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Abstract—Malware is pervasive in networks, and poses a critical threat to network security. However, we have very
limited understanding of malware behavior in networks to date. In this paper, we investigate how malware propagate in
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1 INTRODUCTION

Malware are malicious software programs de-
ployed by cyber attackers to compromise com-
puter systems by exploiting their security vul-
nerabilities. Motivated by extraordinary finan-
cial or political rewards, malware owners are
exhausting their energy to compromise as
many networked computers as they can in
order to achieve their malicious goals. A com-
promised computer is called a bot, and all
bots compromised by a malware form a botnet.
Botnets have become the attack engine of cyber
attackers, and they pose critical challenges to
cyber defenders. In order to fight against cy-
ber criminals, it is important for defenders to
understand malware behavior, such as propa-
gation or membership recruitment patterns, the
size of botnets, and distribution of bots.
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To date, we do not have a solid understand-
ing about the size and distribution of malware
or botnets. Researchers have employed various
methods to measure the size of botnets, such
as botnet infiltration [1], DNS redirection [2],
external information [3]. These efforts indicate
that the size of botnets varies from millions
to a few thousand. There are no dominant
principles to explain these variations. As a
result, researchers desperately desire effective
models and explanations for the chaos. Dagon,
Zou and Lee [4] revealed that time zone has
an obvious impact on the number of available
bots. Mieghem et al. [5] indicated that network
topology has an important impact on malware
spreading through their rigorous mathematical
analysis. Recently, the emergence of mobile
malware, such as Cabir [6], Ikee [7] , and
Brador [8] , further increases the difficulty level
of our understanding on how they propagate.
More details about mobile malware can be
found at a recent survey paper [9]. To the
best of our knowledge, the best finding about
malware distribution in large-scale networks
comes from Chen and Ji [10]: the distribution
is non-uniform. All this indicates that the re-
search in this field is in its early stage.

The epidemic theory plays a leading role in
malware propagation modelling. The current
models for malware spread fall in two cate-
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gories: the epidemiology model and the con-
trol theoretic model. The control system theory
based models try to detect and contain the
spread of malware [11] [12]. The epidemiology
models are more focused on the number of
compromised hosts and their distributions, and
they have been explored extensively in the
computer science community [13] [14] [15]. Zou
et al. [16] used a susceptible-infected (SI) model
to predict the growth of Internet worms at
the early stage. Gao and Liu [17] recently em-
ployed a susceptible-infected-recovered (SIR)
model to describe mobile virus propagation.
One critical condition for the epidemic models
is a large vulnerable population because their
principle is based on differential equations.
More details of epidemic modelling can be
find in [18]. As pointed by Willinger et al.
[19], the findings, which we extract from a set
of observed data, usually reflect parts of the
studied objects. It is more reliable to extract the-
oretical results from appropriate models with
confirmation from sufficient real world data set
experiments. We practice this principle in this
study.

In this paper, we study the distribution
of malware in terms of networks (e.g., au-
tonomous systems, ISP domains, abstract net-
works of smartphones who share the same
vulnerabilities) at large scales. In this kind of
setting, we have a sufficient volume of data at
a large enough scale to meet the requirements
of the SI model. Different from the traditional
epidemic models, we break our model into two
layers. First of all, for a given time since the
breakout of a malware, we calculate how many
networks have been compromised based on the
SI model. Secondly, for a compromised net-
work, we calculate how many hosts have been
compromised since the time that the network
was compromised. With this two layer model
in place, we can determine the total number
of compromised hosts and their distribution
in terms of networks. Through our rigorous
analysis, we find that the distribution of a
given malware follows an exponential distri-
bution at its early stage, and obeys a power
law distribution with a short exponential tail
at its late stage, and finally converges to a
power law distribution. We examine our the-

oretical findings through two large-scale real-
world data sets: the Android based malware
[20] and the Conficker [21]. The experimental
results strongly support our theoretical claims.
To the best of our knowledge, the proposed two
layer epidemic model and the findings are the
first work in the field.

Our contributions are summarized as fol-
lows.
• We propose a two layer malware propaga-

tion model to describe the development of
a given malware at the Internet level. Com-
pared with the existing single layer epi-
demic models, the proposed model repre-
sents malware propagation better in large-
scale networks.

• We find the malware distribution in terms
of networks varies from exponential to
power law with a short exponential tail,
and to power law distribution at its early,
late, and final stage, respectively. These
findings are firstly theoretically proved
based on the proposed model, and then
confirmed by the experiments through the
two large-scale real-world data sets.

