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Virtualization: From Concept To Prototype

Seungwon Shin, Haopei Wang, and Guofei Gu

Abstract—Network security management is becoming more
and more complicated in recent years, considering the need of
deploying more and more network security devices/middle-boxes
at various locations inside the already complicated networks. A
grand challenge in this situation is that current management is
inflexible and the security resource utilization is not efficient. The
flexible deployment and utilization of proper security devices at
reasonable places at needed time with low management cost is
extremely difficult. In this paper we present a new concept of
Network Security Virtualization (NSV), which virtualizes security
resources/functions to network administrators/users, and thus
maximally utilizing existing security devices/middle-boxes. In
addition, it enables security protection to desirable networks with
minimal management cost. To verify this concept, we further
design and implement a prototype system, NETSECVISOR, which
can utilize existing pre-installed (fixed-location) security devices
and leverage software-defined networking (SDN) technology to
virtualize network security functions. At its core, NETSECVISOR
contains (i) a simple script language to register security services
and policies, (ii) a set of routing algorithms to determine optimal
routing paths for different security policies based on different
needs, and (iii) a set of security response functions/strategies
to handle security incidents. We deploy NETSECVISOR in both
virtual test networks and a commercial switch environment to
evaluate its performance and feasibility. The evaluation results
show that our prototype only adds a very small overhead while
providing desired network security virtualization to network
users/administrators.

Index Terms—Security, Software-Defined Networking, Virtu-
alization

I. INTRODUCTION

W ITH the increasing demand of networked services (e.g.,
e-commerce), network architectures are becoming

more and more complicated. For example, a campus network
needs to cover diverse departments that have different network
interests and security protection requirements/policies, and it
causes complex network configuration/management and inef-
ficient usage of network security resources (e.g., pre-installed
security devices in certain departments cannot be used for
other departments). A cloud network is another good example
showing this trend of complex/dynamic network management
with diverse security requirements/policies in various internal
sub-networks. A typical cloud network commonly consists of
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a huge amount of hosts (e.g., Amazon has managed nearly
half million hosts in 2012 [1]) and network devices to provide
services to a large number of dynamic tenants, each having a
logically separated network.

This situation is more complicated when there are addi-
tional middle-boxes in the network environment. Nowadays,
many middle-boxes are employed to improve the performance,
robustness, and security of networks. For example, a load
balancing proxy server is installed in a network to distribute
network flows into target servers, and it is commonly installed
into a location where all flows, which should be distributed,
are passing. Although these middle-boxes can provide many
benefits to networks, they make the network much more
complicated to manage [32]. Therefore, several studies have
been proposed recently to address this issue [28], [8].

When we consider security for networks (a critical part of
network management), the situation is even more complicated.
The additional security devices/middle-boxes (e.g., network in-
trusion detection system and firewall) significantly complicate
network configuration/management (e.g., which location to
install which device to satisfy the different security needs from
different networks while minimizing the overall cost). In addi-
tion, security devices have many diverse security functions to
serve different purposes. For example, we can use a firewall to
control network access, a network intrusion detection system
(NIDS) to monitor exploit attacks in network payloads, and
a network anomaly detection system to detect DDoS attacks.
Therefore, the network administrator should choose reasonable
security functions/devices and deploy them into reasonable
places. However, it is a tough task for the administrator,
because it is hard to predict possible network threats of
different network tenants and the administrator is not able to
be aware of demands of diverse tenants in advance. Thus,
those installed security functions/appliances/devices may not
be in the best locations that can best serve the diverse security
needs of diverse network users.

Clearly, there is an urgent need to maximize the resource
utilization of those existing pre-installed devices/boxes, as
well as abstract these security resources to provide a simple
interface for network tenants to use (who may not be aware
of the exact security device information such as location).
Motivated by this problem, we propose a new concept of
Network Security Virtualization (NSV) that leverages pre-
installed, static security devices and provide dynamic, flexible,
and on-demand security services to the users. Therefore, users
do not need to know the concrete location/number of each kind
of security devices/boxes. To realize NSV, we propose two
new techniques: (i) transparently controlling flows to desirable
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network security services, and (ii) enabling network security
response functions on a network device.

To maximize the utilization of already installed security
middle-boxes, we transparently redirect network flows to
desirable security middle-boxes when needed. For example,
if a security policy specifies that a network flow should
be investigated by a security service, our NSV technology
delivers or redirects the flow to the defined security middle-
boxes (regardless of its actual physical location) automatically
and transparently. Beside this kind of flow controlling, we
provide a way of enabling security response function on
each network device. Some recent technologies suggest a
method to control network flows dynamically at a network
device, e.g., Software-Defined Networking (SDN) [24]. With
the help of this technology, we can realize some basic security
response functions at a network device. For example, we can
implement a dynamic access control method at a network
device by forwarding or dropping network packets. Extending
this technology, we can operate necessary security response
functions on a network device when they are required.

To show the feasibility of NSV and verify its ideas, we
implement a prototype system for a cloud-like network, in the
name of NETSECVISOR.1 The basic goal of NETSECVISOR is
to leverage cloud operators’ pre-installed (fixed-location) secu-
rity devices to provide dynamic, user-friendly, transparent, and
on-demand security services to diverse cloud tenants (without
professional security knowledge) in a large cloud network
with frequent, dynamic VM migrations and configurations. To
achieve this goal, we choose to use the most recent Software-
Defined Networking (SDN) technology and its most popular
realization, OpenFlow [17], [24]. More specifically, we will
use SDN/OpenFlow to control the path of traffic (rather than
physically adjusting the location of security devices) to lever-
age pre-installed, static security devices to provide dynamic
service monitoring services. In addition, we enable some basic
security response functions, such as network isolation, on
network devices.

The design of this prototype, i.e., NETSECVISOR, needs to
explore several practical questions. For example, how tenants
can express security policies? How are the new paths deter-
mined? How are the new paths enforced? How are security
response functions enabled? The answers form the main body
of this paper.

In short, our contributions can be summarized as follows.

• We propose a new concept of network security function
virtualization that leverage pre-installed, static security
devices to provide dynamic service monitoring services
to the network users.

