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ABSTRACT
The paradigm shift to a mobile-first economy has seen a drastic
increase in mobile-optimized websites that in many cases are de-
rived from their desktop counterparts. Mobile website design is
often focused on performance optimization rather than security,
and possibly developed by different teams of developers. This has
resulted in a number of subtle but critical inconsistencies in terms
of security guarantees provided on the web platform, such as pro-
tection mechanisms against common web attacks. In this work, we
have conducted the first systematic measurement study of incon-
sistencies between mobile and desktop HTTP security response
configuration in the top 70,000 websites. We show that HTTP se-
curity configuration inconsistencies between mobile and desktop
versions of the same website can lead to vulnerabilities. Our study
compares data snapshots collected one year apart to garner insights
into the longitudinal trends of mobile versus desktop inconsisten-
cies in websites.

To complement our measurement study, we present a threat
analysis that explores some possible attack scenarios that can lever-
age the inconsistencies found on real websites. We systematically
analyze the security impact of the inconsistent implementations
between the mobile and desktop versions of a website and show
how it can lead to real-world exploits. We present several case stud-
ies of popular websites to show real-world impact of how these
inconsistencies are leveraged to compromise security and privacy
of web users. Our results show little to no improvements across
our datasets, which highlight the continued pervasiveness of subtle
inconsistencies affecting even some high profile websites.
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1 INTRODUCTION
The advent of ubiquitous and powerful smart mobile devices has
seen a surge of mobile-optimized websites that complement exist-
ing desktop-optimized websites. Many popular web applications
offer a mobile optimized version of their website when a mobile
client is detected. Mobile websites are typically optimized with us-
ability and performance in mind, and are usually simplified version
of their desktop counterparts, which are typically developed and
maintained by different teams of developers. While mobile devices
become increasingly more powerful, their resources (RAM, CPU,
Disk, etc.) are still limited as compared to desktop computers and
laptops. This increases a need for optimized web applications served
to mobile devices, usually in the form of scaled-down user inter-
face and functionality. In the mobile space, each byte transferred
between the server and client carries a cost, both in terms of money
and resources required on the device [23]. As a result, developers
are especially mindful of minimizing all data sent from the server,
and find every opportunity to squeeze extra performance from their
web application.

While many previous researchers have explored the problems on
the web platform, none have assessed the extent to which mobile
conformity affects security and privacy on the web. In this work we
explore the pervasiveness and impact of subtle inconsistencies of
HTTP security headers between desktop and mobile websites. To
that end, we explore and compare inconsistencies between mobile
and desktop website artifacts to determine whether they can lead
to security vulnerabilities.

While many online services may have corresponding native mo-
bile applications, a recent study showed that many users still access
these services through their mobile web browsers, especially in the
areas of shopping, reference, news, and education [11]. Moreover,
many native apps are simply wrappers around an embedded web
browser component that simply loads a mobile optimized website.
Web browsers themselves have evolved over the years to become
a bona-fide application platform that must now support the inter-
action of several mutually distrusting principals [28] which may
perform critical functionality within a web application. Through
this evolution, several security mechanisms have emerged that are
aimed at strengthening the security of the browser platform against
common attacks [31]. Most of these mechanisms are implemented
using HTTP Headers, which serve as directives from the hosting
web server to instruct the client browser to enforce certain poli-
cies [9, 16, 17, 31, 32]. We refer to such headers as security headers.

Web applications are usually designed and deployed using an
n-tiered approach that separates the data, business logic, and user
interface components. In their pursuit of seamless user experi-
ence and optimal performance, web developers use different tech-
niques to serve content according to the user’s detected browser.
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Many web servers and web applications use simple browser fin-
gerprinting techniques, either through inspection of the HTTP
User-Agent Header, or JavaScript’s navigator.userAgent object,
to infer the form factor of the user and decide whether to serve a
mobile-optimized or full desktop version of a website. These ap-
plications can be deployed in a variety of scenarios where mobile
and desktop versions share one or more layers. This improves scal-
ability and conveniently allows mobile and desktop-optimized web
applications to share the same underlying server resources.

Unfortunately, this design and deployment flexibility can lead
to inconsistencies with regard to critical artifacts such as session
cookies, and HTTP security headers. For example, consider if the
server hosting www.example.com enforces strict HTTPS, but the
server hosting m.example.com allows insecure HTTP connections.
Assuming a shared back-end server infrastructure and cookies
set using the domain attribute [28], this trivial inconsistency can
enable an attacker to retrieve authentication cookies saved by
www.example.com, by forcing the victim to visit m.example.com
through a man-in-the-middle scenario.

Regardless of whether a website is served to a desktop browser
or a mobile device, we assume some aspect of shared content and
resources. This is common in virtual hosting environments where
one server is used to host a web application, and a browser fin-
gerprinting component routes requests to a mobile-optimized or
desktop-optimized virtual host of the same website. The presence of
a common underlying server allows both mobile and desktop web-
sites to conveniently share common resources. For example, while
many mobile users are redirected to an ‘m.’ subdomain, the cookies
are set using the second-level domain (SLD) path. This allows the
application state to be shared between the mobile and desktop sites.
Subtle inconsistencies emerge from this practice, whether due to
differences in the configuration of the virtual hosts, or due to per-
formance optimization inconsistently applied between each virtual
host on a shared server. In this context, we define the origin as the
top level domain. For example, the sites www.example.com and
m.example.com are considered as example.com.