The rest of the paper is structured as follows.
Related work is briefly listed in Section II.
We present the preliminaries for the proposed
model in Section III. The studied problem is
discussed in Section IV. A two layer malware
propagation model is established in Section
V, and followed by a rigorous mathematical
analysis in Section VI. Experiments are con-
ducted to confirm our findings in Section VII.
In Section VIII, we provide a further discussion
about the study. Finally, we summarize the
paper and present future work in Section IX.

2 RELATED WORK

The basic story of malware is as follows. A
malware programer writes a program, called
bot or agent, and then installs the bots at
compromised computers on the Internet using
various network virus-like techniques. All of
his bots form a botnet, which is controlled
by its owners to commit illegal tasks, such as
launching DDoS attacks, sending spam emails,
performing phishing activities, and collecting
sensitive information. There is a command and
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control (C&C) server(s) to communicate with
the bots and collect data from bots. In order to
disguise himself from legal forces, the botmas-
ter changes the url of his C&C frequently, e.g.,
weekly. An excellent explanation about this can
be found in [1].

With the significant growing of smartphones,
we have witnessed an increasing number of
mobile malware. Malware writers have de-
velop many mobile malware in recent years.
Cabir [6] was developed in 2004, and was
the first malware targeting on the Symbian
operating system for mobile devices. Moreover,
it was also the first malware propagating via
Bluetooth. Ikee [7] was the first mobile malware
against Apple iPhones, while Brador [8] was
developed against Windows CE operating sys-
tems. The attack victors for mobile malware are
diverse, such as SMS, MMS, Bluetooth, WiFi,
and Web browsing. Peng et al. [9] presented
the short history of mobile malware since 2004,
and surveyed their propagation models.

A direct method to count the number of bots
is to use botnet infiltration to count the bot IDs
or IP addresses. Stone-Gross et al. [1] registered
the URL of the Torpig botnet before the bot-
master, and therefore were able to hijack the
C&C server for ten days, and collect about 70G
data from the bots of the Torpig botnet. They
reported that the footprint of the Torpig botnet
was 182,800, and the median and average size
of the Torpig’s live population was 49,272 and
48,532, respectively. They found 49,294 new
infections during the ten days takeover. Their
research also indicated that the live population
fluctuates periodically as users switch between
being online and offline. This issue was also
tacked by Dagon, Zou and Lee in [2].

Another method is to use DNS redirection.
Dagon, Zou and Lee [2] analyzed captured bots
by honypot, and then identified the C&C server
using source code reverse engineering tools.
They then manipulated the DNS entry which is
related to a botnet’s IRC server, and redirected
the DNS requests to a local sinkhole. They
therefore could count the number of bots in the
botnet. As discussed previously, their method
counts the footprint of the botnet, which was
350,000 in their report.

In this paper, we use two large scale mal-

ware data sets for our experiments. Conficker
is a well-known and one of the most recently
widespread malware. Shin et al. [21] collected
a data set about 25 million Conficker victims
from all over the world at different levels. At
the same time, malware targeting on Android
based mobile systems are developing quickly
in recent years. Zhou and Zhang [20] collected
a large data set of Android based malware.

In [3], Rajab et al. pointed out that it is
inaccurate to count the unique IP addresses of
bots because DHCP and NAT techniques are
employed extensively on the Internet ( [1] con-
firms this by their observation that 78.9% of the
infected machines were behind a NAT, VPN,
proxy, or firewall). They therefore proposed to
examine the hits of DNS caches to find the
lower bound of the size of a given botnet.

Rajab et al. [22] reported that botnets can
be categorized into two major genres in terms
of membership recruitment: worm-like bot-
nets and variable scanning botnets. The latter
weights about 82% in the 192 IRC bots that they
investigated, and is the more prevalent class
seen currently. Such botnets usually perform
localized and non-uniform scanning, and are
difficult to track due to their intermittent and
continuously changing behavior. The statistics
on the lifetime of bots are also reported as 25
minutes on average with 90% of them staying
for less than 50 minutes.

