
Towards Fine-grained Network Security Forensics and Diagnosis
in the SDN Era

Haopei Wang
Texas A&M University
haopei@tamu.edu

Guangliang Yang
Texas A&M University

ygl@tamu.edu

Phakpoom Chinprutthiwong
Texas A&M University
cpx0rpc@tamu.edu

Lei Xu
Texas A&M University
xray2012@tamu.edu

Yangyong Zhang
Texas A&M University
yangyong@tamu.edu

Guofei Gu
Texas A&M University
guofei@cse.tamu.edu

ABSTRACT
Diagnosing network security issues in traditional networks is diffi-
cult. It is even more frustrating in the emerging Software Defined
Networks. The data/control plane decoupling of the SDN framework
makes the traditional network troubleshooting tools unsuitable for
pinpointing the root cause in the control plane. In this paper, we
propose ForenGuard, which provides flow-level forensics and di-
agnosis functions in SDN networks. Unlike traditional forensics
tools that only involve either network level or host level, Foren-
Guardmonitors and records the runtime activities and their causal
dependencies involving both the SDN control plane and data plane.
Starting with a forwarding problem (e.g., disconnection) which
could be caused by a security issue, ForenGuard can backtrack
the previous activities in both the control and data plane through
causal relationships and pinpoint the root cause of the problem.
ForenGuard also provides a user-friendly interface that allows
users to specify the detection point and diagnose complicated net-
work problems. We implement a prototype system of ForenGuard
on top of the Floodlight controller and use it to diagnose several
real control plane attacks. We show that ForenGuard can quickly
display causal relationships of activities and help to narrow down
the range of suspicious activities that could be the root causes. Our
performance evaluation shows that ForenGuard will add minor
runtime overhead to the SDN control plane and can scale well in
various network workloads.

KEYWORDS
Software Defined Networking, Security, Forensics, Diagnosis

ACM Reference Format:
Haopei Wang, Guangliang Yang, Phakpoom Chinprutthiwong, Lei Xu,
Yangyong Zhang, and Guofei Gu. 2018. Towards Fine-grained Network
Security Forensics and Diagnosis in the SDN Era. In 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18), October
15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3243734.3243749

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243749

1 INTRODUCTION
Network security diagnosis is important and useful since it can
help the network administrator find a wide range of errors that
may cause severe damages [29]. However, the emerging Software-
Defined Networking (SDN) technique makes network security di-
agnosis much harder, because it decouples the control plane from
the data plane and the logically centralized control plane is com-
plicated and prone to security vulnerabilities [28, 44]. For example,
when you observe a disconnection problem happen in a network
running tens of SDN applications in the control plane, it is difficult
to diagnose which application is exploited and how it makes the
incorrect flow control decisions. Furthermore, since many existing
SDN controllers are reactive and event-driven, the culprit events
behind the misbehaving control plane are even much harder to
be pinpointed. Fundamentally, there is a big gap in the SDN era,
from observing the faulty forwarding behaviors in the data plane
to finding out the root causes of the security problem in the SDN
control plane.

In this work, we plan to bridge this gap by providing digital foren-
sics that investigates the activities of the SDN framework andmakes
use of the recorded activities for networking security problems di-
agnosis. Previous research has worked on either network-level or
host-level forensics. In the context of SDN, however, existing ap-
proaches cannot be directly used for our problem. This is because
the networking security problems in SDN networks involve both
the control plane and data plane, which makes individual either
network-level or host-level forensics not effective; instead we need
a systematic integration of both. In particular, in SDN networks,
we observe forwarding problems from the data plane, but the cul-
prits behind are typically in the control plane. That motivates us to
monitor/record the fine-grained activities in the SDN framework
and build causal dependency graphs among them. With careful
diagnosis, the users can backtrack through dependency graphs and
pinpoint the root cause of the security problems. To achieve this,
we face the following challenges:
• What kinds of activities in the SDN framework are required
for the diagnosis purpose? We aim to construct a model of
concise set of activity types that can represent the execution
of the SDN framework and aid the diagnosis. Since activ-
ity recording incurs overhead, the size of the set should be
minimal.
• How to build the causal relationship between different activi-
ties? Simply dynamically taint-tracking all the control and

