies, however in
a totally different application and with different inference
algorithms. Furthermore, we present a measurement study
of spam harbors, which is not shown by any prior work.

8 Conclusion

Although comment spam has been studied for several
years, arms race between spammers and researchers has
made current existing detection systems losing their po-
tency. A lots of spamming techniques are developed by
spammers to evade content- or context-based detection sys-
tems.

In this paper, we present a deep study on comment spam
from a new perspective, i.e., the spamming infrastructure,
which is the core and stable part in the comment spamming
process. Through measuring 35,931 spam harbors exploited
by spammers to post spam, we conclude that spammers pre-
fer to keep utilizing their spam harbors for spamming unless
they are blocked. Based on this finding, we design a graph-
structure-based inference system to infer comment spam by

checking if the same spam also appears on its neighbor
(clique) harbors. Our evaluation results show that we can
infer a large number of new comment spam and spam har-
bors, and keep finding them everyday.

9 Acknowledgments

This material is based upon work supported in part by the
National Science Foundation under Grant CNS-1218929.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Sci-
ence Foundation.

References

[1] Alexa rank. http://www.alexa.com/.
[2] Botnets and google dorks: A new recipe for

hacking. http://www.darkreading.com/
vulnerabilitymanagement/167901026/
security/vulnerabilities/231500104/
botnetsandgoogledorksanewrecipeforhacking.
html.

[3] cfinder. http://www.cfinder.org/.
[4] The (evil) genius of comment spammers. http:

//www.wired.com/wired/archive/12.03/
google.html?pg=7.

[5] Globalspyware. http://globalspyware.com/.
[6] Google bombs. http://www.

searchenginepeople.com/blog/
incredible-google-bombs.html.

[7] Google cache. http://www.googleguide.com/
cached_pages.html.

[8] Google pagerank api in php. http:
//www.fusionswift.com/2011/10/
google-pagerank-api-in-php-october-2011/.

[9] Google rolls out content spam detection. http:
//www.nationalpositions.com/blog/
seonewsgooglerollsoutcontentspamdetection/.

[10] Google safe browsing. http://code.google.com/
apis/safebrowsing.

[11] Google search and search engine spam. http:
//googleblog.blogspot.com/2011/01/
google-search-and-search-engine-spam.
html.

[12] Hamming distance. http://en.wikipedia.org/
wiki/Hamming_distance.

[13] Notfollow. http://en.wikipedia.org/wiki/
Nofollow.

[14] rel=“nofollow”. http://support.google.com/
webmasters/bin/answer.py?hl=en&answer=
96569.

[15] Safe browsing-protecting web users for five years
and counting. http://googlepublicpolicy.
blogspot.com/2012/06/
safe-browsingprotecting-web-users-for.
html.

[16] Spambust. http://spambusted.com/.
[17] Stop forum spam. http://www.stopforumspam.

com/.
[18] What does your google pagerank mean. http://www.

redfusionmedia.com/google_pagerank.htm.
[19] K. W. A. Ramachandran, A. Dasgupta and N. Feamster.

Spam or ham?: characterizing and detecting fraudulent not
spam reports in web mail systems. In Proceedings of the 8th
Annual Collaboration, Electronic messaging, Anti-Abuse
and Spam Conference(CEAS 11), 2011.

[20] N. F. A. Ramachandran and S. Vempala. Filtering spam
with behavioral blacklisting. In Proceedings of the 14th
ACM conference on computer and communications secu-
rity,, 2007.

[21] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual Web search engine. In Proceedings of the seventh
international conference on World Wide Web, 1998.

[22] D. D. C. Castillo and A. Gionis. Know your neighbors: Web
spam detection using the web topology. In ACM Special In-
terest Group on Information Retrieval (SIGIR) Conference,
July, 2007.

[23] S. C. X. Z. E. Tan, L. Guo and Y. Zhao. Spam behavior
analysis and detection in user generated content on social
network. In Proceedings of 32nd International Conference
on Distributed Computing Systems (ICDCS 2012), Macao,
China, June 18-21,, 2012.

[24] D. C. G. Mishne and R. Lempel. Blocking Blog Spam
with Language Model Disagreement. In First Interna-
tional Workshop on Adversarial Information Retrieval on
the Web, at 14th international conference on World Wide
Web(WWW), 2005.

[25] Z. Gyongyi and H. Garcia-Molina. Web Spam Taxonomy.
In Technical report, Stanford Digital Library Technologies
Project, Mar, 2004.

[26] P. P. J. Zhang and J. Ullrich. Highly Predictive Blacklist-
ing. In Proceedings of the USENIX Security Symposium,
San Jose, CA, July, 2008.

[27] Z. X. J. Zhang, C. Y and G. Gu. PoisonAmplifier: A Guided
Approach of Discovering Compromised Websites through
Reversing Search Poisoning Attacks. In Proceedings of the
15th International Symposium on Research in Attacks, In-
trusions and Defenses (RAID’12), 2012.

[28] A. Kantchelian, J. Ma, L. Huang, S. Afroz, A. Joseph, and
J. D. Tygar. Robust detection of comment spam using en-
tropy rate. In Proceedings of the 5th ACM workshop on Se-
curity and artificial intelligence (AISec’12), 2012.

[29] R. M. L. Page, S. Brin and T. Winograd. The PageR-
ank citation ranking: Bringing order to the Web. In
Technical report, Stanford University Database Group,
http://citeseer.nj.nec.com/368196.html, 1998.

[30] T. M. N. Leontiadis and N. Christin. Measuring and analyz-
ing search-redirection attacks in the illicit online prescrip-
tion drug trade. In Proceedings of the 20th USENIX Secu-
rity, 2011.

[31] T. F. P. Kolari and A. Joshi. SVMs for the blogosphere:
Blog identification and splog detection. In Proceedings of
AAAI Spring Symposium on Computational Approaches to
Analysing Weblogs, March, 2006.

[32] H. C. M. M. Y. Niu, Y.M. Wang and F. Hsu. A quantita-
tive study of forum spamming using context-based analysis.
In Proceedings of Network and Distributed System Security
Symposium(NDSS), February, 2007.

[33] M. G. Y. Shin and S. Myers. Prevalence and mitigation
of forum spamming. In Proceedings of the 30th Annual
IEEE Conference on Computer Communications (INFO-
COM, 2011.

[34] M. G. Y. Shin and S. Myers. The Nuts and Bolts of a Forum
Spam Automator. In Proceedings of the Wkshp. on Large-
Scale Exploits and Emergent Threats (LEET), 2011.

[35] H. G.-M. Z. Gyongyi and J. Pedersen. Combating Web
Spam with TrustRank. In 30th International Conference on
Very Large Data Bases, Aug., 2004.

A Spam Search Result Example

Figure 16 shows an example of a Google search result
page for a spam link. We can draw the following conclu-
sions from it: (1) Spammers do use a variety of spam har-
bors for spamming. (2) Spammers post this spam in differ-
ent harbors at a similar time (Mar 23, 2012). (3) Spammers
post this spam with the similar anchor text:“allgrannysex”.

Figure 16. Example of Spam Search Results