In short, our main contributions are as follows:

(1) We conduct the first longitudinal, large-scale, systematic
measurement study on the security header inconsistencies
of (top 70,000) web server responses requested by desktop
and mobile web browsers. We show that such security in-
consistency is a pervasive problem in the real world.

(2) We systematically analyze the security impact of these incon-
sistencies and show how they can cause web applications
to become more vulnerable and exposed to exploits with
severe consequences. We showcase several examples of real-
world top websites such as netflix.com and disneystore.com.
We have also worked with a few of them to help fix the
inconsistencies.

2 BACKGROUND
The web infrastructure continues to be exploited by attackers, with
wide spread implications that affect every facet of society. Over the
years, Researchers and Industry have responded in kind by devel-
oping browser mechanisms that mitigate popular website attacks
such as cross-site scripting, clickjacking, and others. The browser

has become the main battleground, and many recent proposals
have sought to strengthen the browser by leveraging and extending
existing features. In particular, HTTP Headers have become a pop-
ular channel for implementing defense mechanisms [9, 17, 25, 31].
Effective website security defense mechanisms have emerged in the
form of declarative security in HTTP headers, which provide ex-
plicit security parameters that instruct browsers to enforce specific
security functionality against common web vulnerabilities. This
requires close coordination between the browser and server.

Table 1: List of Security HTTP Headers Analyzed

Headers Example Attacks Mitigated
Set-Cookie Session hijacking, Cookie stealing.
X-Frame-Options Clickjacking
Access-Control-Allow-Origin Cross-site access
X-XSS-Protection Cross-site scripting
Strict-Transport-Security Man-in-the-middle
X-Content-Type-Options MIME sniffing.
Content-Security-Policy XSS, CSRF

2.1 HTTP Security Headers
Every HTTP request and response between two communicating
parties includes one or more HTTP headers [13]. These headers
are an important part of the HTTP protocol, carrying additional
information about each request or response that is utilized by the
client or server to process the request or response. HTTP headers
are formatted as key-value pairs, with the key representing the
name of the header, and the value representing the specific config-
uration for the header. HTTP security headers are declarations by
the responding web server instructing the client browser to enforce
certain built-in security mechanisms to mitigate common web at-
tacks, such as cross site scripting filtering, prevention of cross site
request forgery, and others [4]. Table 1 shows a list of the specific
HTTP security headers that we focus on in this work.

HTTP headers can serve as effective and cheap means by which
websites can declare to a browser what security principles to en-
force. However, the presence of these headers do not guarantee
enforcement on the client side.

In addition to specifying the headers, web servers must also
correctly configure the header’s values and parameters, which serve
as the input to the browser regarding the actions it must take to
mitigate a specific attack vector. Security headers have no effect or
unintended consequences if they are incorrectly or ambiguously
configured [12]. For example, a web server must send the header
“X-Frame-Options:DENY ” to disallow the website from being loaded
into an iframe. If, for example, the value is incorrectly specified
as “Denied”, then the browser will not be able to understand that
directive, and the website may then be vulnerable to clickjacking
attacks.

2.1.1 Defense in Depth. Several previous studies have proposed
HTTP header-based defenses to mitigate common web attacks [5,
9, 10, 14, 15, 18, 19, 22, 25, 28, 31]. Most of the deployed defenses
on major browsers are defense-in-depth strategies and not meant
as completed prevention of web attacks. They do not eliminate any



of the targeted attacks, but make it more difficult for attackers to
exploit them. We focus only on the HTTP header-specific defenses
which we have observed in our analysis of the top 70,000 websites.
These Headers are listed in Table 1, and we collectively refer to them
in this paper as ‘security headers’. We show that inconsistencies
across implementations for mobile and desktop rendering reduce
the efficacy of these security header defenses.

2.1.2 Cookies. While cookies are HTTP Headers themselves,
we treat them differently because cookies have more diverse uses
beyond security policy enforcement. Cookies are used as a mech-
anism for maintaining state in place of HTTP’s stateless nature.
Cookies have evolved into a major tool in facilitating authorization
and authentication for web applications. Additionally, while cook-
ies are also HTTP Headers (Set-Cookie), they differ from traditional
HTTP Headers as the only headers for which storage space must
be allocated on the client side by the browser for saving and manip-
ulating the stored values. Set-Cookie is also one of the few HTTP
headers that can appear multiple times in a request or response [12].
Cookies can also be set using JavaScript, but we focus on it’s usage
as an HTTP Header in this paper.

2.1.3 Redirection. In the scope of this work, we focus on redirec-
tion performed by aweb server to upgrade the communication chan-
nel from HTTP to HTTPS, which is often done through delivery of
a Location header along with 3xx return status code. Additionally,
we consider redirections due to Strict-Transport-Security (HSTS)
or other server configuration that mandates a secure connection
channel. We refer to these collectively as Redirection Directives.
However, unlike other security headers, the purpose of the Redirec-
tion Directive headers are not primarily for security, thus we do not
list them in Table 1.

3 EXPLOITING INCONSISTENCIES
In this section, we first introduce our threat model, discuss the im-
pact of inconsistent configurations on websites’ security, and then
show real world examples that contain inconsistencies between
their mobile and desktop websites.

3.1 Threat Model
Our threat model assumes an attacker who can act as a user and
make requests to remote servers and inspect responses. This at-
tacker can collect, compare, and aggregate web request and re-
sponse artifacts to understand how to craft attacks that can lever-
age weaknesses found for each alternative view of a website. We
also consider an active network attacker who is able to inspect and
modify unencrypted networking traffic between the browser and
the server. However, the attacker cannot decrypt or modify traffic
over HTTPS except for his own traffic.