Malware propagation modelling has been
extensively explored. Based on epidemiology
research, Zou et al. [16] proposed a number
of models for malware monitoring at the early
stage. They pointed out that these kinds of
model are appropriate for a system that con-
sists of a large number of vulnerable hosts;
in other words, the model is effective at the
early stage of the outbreak of malware, and
the accuracy of the model drops when the
malware develops further. As a variant of the
epidemic category, Sellke, Shroff and Bagchi
[13] proposed a stochastic branching process
model for characterizing the propagation of
Internet worms, which especially focuses on
the number of compromised computers against
the number of worm scans, and presented a
closed form expression for the relationship.
Dagon, Zou and Lee [4] extended the model
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TABLE 1
Notations of symbols in this paper

Notation Description
I(t) Number of infected hosts at time t
R(t) Number of recovered hosts at time t
N The total number of vulnerable hosts
β(t) The infection rate at time t

S(Li, t) Number of infected hosts of network Li at time t
Lj

ki
The jth network compromised at round i

of [16] by introducing time zone information
α(t), and built a model to describe the impact
on the number of live members of botnets with
diurnal effect.

The impact of side information on the
spreading behavior of network viruses has also
been explored. Ganesh et al [23] thoroughly
investigated the effect of network topology on
the spead of epidemics. By combining Graph
theory and a SIS (susceptible - infective - sus-
ceptible) model, they found that if the ratio
of cure to infection rates is smaller than the
spectral radius of the graph of the studied
network, then the average epidemic lifetime
is of order log n, where n is the number of
nodes. On the other hand, if the ratio is larger
than a generalization of the isoperimetric con-
stant of the graph, then the average epidemic
lifetime is of order ena , where a is a positive
constant. Similarly, Mieghem et al. [5] applied
the N -intertwined Markov chain model, an
application of mean field theory, to analyze the
spread of viruses in networks. They found that
τc = 1

λmax(A)
, where τc is the sharp epidemic

threshold, and λmax(A) is the largest eigenvalue
of the adjacency matrix A of the studied net-
work. Moreover, there have been many other
methodologies to tackle the problem, such as
game theory [24].

3 PRELIMINARIES

Preliminaries of epidemic modelling and com-
plex networks are presented in this section as
this work is mainly based on the two fields.

For the sake of convenience, we summarize
the symbols that we use in this paper in Table
1.

3.1 Deterministic Epidemic Models

After nearly 100 years development, the epi-
demic models [18] have proved effective and
appropriate for a system that possesses a large
number of vulnerable hosts. In other words,
they are suitable at a macro level. Zou et al.
[16] demonstrated that they were suitable for
the studies of Internet based virus propagation
at the early stage.

We note that there are many factors that im-
pact the malware propagation or botnet mem-
bership recruitment, such as network topology,
recruitment frequency, and connection status of
vulnerable hosts. All these factors contribute
to the speed of malware propagation. Fortu-
nately, we can include all these factors into
one parameter as infection rate β in epidemic
theory. Therefore, in our study, let N be the
total number of vulnerable hosts of a large-
scale network (e.g., the Internet) for a given
malware. There are two statuses for any one of
the N hosts, either infected or susceptible. Let
I(t) be the number of infected hosts at time t,
then we have

dI(t)

dt
= β(t) [N −R(t)− I(t)−Q(t)] I(t)−dR(t)

dt
,

(1)
where R(t), and Q(t) represent the number of
removed hosts from the infected population,
and the number of removed hosts from the
susceptible population at time t. The variable
β(t) is the infection rate at time t.

For our study, model (1) is too detailed and
not necessary as we expect to know the propa-
gation and distribution of a given malware. As
a result, we employ the following susceptible-
infected model.

dI(t)

dt
= βI(t) [N − I(t)] (2)

where the infection rate β is a constant for a
given malware for any network.

We note that the variable t is continuous in
model (2) and (1). In practice, we measure I(t)
at discrete time points. Therefore, t = 0, 1, 2, . . ..
We can interpret each time point as a new
round of malware membership recruitment,
such as vulnerable host scanning. As a result,
we can transform model (2) into the discrete
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form as follows.

I(t) = (1 + α∆)I(t− 1)− β∆I(t− 1)2, (3)

where t = 0, 1, 2, . . ., ∆ is the unit of time, I(0) is
the initial number of infected hosts (we also call
them seeds in this paper), and α = βN , which
represents the average number of vulnerable
hosts that can be infected by one infected host
per time unit.

In order to simplify our analysis, let ∆ = 1, it
could be one second, one minute, one day, or
one month, even one year, depending on the
time scale in a given context. Hence, we have
a simpler discrete form given by

I(t) = (1 + α)I(t− 1)− β (I(t− 1))2 . (4)

Based on equation (4), we define the increase
of infected hosts for each time unit as follows.