• We implement a prototype system, NETSECVISOR, to
enable network security virtualization, as a prototype
service to cloud tenants in dynamic cloud networks.
In this prototype, we have designed (i) a user-friendly
policy script language for both administrators and tenants
(Section IV-D), (ii) four routing algorithms (Section IV-E)

1The principles and techniques of NSV and our NETSECVISOR are
applicable to generic networks at any size, as long as there are diverse network
security needs from different (sub-)network users/administrators.

and (iii) five response strategies (Section IV-F) to address
the practical questions raised above.

• We have tested this prototype system in various network
environments including virtual networks and a commer-
cial switch environment. The results show that our system
adds very few overhead when achieving the desired
function.
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Fig. 1: Example scenario to show how NETSECVISOR works

II. PROBLEM STATEMENT

A. Motivating Example

We start from a simplified motivating example to illus-
trate the basic idea of NSV. In addition to basic elements
such as machines (server/client) and forwarding hardware
(switch/router), cloud networks typically consist of a large
number of pre-installed (fixed-location) middleboxes and secu-
rity devices (e.g.,firewall/IDS/IPS) [31], [10]. Our motivating
example will create a simple network topology containing
these elements and similar to some real cloud networks [4].
As shown in Figure 1, we assume there is a quite simple
cloud network consisting of 6 routers (denoted as R1 - R6),
3 hosts (H1 - H3), 2 VMs (VM1 and VM2), and a Network
Intrusion Detection System (denoted as NIDS). VM1 lives on
H1 and VM2 lives on H2 initially. We also assume that the
NIDS is attached to the router R4 to protect VM2 from some
network threats. If VM1 in the host H1 is compromised and
it tries to infect VM2, this attack will be detected because the
NIDS can easily observe the attack from VM1 by mirrored
traffic from R4. However, the NIDS can not protect VM2 if
it is migrated to host H2 (Fig. 1(a)), which can commonly
occur in a cloud network to manage resources. To address this
issue, NETSECVISOR dynamically detours network flows to
pass through the NIDS (Fig. 1(b)), and thus can still detect
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attack toward VM2 (even though it has been migrated to
another host) from network threats. In addition, NETSECVI-
SOR enables a security response function to handle infected
hosts (here VM1 and VM2). In this scenario, NETSECVISOR
isolates infected VMs from a network by blocking network
packets from each infected host (shown in (c)).

B. Research Goal and Assumption

The main goal of this work is to propose a new idea,
network security virtualization (NSV), and design a prototype
system (with the name of NETSECVISOR) that can enable
NSV in cloud-like networks to help all tenants easily use
security services. More specifically, all tenants do not need to
be security experts and do not need to worry about information
of security devices (i.e., location, number/kind of devices),
operating security functions, and underlying network architec-
ture/workload. Our system mainly guarantees two things; (i)
all network packets, which are required to be investigated by a
specific security device according to the security policies, are
delivered to the right devices in an optimal way and (ii) some
basic network security functions are virtualized and operated
in network devices supporting SDN like techniques.

Assumption: In NETSECVISOR, we assume our target
network has employed SDN/OpenFlow technologies, which
means all forwarding devices are SDN/OpenFlow-enabled.
We believe that it is a valid assumption, because recent
complicated (cloud) networks already began to employ soft-
ware defined technologies [4], [22], [11], [14]. As SDN is
widely considered as the future of networking, we envision
that more and more enterprise/campus/home/ISP networks
will deploy SDN/OpenFlow technologies in the future. Our
solution does not require re-architecting of existing security
devices (firewalls, IDS etc.).

III. RELATED WORK

There are some related studies to this work. OpenSafe [3]
and Jingling [9] are similar studies to our work. They also
provide a script language to monitor networks. Compared with
them, our work focuses more on security monitoring in clouds,
considers characteristics of different security devices, and
designs different routing algorithms and response strategies
for security needs. Sekar et al. suggested approaches for
NIDS or NIPS deployment [30] through selectively monitoring
packets at different nodes and load balancing [12] through
traffic replication and aggregation. Raza et al. introduced an
approach to route packets to network monitoring points [29].
Even though our work is similar in that our work finds new
routing paths for security devices, our work provides in-depth
analysis of routing algorithms, and provides more diverse
routing and response strategies considering security devices.
In a recent study [31], it is shown that it is possible to redirect
traffic from Enterprise networks to a cloud service for network
processing. However, this study used a relatively complex way
to implement that. NETSECVISOR leverages SDN/OpenFlow
to simply the routing and provides various flow detouring and
response strategies for security purpose.

In [21], [38], researchers discussed how to enforce access
control or load balancing policies in an enterprise domain.
There are some other studies (e.g. Nettle [37] and Frenetic
[20]) that design high level policy languages for OpenFlow
networks, which are interesting abstraction solutions. There
are already some research achievements on SDN security.
FortNOX [26] proposed a new security enforcement kernel
and its follow-up work, FRESCO [36], proposed a new mod-
ular, composable security application development framework.
Avant-Guard [34] implemented two data plane extensions to
address both the scalability challenge and the responsiveness
challenge which will bring security threat to OpenFlow net-
works. Rosemary [33] proposed a controller framework design
that can protect the control plane from unexpected running
failures and losing of network control.

Most recently, a new concept very close to ours is proposed,
i.e., Network Function Virtualization [6], which proposes to
put network middle-box functions into virtual machines a
centralized server farm thus providing efficient network ser-
vices. While conceptually similar, our proposed NSV differs in
several fundamental aspects: First, our work does not need to
convert network middle-box functions into virtual machines
and relocate into a centralized place, instead it can rely
on existing pre-installed security devices and transparently
control network flows to desirable devices when necessary.
Second, our NSV focuses on providing security virtualization,
instead of generic network functions. It has some security
specific features, e.g., enabling security response functions and
providing a user-friendly security policy script language for
both administrators and tenants.