3.2 Inconsistency Scenarios
We explore the security impact of inconsistencies based on four
broad perspectives that we view as preconditions for enabling com-
mon web attacks using inconsistencies, such as man-in-the-middle
attacks, cookie stealing or replaying, and others. These inconsisten-
cies have the impact of facilitating attacks by minimizing the attack
effort (such as avoiding the need for SSL stripping) or increasing

the attack surface (such as a misconfiguration of XSS protection
header).

1. Presence Inconsistency. In this scenario, a critical security
header is present in one user agent, but missing in the other. An
attacker can leverage this knowledge in a chosen user agent attack
by redirecting the user to an alternative view of a website based
on a security header that is not present. For example, an attacker
can force a victim to an alternative view that does not include
clickjacking protection, and then embed that view in a hidden
iframe to carry out an attack such as illustrated in [7].

As illustrated in Figure 2, an attacker can act as a MITM to
rewrite the request’s User-Agent header to force a response where
a particular security header is known to be missing rather than the
response that would include the header. Or, an attacker can use
social engineering attack to make a victim access the inconsistent
website through a weaker channel.

2. Configuration Inconsistency. In this scenario, an attacker
observes and compares the configuration of a particular security
header between two user agents. For example, if CSP is configured
to allow scripts (script-src) from a source site’s subdomains in one
user agent, and not in the other, the attacker can leverage such
an inconsistency to his advantage. Consider if the domain is used
in a shared hosting environment. Then, if the attacker controls
a subdomain in that shared hosting environment, he can deploy
malicious hosts in his own subdomain, and redirect a victim user
to the inconsistent victim website UI where he can then leverage a
XSS, MITM, or other attack to inject code from his controlled subdo-
main that will execute in the victim’s browser since its inconsistent
CSP configuration allows scripts from subdomains. Although the
attacker may be limited by virtue of the subdomain being a different
origin, the potential attack is not inconsequential.

3. HTTPS Redirection Inconsistency. In this scenario, an at-
tacker leverages the fact that one response, depending on the user
agent, always redirects to HTTPS while another response will not
redirect to HTTPS. If an attacker can force a user to visit a site
where his request’s user agent setting is set to the version that
will not redirect to HTTPS, then the attacker can keep the con-
nection unencrypted and leverage a MITM attack, as shown in in
Fig. 2. We have found that in some cases, one response is configured
with HSTS, while another response does not have HSTS. In such
a scenario, the state of the connection is inconsistent and can be
leveraged by an attacker.

4. Cookie Flag Inconsistency. In yet another scenario, incon-
sistency in how a particular cookie’s flag is configured between
two user agents can enable an attacker to steal HTTP-only cookies
that are written using a secure HTTPS channel. In this example
scenario, a cookie’s Secure flag is set to false when written after a
request by a desktop user agent.

It is important to note that in the MITM attacker scenario, an at-
tacker can also launch a full SSLStrip attack instead of just rewriting
user agent to lead the victim to a weaker communication channel.
These inconsistencies do not necessarily lead to new exploits or
stronger attacks, but they give an attacker more options to launch
attacks based on different scenarios and circumstances in practice.



3.3 Real World Examples
Here we discuss some real world websites that we found to have
inconsistencies in their security headers, HTTPS redirection direc-
tives, and cookies. In all these case studies, it is important to note
that what we illustrate are not necessarily new attack techniques,
but new ways to carry out known attacks by leveraging inconsis-
tencies that can facilitate the targeted attacks. We reported these
issues to the respective websites and worked closely with some of
them to understand and fix the issue. In all cases, the inconsistency
problems have been fixed by these websites.

Figure 1: Cross-platform information leakage aggregation
attack.

3.3.1 Disneystore.com. This example leverages the cookie flag
inconsistency to launch a cookie replay attack by aggregating infor-
mation from two channels, i.e., desktop and mobile. To the best of
our knowledge, aggregating information leaked using both mobile
and desktop to collect necessary cookies that would not otherwise
be disclosed using one user agent alone has not been discussed
before in previous literature. We assume an active network attacker
who controls a rogue network access point, such as the evil twin
attacker [27], but does not necessarily employ SSL stripping. The
goal is to steal the user cookie and launch a cookie replay attack.
This considers the classic coffee shop scenario where a victim user
accesses free WiFi connectivity.

Our analysis framework (discussed in next section) reported
cookie inconsistencies. The cookie ‘JSESSIONID’, which is used for
session management in in J2EE web applications, had its secure
flag set to false when browsed by mobile user agents. Additionally,
another cookie ‘access_token’, which can be combined with JSES-
SIONID to replicate a user’s session, had its secure flag set to false
when browsed by desktop user agents. This scenario is illustrated
in 1.

By aggregating the ‘access_token’ cookie leaked from the vic-
tim’s desktop and the ‘JSESSIONID’ cookie leaked from the victim’s
mobile, we were able to obtain and replay these cookies to acquire
full access to a test victim account. On a real account, this would
contain the victim’s private information such as mailing address,
email, cellphone number, purchase history, and a partial credit card
number. For this scenario to be feasible, the victim user has to be
logged in to the website both on mobile and desktop devices with
persistent authentication, which is not uncommon. Since the Secure
flag is not set, the cookies will be sent over an insecure channel,
exposing them to an MITM attacker. This scenario is feasible, since
it is typical for people to carry their mobile devices everywhere,

and use their personal computers from varying locations. A survey
by ComScore [2] between 2013-2015 showed that 57 to 84 percent
of consumers regularly use both mobile and desktop platforms
interchangeably for browsing.