https://doi.org/10.1145/3243734.3243749
https://doi.org/10.1145/3243734.3243749

data flows in the control plane introduces huge overhead,
while we aim to design a relatively lightweight solution.
• How to efficiently and automatically query and locate the
suspicious activities from the large forensics data? There is
an urgent need of a tool that helps users to diagnose issues,
or even automatically locate the corresponding suspicious
activities.

To address the first challenge, wemodel the states and transitions
of the SDN data plane and the execution of the control plane. Using
the model, the forensics results can concisely reason how each
forwarding behavior occurs and provide easy-to-read information
for diagnosis. To address the second challenge, we design a hybrid
analysis approach that combines static analysis and dynamic pro-
filing to track the information flows in the SDN framework. More
specifically, we statically preprocess the controller/apps and then
use runtime logging data to reconstruct event-oriented execution
traces of the control plane and the state transition graphs of the
data plane. To address the third challenge, we design a functional
module that takes the description of the forwarding problem as
input and automatically responds with the relevant suspicious ac-
tivities as a reference for users. Besides this module, we also provide
a command line tool that allows users to declaratively query for
customized and detailed logged information.

We design a new system, ForenGuard, which provides fine-
grained forensics and diagnosis functions in the SDN networks. The
forensics function of ForenGuard involves both the SDN control
plane and data plane. By monitoring and recording fine-grained
activities in the SDN framework, we build dependency graphs based
on their causal relationships. Our key insight is that the causal
relationship can help users to backtrack the system activities and
understand how each activity happens (e.g., which previous event
triggers which module to generate which flow rule into the data
plane, which causes a forwarding problem). The diagnosis function
supports both fast querying for network forwarding issues and
querying for detailed activities in the SDN framework. ForenGuard
will respond user queries with the dependent graphs of activities
that are relevant to the problem and help the users track back to
the root cause of the forwarding problem.

We implement a prototype system of ForenGuard on top of
the popular Floodlight [3] controller.1 We show several use cases
of ForenGuard that can quickly pinpoint the root causes which
make use of different software vulnerabilities to launch attacks. Our
evaluation results show that our system can provide fine-grained di-
agnosis for many types of networking problems and only introduce
minor runtime overhead.

In summary, we make the following contributions:
• We propose a novel forensics scheme which dynamically
logs the activities of both the SDN control plane and data
plane, and builds event-oriented execution traces and state
transition graphs for diagnosing network forwarding prob-
lems.
• We propose a user-friendly diagnosis tool which provides
an inference-based approach to query the logged elements
that have dependency relationships with the queried ones.

1Our technique is generic and extensible, and could be applicable to other mainstream
controllers as well.

Data Plane

Core Services SDN Control
Plane

Event
Handlers

Event
Provider

Event
Handlers

Event
Handlers

. . .

App 1 App 2 App N

OpenFlow
Messages

Admin

Admin Messages
(e.g., REST Reqs)

Figure 1: The Abstraction Model of the SDN Framework

• We implement a prototype system, ForenGuard, which
helps network operators trace back past activities of both
the control plane and data plane and pinpoint the root causes
of network security problems. Our evaluation shows that
ForenGuard is useful for diagnosing common SDN net-
working security problems with minor runtime overhead.
We plan to open source ForenGuard to stimulate commu-
nity effort and further research.

We construct our paper as follows. Section 2 specifies the re-
search problems and motivates our solution. Section 3 shows a
model of the control plane and data plane activities for forensics.
Section 4 describes the detailed system design of ForenGuard.
Section 5 provides detailed implementation of ForenGuard, case
studies and evaluation results. Section 6 describes related work.
Section 7 discusses limitations and future work. Finally, Section 8
concludes the paper.