We motivate from the need of flexible management of net-
work security devices/middleboxes. There exist some studies
on middle box policy enforcement using SDN [28], [7]. While
these studies share some spirit with our work, they are funda-
mentally different in goals and technical approaches. These
studies mainly propose to bind between packets and their
“origins” and ensure that packets follow the right sequence
of middle boxes. In our work, we focus more on specific
security challenges: How to generate the right routing path
that leverage pre-installed, static security devices to provide
dynamic security services? How to provide a user-friendly way
for tenants to specify security policies without worrying about
information of security devices (i.e., location, number/kind of
devices), operating security functions, and underlying network
architecture/workload? Furthermore, how to respond to secu-
rity alerts? All these are unique in our work. Finally, we note
that our approach could potentially benefit from these existing
complementary studies [28], [7], particularly if we are going
to deal with the service-chaining problem.

IV. DESIGN

In this section, we will describe the architecture and oper-
ation scenario of NETSECVISOR.

A. Network Security Virtualization Concept
The main concept of network security virtualization (NSV)

is to virtualize network security resources/functions and pro-
vide on-demand security to any (possible) networks/places in a
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user-friendly way. It requires two main functions: (i) transpar-
ently deliver network flows to desirable security devices, and
(ii) enable security response functions into a network device
when necessary. The first function can allow us to provide
security services to any network flow that requires the services,
and the second function can help us distribute security services
into each network device. Based on these functions, NSV can
provide network security services to any network flows at any
network devices. In addition, since serving security function
is conducted only when necessary, we can efficiently manage
network security resource usage.

B. Overall Architecture of NETSECVISOR

It is not easy to realize network security virtualization
(NSV) with traditional network technology because it lacks
several features, such as network-wide monitoring, network
configuration, network flow control, and response manage-
ment. To address this issue, we leverage an emerging network
technique, Software-Defined Networking (SDN) [24], which
can help us dynamically control network flows and monitor
whole network status easily. And we have implemented a
prototype system, NETSECVISOR (NSV services for a cloud-
like network) based on SDN. As shown in Figure 2, NET-
SECVISOR consists of five main modules: (i) Device and
policy manager, (ii) Routing rule generator, (iii) Flow rule
enforcer, (iv) Response manager, and (v) Data manager.

Device and policy manager is in charge of two main
functions. First, it receives the information of security devices
from a cloud administrator, and it stores that information into
a device table in NETSECVISOR for further usage. Second,
this module also receives security requests from each network
tenant, and it translates them into security policies and stores
the policies into a policy table. Thus, this module finally has
two information: (i) locations/types of security devices from a
cloud administrator and (ii) security policies from each tenant.
It makes our system handle network security devices easily.

Response manager receives detection results from security
devices, and it enables security response strategies that are
defined in security policies, when it is needed. For example,

if a tenant defines a security policy to drop all corresponding
packets when a threat is detected by a NIDS, the response
manager will enable drop function to discard network packets
belonging to the detected network flows on a network device.
Enabled functions will be realized as a set of network flow
rules, which are sent to routers or switches, and thus we can
leverage each network device as a kind of security device (e.g.,
firewall).

Routing rule generator creates routing paths to control
each network flow. When creating routing paths, this module
investigates security polices (from each tenant) to satisfy their
requirements. For example, if a tenant defines a security policy
that specifies all network flows to port 80 should be inspected
by a NIDS attached to a router A, then this module produces
(a) routing path(s) to let all network packets heading to port 80
pass through the router A. It helps our system assign security
requirements to each security device based on efficiency (in
terms of security resource management) and effectiveness (in
terms of finding reasonable security devices).

Flow rule enforcer enforces flow rules to each OpenFlow
router and switch. If the response manager enables response
strategies or the routing rule generator produces routing paths,
this module translates them into flow rules that could be
understood by OpenFlow routers/switches. After translation,
it sends translated rules to corresponding routers or switches.

Data manager captures network packets from routers or
switches to hold until some security devices send their de-
tection results to NETSECVISOR. The reason why it holds
packets is to enable some in-line style security funtions as what
generic Intrusion Prevention Systems provide. This module
does not hold packets all the time, but only captures and
stores when necessary (i.e., a security policy specifies an in-
line mode action for response).

A typical operation of NETSECVISOR works as follows. A
network administrator registers network security devices (both
physical devices and virtual appliances) to NETSECVISOR.
After registration, cloud tenants need to create their security
requests and submit them into NETSECVISOR. Then, NET-
SECVISOR parses the submitted security requests to under-
stand the intention of tenants and writes the corresponding
security policies to policy table. Next, if NETSECVISOR
receives a new flow setup request from a network device,
it checks whether this flow is matched with any submitted
policies. If it is, NETSECVISOR will create a new routing
path and corresponding flow rules for the path. At this time,
NETSECVISOR guarantees that the routing path includes re-
quired security devices that are defined in a matched policy
(i.e., the first NSV function). After this operation, it enforces
flow rules to each corresponding network device to forward
a network flow. If any of security devices detects malicious
connection/content from monitored traffic, they will report
this information to NETSECVISOR. Based on the report and
submitted policies, NETSECVISOR enables a security response
function to respond to malicious flows accordingly (i.e., the
second NSV function).
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C. How to Register Security Devices

To use existing security devices, a cloud administrator
needs to register them to NETSECVISOR using a simple
script language. The script language asks for the following
information in registration: (i) device ID, (ii) device type (e.g.
firewall and IDS), (iii) device location (e.g., attached to a
router A), (iv) device mode (passive or in-line), (v) supported
functions (e.g., detect HTTP attacks).