Figure 2: Redirecting client to less secure UI

3.3.2 Bet365.com. This example leverages redirection inconsis-
tency and cookie flag inconsistency by forcing the user to browse
through a weaker communication channel. The attacker can force
(by altering user agent field on the initial HTTP connection) or
coerce (by social engineering attack) the victim to a less secure chan-
nel based on the inconsistencies that the attacker has knowledge of.
This has a similar result, but is less invasive than an SSL stripping
attack. The goal is to redirect the user to a view that meets the
preconditions of the attack, such as having an unencrypted channel
or a missing XSS protection header.

On mobile agents, bet365.com’s server will redirect HTTP re-
quest to HTTPS and also set a session cookie, ’pstk’, with its Secure
flag set to true. However, on desktop agents, bet365.com’s server
will neither redirect HTTP to HTTPS nor set the ’pstk’ Secure flag
to true.

Figure 3: Inconsistency in cookie flag leading to an attack

An attacker can leverage this insight to force a victim into an
insecure channel by social engineering or replacing the user agent
on the initial HTTP connection and then have full access to his web
communication with bet365.com, potentially leaking highly sensi-
tive information, including financial information. This scenario is
illustrated in Figure 3

Now let’s assume that bet365.com redirects HTTP to HTTPS
regardless of the user agent settings. A similar attack can still occur
if the ’pstk’ cookie flag is still inconsistent. In this case, bet365.com’s
server will redirect the user to the HTTPS channel, but will not set
the ’pstk’ Secure flag to true. Any subsequent request from the user
through an initial HTTP request will expose the ’pstk’ cookie to
the MITM attacker. The subsequent request can be voluntarily sent
by the user or forcefully using CSRF or XSS, for example. In the



same scenario, the attacker can deploy a rogue WiFi access point
and put an invisible iframe over an ’accept terms and conditions’
button which will redirect the victim to bet365.com over HTTP
causing his session cookie to be leaked.

3.3.3 Netflix.com. This attack leverages the cookie flag incon-
sistency, and assumes an XSS vulnerability on the website. This
website contains a sensitive cookie, SecureNetflixID, which is used
to maintain the user session. The cookie had its HTTPOnly flag
set to true on desktop user agents, but this flag is set to false on
mobile user agents. In some cases, a second cookie, NetflixID, is also
sent with both the ‘HttpOnly’, and ‘Secure’ flags set to false. These
sensitive cookies are therefore visible to any scripts running in the
website. As a result, these can be exposed to malicious scripts that
exploit any XSS vulnerability on the site.

We reported this potential data exposure vulnerability to Netflix
as part of their responsible disclosure program. They responded
quickly and we collaborated with them over a few weeks while
their team analyzed the issue. They determined that no mobile use
case requires the cookie to be accessed by script and acknowledged
that the inconsistency constituted a vulnerability in their deployed
cookie configuration for their mobile website. They have since fixed
the problem on all their production servers.

They also indicated to us that their web application uses different
API endpoints depending on the platform or client being used. This
falls in line with our assertion that web application are deployed
using shared resources to conform to mobile and other form factors
on demand.

4 DATA COLLECTION & ANALYSIS
To understand the pervasiveness and trends of security header
inconsistencies in the real world, we performed a large-scale mea-
surement study in two distinct time periods one year apart (2016
to 2017) using the top 70,000 website as ranked by Alexa [1] as of
2016. Here we describe our data collection framework and analysis
methodology.

4.1 Data Collection
We developed a custom web crawler that automatically visits each
site and saves the full contents of the response for offline analysis.
Our crawler simulates a desktop browser using a user agent string
as shown in listing 1. These were chosen based on current trends
in browser popularity as measured by NetMarketShare.com. These
represent the Google Chrome browser for desktop websites and
Chrome mobile browser for mobile websites. Additionally, we used
two different sets of user agent strings (labeled ‘old’ and ‘new’ in
Listing 1) to compare whether the user agent string itself makes a
difference for the server response with regard to security header
inconsistencies.

Additionally, our crawler follows all redirects, including those
to secured HTTPS sites, and collects only the data from the final
landing pages.

Listing 1: Browser User-Agent Strings
1 @old_pc_agent = " Moz i l l a / 5 . 0 ( X11 ; Linux x86_64 ) AppleWebKit

/ 5 3 7 . 3 6 (KHTML, l i k e Gecko ) Chrome / 5 1 . 0 . 2 7 0 4 . 1 0 6 S a f a r i
/ 5 3 7 . 3 6 "

2 @old_mobi le_agent = " Moz i l l a / 5 . 0 ( Linux ; Android 4 . 0 . 4 ; Galaxy
Nexus Bu i l d / IMM76B ) AppleWebKit / 5 3 5 . 1 9 (KHTML, l i k e Gecko )
Chrome / 1 8 . 0 . 1 0 2 5 . 1 3 3 Mobi le S a f a r i / 5 3 5 . 1 9 "

3 @new_pc_agent = " Moz i l l a / 5 . 0 ( X11 ; Linux x86_64 ) AppleWebKit
/ 5 3 7 . 3 6 (KHTML, l i k e Gecko ) Chrome / 6 0 . 0 . 3 1 1 2 . 9 0 S a f a r i
/ 5 3 7 . 3 6 "

4 @new_mobile_agent = " Moz i l l a / 5 . 0 ( L inux ; Android 8 . 0 ; Nexus 6P
Bu i l d / OPP3 . 1 7 0 5 1 8 . 0 0 6 ) AppleWebKit / 5 3 7 . 3 6 (KHTML, l i k e
Gecko ) Chrome / 5 8 . 0 . 3 0 2 9 . 1 2 1 Mobi le S a f a r i / 5 3 7 . 3 6 "

We further annotated the site list to include the site categories
as defined by Fortinet [3], a web filtering service. The categories
allows us to perform further analysis on our results based on trends
according to category grouping.