∆I(t) , I(t)− I(t− 1), t = 1, 2, . . . (5)

To date, many researches are confined to
the “early stage” of an epidemic, such as [16].
Under the early stage condition, I(t) << N ,
therefore, N − I(t) ≈ N . As a result, a closed
form solution is obtained as follows.

I(t) = I(0)eβNt. (6)

When we take the ln operation on both sides
of equation (6), we have

ln I(t) = βNt+ ln I(0). (7)

For a given vulnerable network, β, N and
I(0) are constants, therefore, the graphical rep-
resentation of equation (7) is a straight line.

Based on the definition of equation (5), we
obtain the increase of new members of a mal-
ware at the early stage as

∆I(t) = (eβN − 1)I(t− 1)

= (eβN − 1)I(0)eβN(t−1). (8)

Taking the ln operation on both side of (8),
we have

ln ∆I(t) = βN(t− 1) + ln
(
(eβN − 1)I(0)

)
. (9)

Similar to equation (7), the graphical rep-
resentation of equation (9) is also a straight
line. In other words, the number of recruited
members for each round follows an exponen-
tial distribution at the early stage.

Fig. 1. The impact from infection rate β on
the recruitment progress for a given vulnerable
network with N = 10,000.

We have to note that it is hard for us to know
whether an epidemic is at its early stage or not
in practice. Moreover, there is no mathematical
definition about the term early stage.

In epidemic models, the infection rate β has a
critical impact on the membership recruitment
progress, and β is usually a small positive num-
ber, such as 0.00084 for worm Code Red [13].
For example, for a network with N = 10, 000
vulnerable hosts, we show the recruited mem-
bers under different infection rates in Figure 1.
From this diagram, we can see that the recruit-
ment goes slowly when β = 0.0001, however,
all vulnerable hosts have been compromised in
less than 7 time units when β = 0.0003, and
the recruitment progresses in an exponential
fashion.

This reflects the malware propagation styles
in practice. For malware based on “contact”,
such as blue tooth contacts, or viruses depend-
ing on emails to propagate, the infection rate
is usually small, and it takes a long time to
compromise a large number of vulnerable hosts
in a given network. On the other hand, for
some malware, which take active actions for
recruitment, such as vulnerable host scanning,
it may take one or a few rounds of scanning
to recruit all or a majority of the vulnerable
hosts in a given network. We will apply this in
the following analysis and performance evalu-
ation.
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3.2 Complex Networks

Research on complex networks have demon-
strated that the number of hosts of networks
follows the power law. People found that the
size distribution usually follows the power law,
such as population in cities in a country or
personal income in a nation [25]. In terms of
the Internet, researchers have also discovered
many power law phenomenon, such as the size
distribution of web files [26]. Recent progresses
reported in [27] further demonstrated that the
size of networks follows the power law.

The power law has two expression forms: the
Pareto distribution and the Zipf distribution.
For the same objects of the power law, we can
use any one of them to represent it. However,
the Zipf distributions are tidier than the expres-
sion of the Pareto distributions. In this paper,
we will use Zipf distributions to represent the
power law. The Zipf expression is as follows.

Pr{x = i} =
C

iα
, (10)

where C is a constant, α is a positive parameter,
called the Zipf index, Pr{x = i} represents the
probability of the ith (i = 1, 2, . . .) largest object
in terms of size, and

∑
i Pr{x = i} = 1.

A more general form of the distribution is
called the Zipf-Mandelbrot distribution [28],
which is defined as follows.

Pr{x = i} =
C

(i+ q)α
, (11)

where the additional constant q (q ≥ 0) is called
the plateau factor, which makes the probability
of the highest ranked objects flat. The Zipf-
Mandelbrot distribution becomes the Zipf dis-
tribution when q = 0.

Currently, the metric to say a distribution is
a power law is to take the loglog plot of the
data, and we usually say it is a power law
if the result shows a straight line. We have
to note that this is not a rigorous method,
however, it is widely applied in practice. Power
law distributions enjoy one important property,
scale free. We refer interested readers to [29]
about the power law and its properties.

Fig. 2. The system architecture of the studied
malware propagation.

4 PROBLEM DESCRIPTION

In this section, we describe the malware prop-
agation problem in general.

As shown in Figure 2, we study the malware
propagation issue at two levels, the Internet
level and the network level. We note that at
the network level, a network could be defined
in many different ways, it could be an ISP
domain, a country network, the group of a spe-
cific mobile devices, and so on. At the Internet
level, we treat every network of the network
level as one element.