Here is an example scenario to use the script. Let’s assume
that we install an intrusion detection system (IDS) into a
cloud network, and the IDS is attached to a network switch
whose data path ID is 089. In addition, we assume that this
IDS is operated in passive mode, and it protects a network
by detecting DNS attacks. This IDS can be registered to
NETSECVISOR by using the following script: {1, IDS, 089,
passive, detect DNS attack}

D. How to Create Security Policies

After a network administrator registers security devices for
a cloud network to NETSECVISOR, the information of the
registered security devices is shown to tenants using the cloud
network by NETSECVISOR. Then, the tenants can define their
security requests considering registered security devices and
security functions enabled by NETSECVISOR (these enabled
functions will be presented in section IV-F). Motivated from
[5], security request of a tenant is described with a script
language that NETSECVISOR provides. The script for a re-
quest consists of 3 fields: (i) flow condition, which specifies
the flow to be monitored (or controlled), (ii) function set,
which denotes the necessary security devices for monitoring
or investigating, and (iii) response strategy, which defines how
to handle the flow if a threat is detected. The policy syntax
is: {{flow condition}, {function-list}, {action-list}}. Currently,
NETSECVISOR supports 5 different response strategies (two
in passive mode and three in in-line mode), and they are drop,
isolate for passive mode and drop, isolate, redirect for in-line
mode. Detailed information for these responses is explained
in Section IV-F. Here, we provide an example script for the
following security request: one tenant (IP = 10.0.0.1) wants
all HTTP traffic regarding to his IP to be monitored by a
firewall and an IDS, and it wants to drop all packets issued
as attacks by the firewall and the IDS. This request can be
sent to NETSECVISOR with the following script: {{((DstIP =
10.0.0.1 OR SrcIP = 10.0.0.1) AND (DstPort = 80 OR SrcPort
= 80))}, {firewall, IDS}, {drop}}

Finally, NETSECVISOR receives security requests from
each tenant, and it translates them into security policies that
can be applicable to a SDN enabled cloud network. At this
time, NETSECVISOR needs to translate tenant defined high-
level conditions into more specific network level conditions,
and it also maps function set into security devices registered
before.

E. How to Decide Routing Path

If NETSECVISOR finds network packets meeting a flow
condition specified by a security policy, then it will route these

packets to satisfy security requirements. When NETSECVISOR
routes network packets, it should consider the following two
conditions: (i) network packets should pass through specific
security devices to meet the security requirements, and (ii) the
created routing paths for network packets should be optimized.

There are several existing routing algorithms for intra-
domain (e.g., OSPF [13]) to find optimal paths. However,
they can not be employed directly for our case. Since network
packets only contain the source and destination information,
existing routing approaches can not discover necessary ways to
locations where security devices are installed. Thus, we need
to create our own approaches.

What kinds of basic properties should be in our rout-
ing algorithms? Described in Section IV-D, NETSECVISOR
supports two modes of security devices which are passive
mode and in-line mode. For a passive mode device, we can
forward the traffic to pass through the device, or just mirror
a duplicate to the device and forward the original traffic in
another way. For an in-line mode device, all traffic should
pass through and be monitored by this device. The generated
routing path should satisfy the requirements from different
modes of security devices. Besides, a network may contain
only passive mode devices or in-line mode devices, or both
the two kinds. Thus, we aim to design different algorithms for
different usage scenarios.

Recent software-defined networking technologies (e.g.,
OpenFlow) provide several interesting functions, and one of
them is to control network flows as we want. With the help of
this function, we propose 4 different routing algorithms, which
can satisfy different requirements. We define the following 4
terms to explain our algorithms more clearly: (i) start node,
a node sends network packets, (ii) end node, a node receives
the packets, (iii) security node, a node mirror packets to a
passive security devices, and (iv) security link, a link on which
in-line security devices are located. Among the proposed 4
algorithms, 3 of them (i.e., Algorithm 1 - 3) are designed for
security policies which only use passive mode devices, and
1 of them (i.e., Algorithm 4) is suggested for policies which
have in-line security devices such as a firewall and a NIPS.

To describe our algorithms more clearly, we first explain
how we can find the path between two nodes.

A network can be characterized using a graph structure,
which consists of nodes (hosts or routers or switches) and
arcs (physical links between devices). In this graph structure,
we need to find some paths between a start node, which sends
network packets, and an end node, which receives network
packets. At this time, we usually want to find the shortest
path2 between a start node and an end node to deliver network
packets efficiently. The problem of finding the shortest path
between two nodes is a type of a linear programming, and it
can be formulated as the minimum cost flow problem [16].
To do this, we first need to define some variables: xi,j , which
represents the amount sent along the link from node i to node
j, and bi, which means the available supply at a node (if bi ≤
0, then there is a required demand). In addition, we assume

2Here, the shortest path means that the path represents the lowest network
link cost, and the network link cost can be determined by several features,
such as network capacity and current load.
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that a network is balanced in the sense that
∑n

i=1 bi = 0.
Considering the unit cost for flow along the arc between two
nodes i and j as ci,j , the minimal cost flow problem can be
formalized as the following mathematical terms in Eq. (1).

min
∑

ci,jxi,j

s.t
n∑

j=1

xi,j −
n∑

k=1

xk,i = bi for i = 1, 2, ... n

xi,j ≥ 0 for i,j = 1, 2, ... , n

(1)

Based on this Eq. (1), we can find the shortest path between
two nodes3. We will use this result as a primitive to find paths
satisfying the conditions in our problem domain. For brevity,
when we find the shortest path between a and b, we denote
Eq. 1 as find shortest path(a, b).

To describe the proposed algorithms more clearly, we will
provide concrete examples to illustrate the key concept of
each algorithm. For the illustration, we use a simple network
structure as shown in Figure 3(a). It contains six routers (R1
- R6), a start node (S), an end node (E), and a security device
(C) attached to node R4 (thus R4 is a security node). We
assume that node S sends packets to node E, and our example
security policy is specified that all packets from node S to
node E should be inspected by security device C. Furthermore,
Figure 3(b) shows the traditional packet delivery based on the
shortest path routing without considering the need of security
monitoring. Thus, packets from node S are simply delivered
through the path of (S→ R1→ R5→ R6→ E), and obviously
in this case they can not be inspected by the security device
C. Next we will describe how our new algorithms work and
illustrate them on the same network structure.