We collected one snapshot in 2016, and one snapshot in 2017. On
each occasion, we collected two separate data sets, corresponding
to site responses to mobile browsers and site responses to desktop
browsers.

4.1.1 Datasets. To compare the longitudinal trends of inconsis-
tencies and the effect of the browser and platform versions of user
agent strings, we further categorize the data into three datasets.

Old dataset This dataset represents the HTTP responses data
crawled during 2016 using the old_pc_agent and old_mobile_agent
presented in Listing 1.

New dataset This dataset represents the HTTP responses data
crawled during 2017 using the old_pc_agent and old_mobile_agent.

New+ dataset This dataset represents the HTTP responses data
crawled during 2017 using the new_pc_agent and new_mobile_agent.

By comparing the Old dataset and New dataset, we analyze if
the situation of inconsistency improved over time. The comparison
between the New dataset and New+ dataset will indicate how much
the platform and browser version may affect the HTTP header
response.

4.2 Analysis Methodology
We analyzed the security header artifacts on mobile and desktop
user agents from the two broad perspectives of Presence, and Config-
uration. First, we compare and contrast the presence of each security
header between mobile and web to identify inconsistent presence
between user agents. Similarly, we compare and contrast the Config-
uration of the same security header between user agents to uncover
inconsistencies. We identified instances where configurations are
either flawed or conflict with other settings that may weaken the
protections offered by HTTP header defenses in browsers. We also
analyzed inconsistencies in HTTP to HTTPS redirection. Lastly, we
looked at subtle but important inconsistencies with Secure and
HttpOnly cookie flags.

For a systematic analysis, we establish the following guidelines
for analyzing inconsistency between mobile and desktop versions
of a website from the same origin.

(1) If a Security Header is present for one user agent, it must be
present for all user agents.

(2) Each Security Header must be consistently delivered with
the same effective configuration settings regardless of the
user agent.

(3) If cookies are shared between mobile and desktop, they must
be consistently delivered with the same settings regardless
of the user agent.



(4) If a website redirects to HTTPS, it must do so for all user
agents.

(5) The presence and configuration settings within and among
different artifacts should not cause conflicting policies. For
example, CSP on a website should not allow and deny the
same domain [12].

4.2.1 Uncovering Inconsistencies. Using a set of the top 70,000
websites, we collected data using a simulated desktop and mobile
browser. For each pair of response from the landing page of the
same top-level domain, we checked for violations of our stated
guidelines to uncover inconsistencies.

For each pair of responses from eachwebsite (mobile vs. desktop),
we used our methodology guidelines to find instances that violated
our assertions for how security headers should be delivered.

Presence Inconsistency. Themost trivial inconsistency tomea-
sure is the presence of a header for the same website between two
user agents. Although trivial, these subtle inconsistencies can be
gateways to serious attacks on a website. For example, if the X-
Frame-Options header is present for a website in the desktop agent,
but missing in the mobile agent, then it follows that the mobile
version can be used in a clickjacking attack.

To measure these inconsistencies, we simply analyze each pair
of responses for each website and, for each security header, we
note when the header is present in one response and missing in the
other response.

Configuration Inconsistency. To evaluate the configuration
of each security header, we adopt a notion of ‘Strong’ and ‘Weak’
configurations. These are based on a set of heuristics as defined in
Table 2. This approach is motivated by the methodology use in [33].
We analyzed the configuration options available for each header,
and analyzed whether each observed header is deployed with an
ineffective setting. For example, if the X-XSS-Protection header is
set to any value other than ‘1’ then it is ineffective for that website
and we classify that configuration as ‘Weak’. On the other hand,
if it is configured with the value ‘1’, then we classify that setting
as ‘Strong’. Note that most popular browsers (eg., Chrome) tend
to set missing security headers securely by default. For example,
X-XSS-Protection is set to 1, and set-cookie headers with no explicit
domain will be set to the current domain. Therefore, setting the
security headers inconsistently could be worse than not setting
them at all.

For analyzing the efficacy of Content Security Policy configura-
tions, we also adopt the methodology used in [33]. It follows that
our evaluation analyzes CSP based on its main goal of defending
against content injection, mainly through script and object tags.

HTTPS Redirection Inconsistency.We measure redirection
inconsistency through our crawler framework by initiating all con-
nections using HTTP and ensuring that all redirects are followed
and flagging each connection where the final response uses an
HTTPS connection.