At the Internet level, we suppose, there are
M networks, each network is denoted as Li(1 ≤
i ≤ M). For any network Li, we suppose it
physically possesses Ni hosts. Moreover, we
suppose the possibility of vulnerable hosts of
Li is denoted as pi(0 ≤ pi ≤ 1). In general, it
is highly possible that Ni 6= Nj , and pi 6= pj for
i 6= j, 1 ≤ i, j ≤M . Moreover, due to differences
in network topology, operating system, security
investment and so on, the infection rates are
different from network to network. We denote
it as βi for Li. Similarly, it is highly possible
that βi 6= βj for i 6= j, 1 ≤ i, j ≤M .

For any given network Li with pi ·Ni vulner-
able hosts and infection rate βi. We suppose the
malware propagation starts at time 0. Based on
equation (4), we obtain the number of infected
hosts, Ii(t), of Li at time t as follows.

Ii(t) = (1 + αi)Ii(t− 1)− βi(Ii(t− 1))2 (12)
= (1 + βipiNi)Ii(t− 1)− βi(Ii(t− 1))2

In this paper, we are interested in a global
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sense of malware propagation. We study the
following question.

For a given time t since the outbreak of a
malware, what are the characteristics of the
number of compromised hosts for each net-
work in the view of the whole Internet. In other
words, to find a function F about Ii(t)(1 ≤ i ≤
M). Namely, the pattern of

F (I1(t), I2(t), . . . , IM(t)) . (13)

For simplicity of presentation, we use S(Li, t)
to replace Ii(t) at the network level, and I(t)
is dedicated for the Internet level. Following
equation (13), for any network Li(1 ≤ i ≤ M),
we have

S(Li, t) = (1+βipiNi)S(Li, t−1)−βi (S(Li, t− 1))2 .
(14)

At the Internet level, we suppose there are
k1, k2, . . . , kt networks that have been compro-
mised at each round for each time unit from 1
to t. Any ki(1 ≤ i ≤ t) is decided by equation
(4) as follows

ki = (1 + βnM)I(i− 1)− βn (I(i− 1))2 , (15)

where M is the total number of networks over
the Internet, and βn is the infection rate among
networks. Moreover, suppose the number of
seeds, k0, is known.

At this time point t, the landscape of the
compromised hosts in terms of networks is as
follows.

S(L1
k1
, t), S(L2

k1
, t), . . . , S(Lk1k1 , t)︸ ︷︷ ︸
k1

S(L1
k2
, t− 1), S(L2

k2
, t− 1), . . . , S(Lk2k2 , t− 1)︸ ︷︷ ︸
k2. . .

S(L1
kt , 1), S(L2

kt , 1), . . . , S(Lktkt , 1)︸ ︷︷ ︸
kt

, (16)

where Ljki represents the jth network that was
compromised at round i. In other words, there
are k1 compromised networks, and each of
them have progressed t time units; k2 com-
promised networks, and each of them has pro-
gressed t − 1 time units; and kt compromised
networks, and each of them have progressed 1
time unit.

It is natural to have the total number of
compromised hosts at the Internet level as

I(t) = S(L1
k1
, t) + S(L2

k1
, t) + . . .+ S(Lk1k1 , t)︸ ︷︷ ︸
k1

+ S(L1
k2
, t− 1) + . . .+ S(Lk2k2 , t− 1)︸ ︷︷ ︸

k2
+ . . . (17)
+ S(L1

kt , 1) + S(L2
kt , 1) + . . .+ S(Lktkt , 1)︸ ︷︷ ︸
kt

Suppose ki(i = 1, 2, . . .) follows one distri-
bution with a probability distribution of pn (n
stands for number), and the size of a compro-
mised network, S(Li, t), follows another prob-
ability distribution of ps (s stands for size). Let
pI be the probability distribution of I(t)(t =
0, 1, . . .). Based on equation (18), we find pI is
exactly the convolution of pn and ps.

pI = pn ~ ps, (18)

where ~ is the convolution operation.
Our goal is to find a pattern of pI of equation

(18).