Algorithm 1 (Multipath-Naive): First, we design a simple
algorithm to visit each security node regardless of the path
between a start node and an end node. In this algorithm, NET-
SECVISOR first finds the shortest path between a start node
and an end node. Then, NETSECVISOR also discovers the
shortest paths between a start node and each security node. If
NETSECVISOR has all paths, it delivers packets to all obtained
paths. This approach is based on a function of OpenFlow,
which can send network packets to multiple output ports of
a router. Thus, NETSECVISOR can send network packets to
different paths simultaneously. This approach is summarized
in Algorithm 1. An example case for this algorithm is shown
in Figure 3 (c), and here, this algorithm finds the shortest path
between S and E for a packet delivery and the other shortest
path between S and R4 (S → R1 → R2 → R3 → R4) for
inspection.

Algorithm 2 (Shortest-Through): The second approach
is to find the shortest path between a start node and an end
node passing through each intermediate security node. Finding
this path is more complicated than finding the shortest path
between two nodes, because in this case, we should make
sure that the found path include all intermediate nodes. To do
this, NETSECVISOR finds all possible connection pairs (e.g.,
if there are multiple security nodes, (a start node, a security

3We do not talk about how we can solve this problem in this work, because
it is well-known [16], and it is not our main focus.

Algorithm 1: multipath-naive
Input: S (start node)
Input: E (end node)
Input: Ci = security node i, i = 1, 2, 3, .., n
Output: FPm (multiple shortest paths)
P0 ← find shortest path(S, E);
foreach Ci do

Pi ← find shortest path(S, Ci);

foreach Pi do
if Pi 6⊂ P0 then

FPm ← Pi;

foreach Pj do
if i 6= j and Pi 6⊂ Pj then

FPm ← Pi;

node 1) and (a security node 1, a security node 2)) among
all nodes including a start, an end, and security nodes, and
then, it investigates the shortest paths of each pair. After this
operation, it checks possible paths between a start node and
an end node, and it could generate multiple paths. Finally,
NETSECVISOR finds the path which has the minimum cost
value. This approach is formalized in Algorithm 2, and an
example case is presented in Figure 3 (d). In this case, it finds
the shortest path between S and E that passes through R4, and
the path is like the following (S → R1 → R2 → R3 → R4
→ R6 → E).

Algorithm 2: shortest-through
Input: S (start node)
Input: E (end node)
Input: Ci = security node i, i = 1, 2, 3, .., n
Output: FP , one shortest path
foreach Ci do

Mi ← Ci;

Mi ← S;
Mi ← E;
foreach Mj do

foreach Ml do
if Mj 6= Ml then

Pj,l ← find shortest path(Mi, Ml);

while Rk 6= NULL do
Rk ← permutation(M1, M1, ..., Mn+1, Mn+2,);
if first element of Rk = S then

if last element of Rk = E then
Qt ← Rk;

foreach Qt do
foreach Pj,l do

if Pj,l ⊂ Qt then
TPt ← Pj,l

FP = min(TP1, TP2, ....);

Algorithm 3 (Multipath-Shortest): As we mentioned
previously, OpenFlow supports the function of sending out
network packets to multiple outports of a router simultane-
ously, and Algorithm 1 is based on this function. However, it
may not be efficient, because it can create multiple redundant
network flows. Thus, we try to propose an enhanced version
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(a) Layout (b) Shortest Path (c) A1: Multipath-Naive

(d) A2: Shortest-Through (e) A3: Multipath-Shortest (f) A4: Shortest-Inline

Fig. 3: Example Scenario for Each Algorithm

of Algorithm 1. The concept of this enhanced algorithm is
similar to that of Algorithm 1. However, this approach does not
find the shortest path between a start node and each security
node, instead it finds a node, which is closest to a security
node and in the shortest path between a start node and an end
node. If it finds the node, it asks this node to send packets
to multiple output ports: (i) a port, which is connected to a
next node in the shortest path, and (ii) (a) port(s), which is
(are) connected to (a) node(s) heading to (a) security node(s).
Thus, network packets are delivered through the shortest path,
and they are delivered to each security node as well. This
approach is presented in Algorithm 3. Figure 3 (e) presents an
example scenario for this algorithm. It first finds the shortest
path between S and E, and it finds the shortest path between
R4 and nodes on the found shortest path, which is R6 → R4.

Algorithm 3: multipath-shortest
Input: S (start node)
Input: E (end node)
Input: Ci = security node i, i = 1, 2, 3, .., n
Output: FPj , multiple shortest paths)
P0 = find shortest path(S, E);
FP ← P0;
foreach Ci do

foreach nj in P0 do
TPi,j ← find shortest path(Ci, nj);
FP ← TPi,j ;

Algorithm 4 (Shortest-Inliine): Previously, we have pre-
sented three algorithms, and they are applicable to the case,
if security devices attached to security nodes are passively
monitor network packets. However, if a security device is
installed as in-line mode, the situation should be changed.
For passive monitoring devices, we can simply find a path
passing through each security node, however, in the case
that there is a security device working in-line mode, we are
required to consider both of security nodes and security links
(between two nodes). Even though a path includes two nodes
for a link, it does not guarantee that the link is used for the
path, because each node could be linked to another nodes.
To address this issue, we modify our Algorithm 2 to make
sure that it should include security links in the generated path.
Thus, this Algorithm 4 has a routine checking whether security
links are included or not. This algorithm is summarized in

Algorithm 4: shortest-inliine
Input: S (start node)
Input: E (end node)
Input: Ci

m,n = security link i between m node and n node
Output: FP , one shortest path
foreach Ci do

Mi ← Ci;

Mi ← S;
Mi ← E;
foreach Mj do

foreach Ml do
if Mj 6= Ml then

Pj,l ← find shortest path(Mj , Ml);

while Rk 6= NULL do
Rk ← permutation(M1, M1, ..., Mn+1, Mn+2,);
if first element of Rk = S then

if last element of Rk = E then
foreach Ci

m,n do
if (m,n) 6⊂ Rk then

continue;

Qt ← Rk;

foreach Qt do
foreach Pj,l do

if Pj,l ⊂ Qt then
TPt ← Pj,l

FP = min(TP1, TP2, ....);

Algorithm 4. An example for this case is presented in Figure
3 (f), and it shows that there is a security node (C) on the link
between R3 and R4. The selected path is the same as the path
found in Algorithm 2. However, to find a path considering an
inline device, we need to make sure that the link, where an
inline device is, is on the routing path.