Many web attacks, including MITM attacks, can be mitigated
if the user agents use secure connections through HTTPS. The
current recommended method of mitigating HTTPS downgrade
attacks is to use HSTS [17]. However, HSTS is deployed on only a
limited number of websites [20]. Websites can also enable redirec-
tion using trivial methods such as JavaScript’s document.location

function, or by using an HTML Meta tag. The reality remains that
many websites do not use HTTPS, seldom upgrades connection
to HTTPS, and even in the presence of HTTPS redirection, we
have found many instances of inconsistent implementation of strict
redirection across different user agents for the same website. This
inconsistency can be leveraged by a network attacker, by forcing a
user to consistently use an insecure connection through which he
can most conveniently launch a MITM attack.

Cookie Flag Inconsistency. For instances where a cookie with
the same name is present in both responses, we assume that the
cookie is shared between the mobile and desktop user agents. We
then compare the ‘Secure’ and ‘HTTPOnly’ flags set for these cookies
to find instances where the flags are not set consistently. We check
for violations where each flag, exclusive of each other, is true in
one user agent instance and false in the other user agent instance.

5 MEASURING INCONSISTENCIES
Using the guiding principles presented in Section 4.2, we evaluate
the top 70,000 websites. Table 3 shows the results of our empirical
evaluation where we measure and assess the inconsistencies across
mobile and desktop user agents. Within each cell, we report the
different results from the three datasets discussed in Section 4.1.1
(e.g., Old/New/New+). For each relevant security header, we show
the pervasiveness of the inconsistency problem based on presence
and configuration perspectives. Overall, over 2,000 websites that re-
sponded to our crawler showed one or more inconsistency in one or
more security headers in violation of our analysis principles. The in-
consistency problem is spread across the entire spectrum of the top
70,000 websites, and even highly ranked and popular web service
providers such as Netflix and Google showed inconsistencies.

Figure 4: Percentage between desktop and mobile websites
with inconsistent presence of HTTP security header

Overall Presence Inconsistency Results. The Desktop col-
umn in Table 3 shows the number of websites for which that se-
curity header was present only when the desktop user agent was
used. Similarly, the Mobile column shows the number of websites
for which that security header was present only when the mobile
user agent was used. The sum of the Desktop and Mobile columns
represents the total number of instances for which that security
header was inconsistently delivered.

Figure 4 compares the presence inconsistency for each relevant
header in our New+ dataset. We compare the percentage between



Table 2: Heuristics for appraising the Configuration of Security Headers.

Headers Rules
X-XSS-Protection (XSS) set to 1, additional parameter is optional
X-Frame-Options (Xframe) does not use wild card (*) in allow-from
X-Content-Type-Options (Xcontent) set to nosniff
Access-Control-Allow-Origin (CORS) does not use wild card (*)
Strict-Transport-Security (HSTS) max-age is greater than 999, additional parameter is optional

Content-Security-Policy (CSP)

both script-src and object-src must be present or default-src in their absences.
does not contain unsafe-inline or unsafe-eval.

does not use wild card (*) in script-src, object-src, or default-src whitelists.
does not contain unsafe origin in whitelist [16].

Table 3: Inconsistency Analysis of security headers on the top 70,000 websites. (Old/New/New+)

Presence Strong Configuration
Headers Desktop Mobile Consistent Desktop Mobile Consistent

X-XSS-Protection (XSS) 77/103/91 84/113/100 4,322/6,721/6,717 67/94/82 85/115/100 4,208/6,542/6,541
X-Frame-Options (Xframe) 270/285/268 183/185/161 8,600/12,068/12,089 266/279/264 176/179/154 8,425/11,848/11,869

X-Content-Type-Options (Xcontent) 107/132/118 98/99/87 5,462/8,356/8,346 106/132/118 99/99/87 5,444/8,334/8,324
Access-Control-Allow-Origin (CORS) 183/175/163 133/151/138 3,053/3,694/3,726 63/54/51 33/43/47 538/668/671
Strict-Transport-Security (HSTS) 70/99/75 55/86/85 2,957/6,268/6,275 60/93/67 50/77/76 2,566/5,383/5,392
Content-Security-Policy (CSP) 53/96/58 18/20/27 726/1,618/1,654 0/0/0 0/0/0 2/3/3

mobile and desktop user agents. The desktop percentage relates to
the number of websites where a security header was present using
a desktop user agent, but absent for mobile user agents. Similarly,
Mobile relates to the percentage where mobile included a header
that was excluded for Desktop on the same site.

Figure 5: Percentage between desktop and mobile websites
with inconsistent strong configuration of HTTP security
header

Overall Configuration Inconsistency Results. Figure 5 also
shows the results of our evaluation for the each security header’s
configuration based on our notion of strong and weak configura-
tions as presented in section 4.2.1. For each header, the Desktop
percentage specifies the portion of websites for which that security
header was configured as strong for desktop user agents, and weak
for mobile user agents. Similarly, the Mobile percentage specifies
the portion of websites for which the security header was only
configured as ‘strong’ for the mobile user agent and not for the
desktop user agent. This is also shown in Table 3, along with the
Consistent column which also indicates the number of websites for

which the security header was consistently configured as Strong
for responses from both user agents.

Weichselbaum et al. [33] found that 99.34% of hosts with CSP
use policies that offer no benefit against XSS. Indeed, we found
that there were only two websites with consistently strong CSP
configuration between mobile and desktop (hackerone.com and
github.com) in both snapshots.

We must also note that we do not include websites that are
labeled ’weak’ or do not have any security headers present in both
user agents as these websites might not be aware of HTTP security
headers in the first place.