2 BACKGROUND AND EXAMPLE
In this section, we first explain necessary background, the abstract
model of the SDN framework in this paper and the threat model.
Next, we use a running example which is a simple SDN controller
application to explain research problems of diagnosing forwarding
problems in SDN networks and motivate ForenGuard.

2.1 Abstract Model of SDN framework
We first define an abstract model of the SDN framework for foren-
sics and diagnosis purposes. In this paper, our model includes only
important elements which are the most useful ones for diagnosing
networking problems that are caused by the misbehaving control
plane. As shown in Figure 1, SDN decouples the network control
plane from the data plane. The data plane consists of forwarding
devices (i.e., SDN-enabled switches). Each switch contains large
numbers of packet-forwarding rules, and each packet-forwarding
rule is a tuple of pattern, action and priority. At a certain time, the
state of the data plane is the value of all the packet-forwarding rules
at all switches. The communication (i.e., OpenFlow [9] messages)
between the control plane and the data plane may indicate the
changes of the data plane state. For example, FlowModmessage will

Host2

Sw2

Sw3
Sw1

Host1

Dst:
Host 2

?

Figure 2: Attacking the LearningSwitch Application

install/delete/modify a rule. And it will trigger a FlowRemovedmes-
sage to the control plane when a rule has expired or been removed.

About the control plane, we leverage the abstract modeling of the
SDN control plane in ConGuard [44] and propose a similar model
that can represent most of existing mainstream SDN controllers
(e.g., POX [10], Floodlight [3], OpenDaylight [8]). In this model, the
SDN control plane embraces an event-driven system. Multiple con-
current modules (also known as applications, we use the two words
interchangeably in this paper) communicate via events. There is a
Core Services module that works as the “event broker”. It receives
messages from the data plane (via OpenFlow messages) or the net-
work administrator (via REST APIs) and dispatches the events (e.g.,
PacketIn event, FlowRemoved event). Other applications in the
control plane subscribe the needed events from the Core Services.
Each application has several event handler functions to process
the events and make forwarding decisions. Some applications may
dispatch their own event types, publish to the Core Services and
allow other applications to subscribe. For example, in Floodlight [3]
controller, the LinkDiscovery application will discover every link
in the data plane and dispatch LinkUp and LinkDown events. Other
applications like the TopologyManager module can receive the
LinkUp/Down events and change the topology they have learned. In
this paper, we focus on the event handler functions of every applica-
tion because they represent the major logic that makes forwarding
decisions.

2.2 Threat Model and Assumptions
Similar to existing research in digital/network forensic [22, 29, 30,
40], we trust the networking OS (i.e., the SDN controller) and our
monitoring system (as an application in the SDN controller) and
treat them as a trusted computing base (TCB). We assume no rootkit
and also assume all applications running in the SDN control plane
are initially benign but could be mis-configured or buggy/vulnera-
ble. The bugs/vulnerabilities inside the applications written in Java
in mainstream controllers typically do not cause buffer overflow or
executable code injection. Instead, they might be exploited to crash
the app [44] or mislead network forwarding decisions [15, 19, 44].
For example, TopoGuard project [19] discussed an issue in the
topology discovery application which can be exploited to poison
the topology learned by the controller and make wrong routing
decisions. In this paper, these security issues of the SDN apps in the
control plane that can be exploited and lead to network forwarding
problems in the data plane are our targeted security problems. In
our threat model, we assume an attacker can take control of host

machines or compromised switches in the network and try to at-
tack the SDN control plane by invoking/injecting certain network
events, as shown in [15, 19, 44].

To make a practical forensics and diagnosis system, we assume
the following additional assumptions: First, we assume the attacker
takes action after ForenGuard is deployed. Second, even though
the attacker can mislead the SDN control plane to make faulty for-
warding decisions, she cannot fake or modify the runtime recording
logs or disrupt the logging process, which could be achieved by
using append-only secure log systems such as [11, 45]. Third, al-
though ForenGuard injects some profiling instrumentation into
the controller apps, it will not affect their original decision-making
logic.