5 MALWARE PROPAGATION
MODELLING

As shown in Figure 2, we abstract the M net-
works of the Internet into M basic elements in
our model. As a result, any two large networks,
Li and Lj (i 6= j), are similar to each other at
this level. Therefore, we can model the studied
problem as a homogeneous system. Namely, all
the M networks share the same vulnerability
probability (denoted as p), and the same infec-
tion rate (denoted as β). A simple way to obtain
these two parameters is to use the means. p = 1

M

∑M
i=1 pi

β = 1
M

∑M
i=1 βi

(19)

For any network Li, let Ni be the total num-
ber of vulnerable hosts, then we have

Ni = p · Ni, i = 1, 2, . . . ,M, (20)

where Ni is the total number of computers of
network Li.
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As discussed in Section III, we know that
Ni(i = 1, 2, . . . ,M) follows the power law. As
p is a constant in equation (20), then Ni(i =
1, 2, . . . ,M) follows the power law as well.
Without loss of generality, let Li represent the
ith network in terms of total vulnerable hosts
(Ni). Based on the Zipf distribution, if we ran-
domly choose a network X , the probability that
it is network Lj is

Pr{X = Lj} = pz(j) =
Nj∑M
i=1Ni

=
C

jα
(21)

Equation (21) shows clearly that a network
with a larger number of vulnerable hosts has a
higher probability to be compromised.

Following equation (18), at time t, we have
k1 + k2 + . . .+ kt networks that have been com-
promised. Combining with equation (21), in
general, we know the first round of recruitment
takes the largest k1 networks, and the second
round takes the k2 largest networks among the
remaining networks, and so on. We therefore
can simplify equation (18) as

I(t) =

k1∑
j=1

S(Nj, t)pz(j)

+

k2∑
j=1

S(Nk1+j, t− 1)pz(k1 + j)

+ . . . (22)

+
kt∑
j=1

S(Nk1+...+kt−1+j, 1)

·pz(k1 + . . .+ kt−1 + j).

From equation (22), we know the total num-
ber of compromised hosts and their distribu-
tion in terms of networks for a given time point
t.

6 ANALYSIS ON THE PROPOSED MAL-
WARE PROPAGATION MODEL

In this section, we try to extract the pattern of
I(t) in terms of S(Li, t

′
), or pI of equation (18).

We make the following definitions before we
progress for the analysis.

1) Early stage. An early stage of the breakout
of a malware means only a small percent-
age of vulnerable hosts have been compro-
mised, and the propagation follows expo-
nential distributions.

2) Final stage. The final stage of the propaga-
tion of a malware means that all vulner-
able hosts of a given network have been
compromised.

3) Late stage. A late stage means the time
interval between the early stage and the
final stage.

We note that many researches are focused on
the early stage, and we define the early stage
to meet the pervasively accepted condition, we
coin the other two terms for the convenience
of our following discussion. Moreover, we set
variable Te as the time point that a malware’s
progress transfers from its early stage to late
stage. In terms of mathematical expressions, we
express the early, late and final stage as 0 ≤ t <
Te, Te ≤ t <∞, and t =∞, respectively.

Due to the complexity of equation (22), it
is difficult to obtain conclusions in a dynamic
style. However, we are able to extract some
conclusions under some special conditions.

Lemma 1. If distributions p(x) and q(x) follow
exponential distributions, then p(x) ~ q(x) follows
an exponential distribution as well.

Due to the space limitation, we skip the proof
and refer interested readers to [30].

At the early stage of a malware breakout, we
have advantages to obtain a clear conclusion.

Theorem 1. For large scale networks, such as the
Internet, at the early stage of a malware propaga-
tion, the malware distribution in terms of networks
follows exponential distributions.

Proof: At a time point of the early stage
(0 ≤ t < Te) of a malware breakout, following
equation (6), we obtain the number of compro-
mised networks as

I(t) = I(0)eβnMt. (23)

It is clear that I(t) follows an exponential dis-
tribution.

For any of the compromised networks, we
suppose it has progressed t

′
(0 < t

′ ≤ t < Te)
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TABLE 2
The number of different Android malware against time (months) in 2010-2011

Time point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Variants 13 26 39 53 71 94 127 193 259 374 583 986 1,513 2,191 3,451

time units, and its size is

S(Li, t
′
) = Ii(0)eβNit

′

. (24)

Based on equation (24), we find that the size
of any compromised network follows an expo-
nential distribution. As a result, all the sizes
of compromised networks follow exponential
distributions at the early stage.

Based on Lemma 1, we obtain that the mal-
ware distribution in terms of network follows
exponential distributions at its early stage.

Moreover, we can obtain concrete conclusion
of the propagation of malware at the final
stage.

Theorem 2. For large scale networks, such as the
Internet, at the final stage (t = ∞) of a malware
propagation, the malware distribution in terms of
networks follows the power law distribution.