Usage Scenario and Comparison of Each Algorithm:
Finally, we have compared each algorithm and presented their
pros/cons and suitable using scenarios in Table I. Understand-
ing strong or weak points of each algorithm will help us find
a more suitable routing algorithm for specific situation in a
cloud network environment. Table I summarizes the strong or
weak points of each algorithm, as well as the recommended
scenario to use each algorithm. For example, we can see that
the advantage of Algorithm 2 (Shortest-Through) is that it will
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Algorithm Pros Cons When to use
A1: Multipath-Naive Simple and fast Redundant flows Enough network capacity, delay is im-

portant
A2: Shortest-Through No redundant path Computation overhead, when

multiple devices
Not enough network capacity, delay is
not so important

A3: Multipath-Shortest Efficient routing path Computation overhead Not many hops (e.g., communication
between inside VMs)

A4: Shortest-Inline Guarantee passing through
a specific link

Computation overhead, when
multiple devices

For an inline security device(e.g., IPS)

TABLE I: Comparison of Each Algorithm

(a) Passive Mode Drop/Isolate (attack) (b) In-line mode Forward (benign)

(c) In-line mode Drop/Isolate (attack) (d) In-line mode Redirect (attack)

Fig. 4: Response Strategies

not increase much network traffic and the disadvantage is its
relatively high running complexity (actually it has the highest
computation complexity among four). It is mostly suitable to
use if the overall network capacity is a concern while the com-
munication delay is not a concern. Algorithm 1 (Multipath-
Naive) is suitable for cloud networks with enough capacity,
and their communication delay is of importance. Algorithm
3 (Multipath-Shortest) is mostly suitable for relatively short
paths without many hops. Algorithm 4 (Shortest-Inline) is
obviously suitable for inline security devices. In fact, if the
users want to use in-line devices, our system will automatically
choose Algorithm 4 for them. In general, the system allows
the users to specify/configure the algorithms they want to use.
Also, the system can automatically choose an algorithm for
users if the users simply specify their high-level priorities (e.g.,
communication or computation cost), based the summary in
Table I.

F. How to Enable a Security Response Function

After inspecting network flows with specified security de-
vices, a tenant can decide response methods for network pack-
ets detected as malicious (or suspicious) by security devices.
He may want to drop all detected packets or isolate some
infected hosts. These response methods are very hard to be
implemented with existing network devices, because it requires
additional inline devices that can handle network packets or

changing the configurations of a network device. For example,
suppose that we install several intrusion detection systems into
a cloud network, in this case, what if a tenant wants to drop all
network packets detected by these intrusion detection systems?
Since these systems cannot drop packets, we need to have
another methods (e.g., additional proxy devices) to support
the tenant’s request.

To address this issue and provide more flexible response
methods, NETSECVISOR provides a way of enabling 5 se-
curity response strategies, and they do not require adding
physical security devices or changing network configurations
for handling packets. These methods can be operated into
two different modes: (i) passive mode, and (ii) in-line mode.
Passive mode response strategies are similar to strategies
by existing network intrusion detection systems that mirror
network traffic for investigation and generate alerts. In this
mode, some malicious network traffic could have been already
delivered to a target host.

In this passive mode, NETSECVISOR supports two response
strategies. First, NETSECVISOR can drop packets that belong
to detected network flows. This strategy is useful to stop some
later malicious packets in the flow, but it does not guarantee
that none of malicious packets are delivered to the target host.
Second, NETSECVISOR can isolate a specific host or a VM,
if it is detected as malicious. In this strategy, NETSECVISOR
is able to block sending network packets to a detected host or
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a VM, or from a detected host or a VM. A tenant can specify
which kind of packets should be blocked (i.e., packets from,
packets to, and both). The operation of these two strategies are
shown in Figure 4 (a). If a host H1 sends a malicious packet
(1) to a host H2, this packet will be mirrored by a router
(3-2) and delivered to a NIDS. Then, NIDS detects this as
malicious and reports to NETSECVISOR (a). However, since
NIDS is installed in passive mode (mirror network traffic),
it does not interfere network flows, thus, the packet is also
delivered to a target host H2 (3-1) (4). If NETSECVISOR
receives an alert from NIDS, NETSECVISOR will enforce flow
rules to router R1 for dropping packets from H1 (drop strategy)
or enforce flow rules to router R1 (or R3) for dropping any
packets from/to H1 (or H2)4 (isolate strategy).

NETSECVISOR also provides three interesting in-line mode
response strategies: (i) drop, (ii) isolate, and (iii) redirect. In
the case of in-line strategies, NETSECVISOR holds network
packets until security devices send their decision results. If
NETSECVISOR receives detected results and the response
strategy for these packets is in-line mode drop, it discards
all packets. Thus, a host, which an attacker tries to infect,
does not receive any malicious packets. This action is denoted
in Figure 4 (c). In this case, a malicious host H1 sends an
attack packet (1) to H2, then the packet is delivered to a
NIDS (3-2) and hold by data manager module (3-1). If NIDS
decides the packet is malicious (a), NETSECVISOR discards
held packets, and it also enforces flow rules to a router for
drop/isolate strategy. If NIDS considers the packet is benign
(this scenario is depicted in Figure 4 (b)), the held packets
will be forwarded to a target host (H2) automatically (4) and
(5). Both drop and isolate strategies are similar to passive
mode except the in-line mode guarantees that no malicious
packets are delivered to victims. Redirect strategy is different
from drop/isolate, and it does not drop packets but detours
packets to another networks or hosts. To handle malicious
packets, we sometimes employ some honeyhost, which is a
decoy host imitating a normal one. Redirect strategy can be
used to redirect malicious traffic to the honeyhost transparently
(without changing any network configurations or applications).
Like other in-line mode strategies, redirect strategy also holds
packets in data manager, and if security devices detect some
malicious packets, they will be redirected to another host.
Figure 4 (d) shows this scenario. Here, we can see that the
held packets (4) and detected packets (7) are redirected to a
honeyhost for further investigation.