Figure 6: Percentage between desktop and mobile websites
of the top 8 website categories with inconsistent redirection
to HTTPS

By comparing the presence with the strong/weak notation, we
can see one notable observation that the Access-Control-Allow-
Origin (CORS) header has the largest gap between presence and
strong numbers shown in Table 3. While CORS header is inconsis-
tently present in 163 and 138 websites for the Desktop and Mobile



respectively, only 51 and 47 websites of those are configured cor-
rectly. This indicates that the Access-Control-Allow-Origin header
configuration is mostly ineffective (eg., using wild card host) in pro-
tecting against cross-site access attacks. We note that the primary
purpose of CORS is not to mitigate attacks, but to relax the same
origin policy (SOP). Nevertheless, by relaxing SOP, CORS opens
the doors to a wider cross-site attack surface.

Overall Redirection Inconsistency Results. Table 4 shows
the overall results for the number of websites that inconsistently
redirected to HTTPS. The Desktop column shows the number of
websites that redirect to HTTPS when accessed by desktop user
agent, but do not redirect when accessed by mobile user agent.
The second column shows the number of websites that redirect to
HTTPS when accessed by mobile user agent, but do not redirect
when accessed by desktop user agent. The last column shows the
number of websites that redirect HTTP to HTTPS request regard-
less of user agent. These numbers are mutually exclusive, and we
do not factor instances where no redirection occurred.

We also found that 36,350 websites in our dataset do not redirect
to HTTPS for either user agent. While this is ‘consistent’ behav-
ior as per our principles, it goes contrary to ubiquitous HTTPS
that is advocated by researchers and industry alike. Despite the
availability of techniques such as HSTS [17, 20], and support by
major browsers, many sites still do not implement HTTPS, posing
a serious privacy and security risk on the web. Even sites belonging
to Google, such as www.google.cat and www.google.sr, had still
not fully implemented ubiquitous HTTPS. We contacted Google
about these instances and they acknowledged the issue and noted
that updates are forthcoming.

In Fig 6, we show the percentage of inconsistency in HTTPS
redirection based on the website categories, showing that Search
Engine websites had the most violations. Google was the primary
guilty party in these instances, mostly for country-code top level
domains for their search engine.

Table 4: Overall Inconsistency Analysis on HTTPS Redirec-
tion and Cookie Flags on the top 70,000 websites.

Desktop Mobile Consistent
Redirection 307/392/194 297/307/309 11,967/25,495/25,687

Secure 48/71/78 87/79/74 7,251/14,250/16,695
HTTPOnly 102/70/76 132/154/153 48,187/51,929/60,331

Overall Cookie Flag Inconsistency Results. We also com-
pared the number of inconsistencies in cookie configuration as also
shown in Table 4. The numbers for Desktop and Mobile columns
indicate the number of cookies which set HTTPOnly or Secure flag
to true in desktop but false in the corresponding flag in mobile, and
vice versa. On further manual investigation of some of these sites,
we found that most have inconsistencies resulting from the default
setting of J2EE servlet web server that sets the Secure flag only for
HTTPS connections.

Longitudinal Trends of Inconsistency Results. From Table
3, we can see significant changes in every header’s Consistent col-
umn when comparing between the Old and New datasets both
in term of Presence and Strong Configuration. This shows an in-
creasing adoption of HTTP headers over the period of one year.

However, the relative numbers of Inconsistencies show very small
deviations for almost all of the HTTP headers. Ideally, we would
like to see a marked decrease in inconsistencies, but instead we see
little to no improvement, even on highly ranked websites between
the 2016 and 2017 snapshots.

Effect of Browser and OS Versions. By comparing the results
in the New and New+ datasets, we observe that the numbers are
almost identical with negligible deviation. This suggests that the
Browser and Mobile OS versions in the user agent strings gener-
ally play a very small role in HTTP header responses. However,
there are notable differences in the HSTS header and the HTTPS
Redirection configuration where the newer versions of Chrome
and Android yield lesser numbers of inconsistencies on the desktop
responses. This implies that the websites that once only provide
secure redirection in older Chrome and Android versions now also
redirect the mobile user agent to secure channel. This observation
strengthens our previous observation that newer mobile devices
(possibly with higher computational power) are more secure in
term of HTTPS redirection.

6 DISCUSSION & LIMITATIONS
This work is a first step at answering the question of the security
impact of mobile web optimization. Our results indicate that in
many instances there is a serious disconnect in web deployment
with regard to mobile and desktop versions of websites that share
common server resources. We cannot attribute these inconsisten-
cies simply to mobile optimization but we believe that the rush to
mobile optimization certainly plays a part. We also note the level of
complexity involved in deploying websites that must consistently
conform to mobile and desktop form factors.

Similar to other works [21, 23, 24] that utilize web crawlers, our
approach is limited by the fact that websites are very dynamic, and
a one-size-fits-all crawler that can automatically register or log in
to all websites is very challenging. As a result, our crawler only
visits the first landing page, so our reported evaluation only shows
a lower bound of inconsistencies. However, despite this limitation,
our study highlights an important problem which we hope will
lead to further research in this area at the intersection of mobile
and desktop web security.

Some of the attacks we present require forcing the victim to
an alternate UI view or insecure channel, which could be very
noticeable and raise suspicion. Nevertheless, prior works showed
that users can be oblivious to security clues presented in browsers or
websites [6, 26]. Additionally, showing a desktop-optimized UI on
a mobile device is a very common occurrence since not all websites
are mobile-ready.