Proof: At the final stage, all vulnerable
hosts have been compromised, namely,

S(Li,∞) = Ni, i = 1, 2, . . . ,M

Based on our previous discussion, we know
Ni(i = 1, 2, . . . ,M) follows the power law. As a
result, the theorem holds.

Now, we move our study to the late stage of
malware propagation.

Theorem 3. For large scale networks, such as the
Internet, at the late stage (Te ≤ t < ∞) of a
malware breakout, the malware distribution include
two parts: a dominant power law body and a short
exponential tail.

Proof: Suppose a malware propagation has
progressed for t(t >> Te) time units. Let t′ =
t− Te. If we separate all the compromised I(t)
hosts by time point t′, we have two groups of
compromised hosts.

Following Theorem 2, as t′ >> Te, the com-
promised hosts before t′ follows the power law.

At the same time, all the compromised net-
works after t′ are still in their early stage. There-
fore, these recently compromised networks fol-
low exponential distributions.

Now, we need to prove that the networks
compromised after time point t′ are at the tail of
the distribution. First of all, for a given network
Li, for t1 > t2, we have

S(Li, t1) ≥ S(Li, t2) (25)

For two networks, Li and Lj , if Ni ≥ Nj ,
then Li should be compromised earlier than Lj .
Combining this with (25), we know the later
compromised networks usually lie at the tail
of the distribution.

Due to the fact that t′ >> Te, the length of
the exponential tail is much shorter than the
length of the main body of the distribution.

7 PERFORMANCE EVALUATION

In this section, we examine our theoretical
analysis through two well-known large-scale
malware: Android malware and Conficker. An-
droid malware is a recent fast developing and
dominant smartphone based malware [20]. Dif-
ferent from Android malware, the Conficker
worm is an Internet based state-of-the-art bot-
net [21]. Both the data sets have been widely
used by the community.

From the Android malware data set, we have
an overview of the malware development from
August 2010 to October 2011. There are 1260
samples in total from 49 different Android mal-
ware in the data set. For a given Android mal-
ware program, it only focuses on one or a num-
ber of specific vulnerabilities. Therefore, all
smartphones share these vulnerabilities form a
specific network for that Android malware. In
other words, there are 49 networks in the data
set, and it is reasonable that the population of
each network is huge. We sort the malware
subclasses according to their size (number of
samples in the data set), and present them in
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Fig. 3. The probability distribution of Android
malware in terms of networks.

a loglog format in Figure 3, the diagram is
roughly a straight line. In other words, we can
say that the Android malware distribution in
terms of networks follows the power law.

We now examine the growth pattern of to-
tal number of compromised hosts of Android
malware against time, namely, the pattern of
I(t). We extract the data from the data set and
present it in Table 2. We further transform the
data into a graph as shown in Figure 4. It
shows that the member recruitment of Android
malware follows an exponential distribution
nicely during the 15 months time interval. We
have to note that our experiments also indicate
that this data does not fit the power law (we do
not show them here due to space limitation).

In Figure 4, we match a straight line to the
real data through the least squares method.
Based on the data, we can estimate that the
number of seeds (I(0)) is 10, and α = 0.2349.
Following our previous discussion, we infer
that the propagation of Android malware was
in its early stage. It is reasonable as the size of
each Android vulnerable network is huge and
the infection rate is quite low (the infection is
basically based on contacts).

We also collected a large data set of Conficker
from various aspects. Due to the space limita-
tion, we can only present a few of them here
to examine our theoretical analysis.

First of all, we treat Autonomous Systems (AS)
as networks in the Internet. In general, ASs are

Fig. 4. The growth of total compromised hosts
by Android malware against time from August
2010 to October 2011.

TABLE 3
Statistics for Conficker distribution in terms of

ASs

Number of ASes Largest botnet Smallest botnet
1,0048 2,825,403 1

large scale elements of the Internet. A few key
statistics from the data set are listed in Table
3. We present the data in a loglog format in
Figure 5, which indicates that the distribution
does follow the power law.

A unique feature of the power law is the

Fig. 5. Power law distribution of Conficker in
terms of autonomous networks.
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TABLE 4
Statistics for Conficker distribution in terms of

domain names at the three top levels

Number of botnets Largest botnet Smallest botnet
top level 462 2,201,183 1
level 1 20,104 1,718,306 1
level 2 96,756 1,714,283 1

TABLE 5
The last six elements of Conficker botnet from

the top three domain name levels.

t=1 t=2 t=3 t=4 t=5 t=6
top level 9 14 18 15 22 68
level 1 543 686 924 1,534 2,972 7,898
level 2 3,461 4,085 5,234 7,451 13,002 33,522

scale free property. In order to examine this
feature, we measure the compromised hosts
in terms of domain names at three different
domain levels: the top level, level 1, and level 2,
respectively. Some statistics of this experiment
are listed in Table 4.