V. IMPLEMENTATION

Our prototype is implemented on top of the POX controller
[27], a popular lightweight controller system for Openflow
networks. NETSECVISOR contains approximately 1,200 lines
of python code. The two data structures (device table and
policy table) in the device and policy manager are imple-
mented as simple hash tables. The response manager is im-
plemented as a simple network server and it opens a network
connection to receive detected results from each security

4We can regard that H2 is also infected, then, we may want to isolate H2
as well.

device. The data table in the data manager is a simple hash
table, whose key is created from network 5-tuple information
(i.e., source/destination IP address, source/destination port, and
protocol) of a network flow. The routing rule generator firstly
uses the topology discovery component in POX to learn the
underlying topology of the network as a graph structure. It also
collects network status information to estimate cost of each
network link through periodically sending query through POX
APIs. Finally, the flow rule enforcer translates the routing rules
into flow rules and sends the flow rules to relevant switches
through POX APIs (e.g., ofp_flow_mod).

VI. EVALUATION

A. Evaluation Environment

Fig. 5: 6-router Testbed

To verify the feasibility and evaluate the efficiency of
NETSECVISOR, we emulate three different network topolo-
gies, and two topologies are running on a virtual network
environment and one topology is running on a real commercial
switch environment.

Virtual network environment: We select Mininet [18],
which is popularly used for emulating OpenFlow network
environments, to emulate two different network topologies:
(i) 12-router configuration and (ii) 64-router configuration. In
each case, we install one passive mode security device and one
in-line mode security device (for evaluating Algorithm 4). In
addition, we create two hosts for a start node and an end node
for packet traversal.

Commercial switch environment: We create a 6-router
network topology presented in Figure 5 with 6 OpenFlow-
enabled switches (2 LinkSys WRT54GL switches and 4 TP-
Link TL-WR1043ND switches), 3 hosts for NIDS, and 2 hosts
for a client and a server. We change the firmware of LinkSys
and TP-Link devices to enable OpenFlow functions [25], and
we install Snort for NIDS. In the current status, we only
create a 6-router network because of the hardware limitation.
However, we will test more diverse network topologies with
more real network devices in near future.
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(a) 12 routers (b) 64 routers

Fig. 6: Flow Rule Generation Time Measurement

(a) 12 routers (b) 64 routers

Fig. 7: Network Cost Measurement

B. Generation Time and Network Cost Measurement

We measure four metrics to estimate the performance over-
head of NETSECVISOR. First, we measure the routing path
generation time of each algorithm. It is an important feature
to estimate the performance of NETSECVISOR, because it
determines how many network flows can be handled by
NETSECVISOR. For example, if NETSECVISOR can create a
routing path in 1 ms, it means that NETSECVISOR can handle
1,000 network flows in 1 second. Of course, there are many
ways to increase the number of flows for handling, thus, it
does not mean that the routing path generation time strictly
restricts this number. Second, we estimate the network cost
that represents total cost of delivering a packet between a start
node and an end node, and this cost can be formalized as the
following formula:

∑
i,j∈M ci,j , where ci,j is the unit cost

for flow along the arc between two nodes i and j, and i, j
are pairs of nodes belonging to a path M . When we measure
this network cost, we set ci,j as 1, but in real cases, we can
define this cost by other methods (e.g., measuring network link
status). In our evaluation, we measure the number of network
links between a start node and an end node after generating
the flow rule as the network cost. Third, we measure the CPU
and memory overhead of NETSECVISOR, when it determines
a routing path. Fourth, we measure the average response time
between a client host and a server host, when NETSECVISOR
sets up a routing path between them. In this case, we want to
understand the response time when a client sends packets to
a server with different routing paths. When we measure each

metric, we compare our routing algorithms with an simple
baseline routing module (except CPU and Memory overhead
case). This module is based on the Dijkstra’s shortest path
algorithm, which is well known and widely used, and we
denote this algorithm as shortest in our test results. Based on
the comparison, we can estimate the overhead of the proposed
routing algorithms.

Virtual network environment: The results for the routing
path generation time are shown in Figure 6, and we can ob-
serve that the proposed routing algorithms add relatively high
overhead (from 20% to 100%) compared with the baseline
module. However, we argue that the time is still reasonable
because it can still handle around 500 network flows per
second in the worst case (i.e., running Algorithm 2 in 64-
router configuration), and it can be improved by optimized
implementation (all test results are based on our unoptimized
prototype system). An interesting thing is that the added rel-
ative overheads (in terms of percentage) are decreasing when
we apply more routers. For example, in the case of 12-router
configuration, Algorithm 1 shows nearly 50% of overhead, but
it is reduced into around 20% when we use 64 routers. This
is probably because in the case of larger networks, finding the
shortest path between nodes (the primitive for both baseline
and our algorithms) consumes most of time for routing path
calculation (instead of our new routing calculation). It implies
that if we apply NETSECVISOR into a large-scale cloud net-
work, the overhead could be reduced significantly compared
with the based module. Figure 7 presents the test results of
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network cost for each case. Here, we find that Algorithm 1
adds much more overhead than other cases, and it is natural
because this algorithm copies network flows to be monitored.
However, other algorithms add small overhead, because they
try to find the shortest paths for their purpose.

Commercial switch environment: Figure 8 presents the
test results of the routing path generation time (a) and the
network cost (b) for the commercial switch environment. In
this test, we have changed the number of security devices
from 1 to 3 to understand the overhead more clearly (In the
figure, 1 location denotes that we install 1 security device).
In the case of the routing path generation time, the overhead
is somewhat noticeable, which is an expected result from the
virtual network environment case. An interesting thing from
the results is that even though we install more security devices
into a network, it does not cause much serious overhead. Of
course, it is possible that the number of routers for testing is
limited (i.e., 6), and thus installing more security devices may
not produce complicated path calculations. We present the test
results of network cost in Figure 5 (b), and it clearly shows
that Algorithm 1 adds more overhead than other algorithms,
which is the same result that we found in the above.