Another limitation is that we assume that user agent spoofing
is enough to make servers distinguish requests from different plat-
forms. Our data collection could be enhanced by using real or emu-
lated mobile devices since some web servers perform more robust
fingerprinting. Nevertheless, our method is an accepted approach
as used in previous works [21, 23, 24].

Some websites may omit security headers where they may al-
ready implement defense mechanism through other means such
as built-in code. Since we only consider observed security headers,
we cannot make any assertions that a website is more vulnerable



if certain headers are not present. For CORS security headers, we
only consider non-credentialed requests.

7 RELATEDWORK
We are not the first to find issues with web security headers, but
to our knowledge we are the first to analyze the inconsistencies
in how security headers are used across different user agent set-
tings for mobile and desktop browsers. Our work is motivated by
insights of previous work that show the various issues related to
web security and the efforts to mitigate these problems, especially
through HTTP headers. We are also motivated by the recent surge
of mobile optimized website and seek to fill the gap into understand-
ing the implications of web design and deployment with regard to
the security guarantees that should be consistent regardless of the
connecting user agent.

Web Security Jim et al. [19] was among the first to propose the
use of HTTP Headers as a means of allowing web servers to instruct
browsers regarding security policies. Their Browser-Enforced Em-
bedded Policies work, based on writings by Markham [22], later
served as motivation for the development of CSP [22]. Content
security is primarily aimed at preventing XSS attacks, but can gen-
erally be used to restrict the source of content loaded onto a website,
thereby enhancing the security of the website. CSP, now in its third
iteration, has not gained much traction in adaptation on the web
except for more popular and highly ranked website. Weichselbaum
et al. [33] found that a large majority of deployments are ineffective.
In this work, we use some of their analysis methodology, but we
compare the efficacy between two versions of what should be the
same configuration between mobile and desktop browsers on the
same website.

Man-in-the-middle attacks have long been a nuisance on the web.
Many previous works have proposed approaches to mitigate MITM
and eavesdropping attacks on the web by enforcing strict HTTPS
connectivity. Sivkorn et al. showed that many websites still find
it necessary to serve content over HTTP [29] due to compatibility
and other reasons. They found a series of implementation flaws
and deployment issues in mechanisms used to enforce ubiquitous
HTTPS, leading them to conclude that users are exposed to signifi-
cant threat due to incomplete deployment of HTTPS. We leverage
this observation in our work and found that there is also many
instances of inconsistent deployment of HTTPS across user agents
for the same domain.

Other previous works such as SSLock [14], HTTPSLock [15], and
ForceHTTPS [18] all seek to mitigate the data exposure problem of
unencrypted HTTP connections. Recently, HSTS [17] has gained
much traction as a promising approach to enforce strict HTTPS
connectivity. However, as shown by Kranch et al. [20], problems
still persist with HSTS, especially in terms of the misunderstanding
and inconsistent configuration in deployment. We also found in
our study that many web servers inconsistently apply HSTS across
different user agent settings, leading to weaker deployments for
one user agent over the other.

Chen et al. [12] studied the ambiguities and inconsistencies in
implementation and interpretation when multiple Host headers are
defined for a web response. The Host header is critical in defining
the origin that is used by the client to enforce the web’s same

origin policy [8]. We similarly focus on headers, but we look at the
inconsistencies due to their configuration for different user agents.

Cookies Sivakorn et al. [30] explored the issue of cookie hijack-
ing over HTTP connections. They found that many websites still
avoid HTTPS due to performance and compatibility issues, but
this results in cookie hijacking vulnerabilities. We also find that
cookies are vulnerable to hijacking when HTTPS is not consistently
enforced across different user agents. As a result, our approach un-
covers issues of privacy leakage evenwhenHTTPS is fully deployed
under one view of a website, but not the other.

Zheng et al. [34] explored problems with cookie integrity. Their
work is based on the known fact that cookies’ secure flag can be set
or reset through an insecure connection. Many of their techniques
for exploiting cookie integrity can be leveraged to exploit the incon-
sistencies found in our work. Specifically, cookie overwriting, and
cookie shadowing attacks can be carried out by attackers where
inconsistencies show that the integrity of cookies can be violated.
Singh et al. [28] also measured the use of secure flags, and found
that cookies are vulnerable to information leaks. They showed that
incoherent SOP policies [8] applied to cookies can cause inconsis-
tent browser states. In this work, we show that inconsistent cookie
deployment between user agents can lead to information leaks
through cookies.

8 CONCLUSION
We conducted the first measurement study of inconsistencies be-
tween alternate mobile and desktop HTTP response configuration
of a website. We analyzed the security issues due to inconsistencies
in implementation of HTTP security headers, cookies, and HTTPS
redirection. We found that subtle, but critical inconsistencies are
pervasive among many of the top websites. These inconsistencies
can lead to a number of attacks with real world impact to user’s
private data.

We found that these inconsistencies emerge due to the complex-
ity and flexibility of web deployment to support different browser
form factors, including desktop browser and mobile browsers. In
some cases, these inconsistencies arise due to simple oversight
or mis-communication among different teams developing and de-
ploying complex web applications. Our work exposes the need for
careful coordination between mobile and desktop website deploy-
ments so that subtle differences in configuration are not neglected
to inadvertently expose users to attack. Despite the limitations of
our data collection, we show that high numbers of inconsisten-
cies exist that can lead to real world attacks on popular websites
using several different attack scenarios. Our work enhances the
web community’s understanding and appreciation of the need for
balancing performance vs. security issues as it relates to mobile
web optimization.
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