Once again, we present the data in a loglog
format in Figure 6 (a), (b) and (c), respectively.
The diagrams show that the main body of
the three scale measures are roughly straight
lines. In other words, they all fall into power
law distributions. We note that the flat head
in Figure 6 can be explained through a Zipf-
Mandelbrot distribution. Therefore, Theorem 2
holds.

In order to examine whether the tails are
exponential, we take the smallest 6 data from
each tail of the three levels. It is reasonable to
say that they are the networks compromised at
the last 6 time units, the details are listed in
Table 5 (we note that t = 1 is the sixth last time
point, and t = 6 is the last time point).

When we present the data of Table 5 into a
graph as shown in Figure 7, we find that they
fit an exponential distribution very well, espe-
cially for the level 2 and level 3 domain name
cases. This experiment confirms our claim in
Theorem 3.

8 FURTHER DISCUSSION

In this paper, we have explored the problem of
malware distribution in large-scale networks.

Fig. 7. The three tails from the three domain
name levels fit exponential distributions.

There are many directions that could be fur-
ther explored. We list some important ones as
follows.

1) The dynamics of the late stage. We have
found that the main body of malware dis-
tribution follows the power law with a
short exponential tail at the late stage. It is
very attractive to explore the mathematical
mechanism of how the propagation leads
to such kinds of mixed distributions.

2) The transition from exponential distribu-
tion to power law distribution. It is nec-
essary to investigate when and how a
malware distribution moves from an ex-
ponential distribution to the power law. In
other words, how can we clearly define the
transition point between the early stage
and the late stage.

3) Multiple layer modelling. We hire the fluid
model in both of the two layers in our
study as both layers are sufficiently large
and meet the conditions for the modelling
methods. In order to improve the accuracy
of malware propagation, we may extend
our work to n(n > 2) layers. In another sce-
nario, we may expect to model a malware
distribution for middle size networks, e.g.
an ISP network with many subnetworks.
In these cases, the conditions for the fluid
model may not hold. Therefore, we need
to seek suitable models to address the
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Fig. 6. Power law distribution of Conficker botnet in the top three levels of domain names.

problem.
4) Epidemic model for the proposed two

layer model. In this paper, we use the SI
model, which is the simplest for epidemic
analysis. More practical models, e.g. SIS
or SIR, could be chosen to serve the same
problem.

5) Distribution of coexist multiple malware
in networks. In reality, multiple malware
may coexist at the same networks. Due to
the fact that different malware focus on
different vulnerabilities, the distributions
of different malware should not be the
same. It is challenging and interesting to
establish mathematical models for multi-
ple malware distribution in terms of net-
works.

9 SUMMARY AND FUTURE WORK

In this paper, we thoroughly explore the prob-
lem of malware distribution at large-scale net-
works. The solution to this problem is desper-
ately desired by cyber defenders as the network
security community does not yet have solid
answers. Different from previous modelling
methods, we propose a two layer epidemic
model: the upper layer focuses on networks of
a large scale networks, for example, domains
of the Internet; the lower layer focuses on
the hosts of a given network. This two layer
model improves the accuracy compared with
the available single layer epidemic models in
malware modelling. Moreover, the proposed

two layer model offers us the distribution of
malware in terms of the low layer networks.

We perform a restricted analysis based on the
proposed model, and obtain three conclusions:
The distribution for a given malware in terms
of networks follows exponential distribution,
power law distribution with a short exponen-
tial tail, and power law distribution, at its
early, late, and final stage, respectively. In order
to examine our theoretical findings, we have
conducted extensive experiments based on two
real-world large-scale malware, and the results
confirm our theoretical claims.

In regards to future work, we will firstly
further investigate the dynamics of the late
stage. More details of the findings are expected
to be further studied, such as the length of the
exponential tail of a power law distribution at
the late stage. Secondly, defenders may care
more about their own network, e.g., the distri-
bution of a given malware at their ISP domains,
where the conditions for the two layer model
may not hold. We need to seek appropriate
models to address this problem. Finally, we
are interested in studying the distribution of
multiple malware on large-scale networks as
we only focus on one malware in this paper.
We believe it is not a simple linear relationship
in the multiple malware case compared to the
single malware one.
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