C. CPU and Memory Overhead and Response Time
CPU and memory overhead for virtual switch envi-

ronments: We also evaluate the CPU and memory usage
overhead in each topology. The overhead is introduced when
NETSECVISOR generates routing paths. The baseline is in
idle state and the usage of CPU and memory is zero. For
different topologies, we calculate the absolute increment of
usage when generating routing paths compared to this baseline.
Since we find that the CPU and memory usage overhead
of each algorithm case is quite close to each other, we use
the result of Algorithm 4 as a representative example. The
overhead results are shown in Figure 9, and we can clearly see
that the memory overhead is no more than 1%, which can be
ignorable. In addition, our routing algorithms do not produce
serious CPU overhead (the 64-router topology only adds about
6% overhead). The results imply that we can optimize our
algorithms by using more CPU power and memory. For
example, we can employ some techniques to hold all (or most
of) created routing paths into a memory space to reduce the
time for routing path generation (a kind of cache).

Average response time for commercial switch environ-
ment: To measure the average response time between two
peers (i.e., Client 1 and Client 2 in Figure 5 (left)) for each
algorithm, we first set up routing paths between two peers
with each algorithm. After generating the routing paths, we
send 60 ping from Client 1 to Client 2 to measure the average
response time. In this case, the routing paths for each algorithm
are the same as the paths in Figure 3, and the test results are
shown in Figure 10. The results clearly show that if we use
Algorithm 1 or Algorithm 3, a client cannot feel any additional
delay, and that is because these two algorithms guarantee that
they deliver packets from the client to the server through the
shortest path. Other two algorithms (2 and 4) add a little more
delays compared with other methods, and it is very natural
because they take longer paths.

D. Discussion on Scalability
We aim to design NETSECVISOR to scale to cloud level

network. A large cloud network often contains millions of
tenants and VMs. That introduces a data plan scalability
issue. There may be tens of thousands of security requests
generated per second. Generating routing paths for all of
them can be a huge burden for NETSECVISOR. A single
instance of NETSECVISOR may not be able to handle that.
Meanwhile, the inherent bottleneck of the flow rules amount
in the data plane is another possible limitation. We need
some optimization methods to make our system scale well.
To solve this issue, we could leverage some existing research
solutions. To address the bottleneck of generating routing
paths, we notice that generating of each routing path can be
done separately and asynchronously, which means we could
run our system in a distributed manner with the help of
existing distributed SDN controller platforms (e.g., Onix [15],
ONOS [23]) to generate the routing path. We could have
multiple NETSECVISOR working in parallel. Onix and ONOS
both provide suitable distribution solutions. Thus, we think
separately and asynchronously generating of routing paths for
different policies could be a potential solution to the scalability
challenge. To address the bottleneck of data plane flow entries,
we could implement scalable and efficient networking system
(e.g., DIFANE [19]) in some heavily loaded nodes (e.g.
aggregation switches, ToR switches).

E. Case Study
In addition, we show a concrete case study of using NET-

SECVISOR to enforce a security policy to respond to certain
network threats. We set up a test case to present how a tenant
can respond to malicious network packets with NETSECVI-
SOR, and this test has been conducted in the commercial switch
environment (Figure 5 in Appendix). We generate a simple
DoS attack (exploiting the Real Audio server view-source DoS
vulnerability) from Client 1 to Client 2.

A sample security requirement from a tenant in this network
is to drop all packets detected by the NIDS device, and thus, it
registers a simple security policy {{ALL}, {NIDS}, {drop}}.
NETSECVISOR uses Algorithm 1 to generate the routing paths
and uses Snort as the security device. When launching this
attack, the security device (i.e., Snort) successfully detects this
attack. And then NETSECVISOR enforces flow rules to drop
all packets from Client 1. We capture screen images to show
this operation. As shown in Figure 11, 192.168.1.12 is the
attacker (Client 1), 192.168.1.11 is the target (Client 2), and
192.168.1.14 is the NIDS (Snort).

As shown in this simple case study, our prototype is user-
friendly and tenants can easily create their security rules.
Compared with Amazon EC2 Security Group [2], we have
very similar user APIs and commands. However, tenants have
more options of device types, traffic types and response actions
when using NETSECVISOR. One can also define some default
security policies for tenants if needed.

VII. LIMITATION AND DISCUSSION

There are several limitations in our current work. First,
there could be some cases that NETSECVISOR cannot generate
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(a) Generation Time Measurement (b) Network Cost Measurement

Fig. 8: 6-router topology

Fig. 9: CPU and Memory Overhead Fig. 10: Response Time

(a) Snort Alert Message (b) Response Strategy

Fig. 11: A Case Study

routing paths. For example if a network administrator specifies
two security devices that cannot communicate with each
other, our algorithms will fail in generating paths. However,
NETSECVISOR can still show a warning message for this
physically impossible routing path. Second, NETSECVISOR
may suffer from tenants’ mistakes or even malicious tenants
if they register misconfigured or malicious policies. NET-
SECVISOR increases the trusted computing base (TCB) of the
network controller (POX in our current implementation). We
note that it is possible network controllers such as POX contain
vulnerabilities that can be exploited by attackers to change the
policies/flow rules. This is a separate research direction that
worth further investigation from the research community (one
of our future work). This issue is clearly out of the scope
of NETSECVISOR and future work is needed in this area.
Third, currently we only test our system in a small research
environment with no more than 64 switches. In our future

work we plan to evaluate in a larger-scale environment (e.g.
GENI, enterprise clouds).

In this paper, we mainly focus on the situation when the
security monitoring needs only a small number of security
devices. When dealing with a set of various devices, we need
to chain the services, which may involve more issues such
as the order of services in chaining, the potential routing
conflict/confusion for different devices. We plan to solve these
interesting research problems in the future.

VIII. CONCLUSION

This paper introduces a concept of network security virtual-
ization (NSV) that can virtualize security resources/functions
and provide security response functions from network devices
when necessary. We implement a new prototype system,
NETSECVISOR, to demonstrate the utility of NSV. We have
evaluated this prototype system in both virtual networks and
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commodity switches. With promising results, we believe that
NSV is a right step towards building more secure network
environments efficiently and effectively.
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