The goal of the diagnosis is to pinpoint the root cause of the
caused forwarding problems, i.e., the violation of forwarding-related
invariants. We consider three forwarding-related invariants: con-
nectivity (routing between pairs of hosts), isolation (user-specified
routing limitations), and virtualization (virtual network enforced
flow handling policies). Finally, we focus on flow-level diagnosis
(instead of packet-level diagnosis).

2.3 Running Example
1 public class LearningSwitch {

2 // Stores the learned state for each switch

3 protected Map <IOFSwitch , Map <MacVlanPair , OFPort >>

4 macVlanToSwitchPortMap;

5 private Command processPacketIn(sw, pkt) {

6 OFPort inPort = pkt.get(MatchField.IN_PORT));

7 MacAddress srcMac = pkt.get(MatchField.ETH_SRC);

8 MacAddress dstMac = pkt.get(MatchField.ETH_DST);

9 VlanVid vlan = pkt.get(MatchField.VLAN_VID);

10
11 // Learn the port for this source MAC/VLAN

12 this.macVlanToSwitchPortMap.get(sw).put

13 (new MacVlanPair(srcMac , vlan), inPort);

14
15 // Try to get the port for the dest MAC/VLAN

16 OFPort outPort = macVlanToSwitchPortMap.

17 get(sw).get(new MacVlanPair(dstMac , vlan));

18
19 if (outPort == null) {

20 // Dest MAC/VLAN not learned , flood it

21 this.writePacketOut(sw, pkt , OFPort.FLOOD);

22 } else {

23 // Dest MAC/VLAN learned , forward

24 this.pushPacket(sw, pkt , outPort);

25
26 // Install flow entry matching this packet

27 this.writeFlowMod(sw, OFFlowModCommand.ADD ,

28 OFBufferId.NO_BUFFER , pkt , outPort);

29 //match 4-tuple: {src/dst MAC , VLAN and input port}

30 }

31 return Command.CONTINUE;

32 }}

Listing 1: Example Controller Application

Listing 1 (abstracted from a real-world SDN controller appli-
cation [4]) shows a simple but vulnerable application that may
be exploited by malicious end-hosts to launch the host location
hijacking attack. The application implements a learning switch
which uses the previous learned MAC/VLAN to port mapping (un-
derlined variable) to install forwarding rules. When the application
receives a PacketIn message (which means the first packet of a
new flow), if the destination MAC/VLAN has been learned before
from the switch (Line 23 - 30), the application will install a flow rule

to forward this flow to the port in the pair with the MAC/VLAN,
otherwise flood the packet (Line 20 - 21).

The above learning-based algorithm is vulnerable since the “learned”
information could be spoofed that will mislead the future forward-
ing decision. Illustrated in Figure 2, an attacker can spoof the MAC
address of Host 2 and make a connection to Host 1. The operation
will make every switch in the network learn that the MAC of Host
2 matches the attacker’s host. Later, when the real Host 2 makes a
connection to Host 1, the traffic from Host 1 will be forwarded to
the attacker. As a result, Host 2 does not have network connection
to Host 1. However, it is hard for Host 2 to pinpoint the root cause.
That is because she does not have enough information about what
happened in the control plane and data plane in the past. Host 2
desires a tool that receives her trouble ticket and pinpoints the root
cause of the forwarding problem.
2.4 Problem Statement
Traditional diagnosis tools can only locate the issues at either the
network level (e.g., Anteater [29]) or host level (e.g., Forenscope
[13]), and are not capable of integrating the two levels. Several
troubleshooting and verification tools in the context of SDN have
been proposed in recent years. They provide functions of static or
dynamic network-wide invariant verification [23–25], model check-
ing [12], packet history analysis [17], record and replay [43] and
delta debugging [35]. However, these tools fall short because of lim-
ited expressiveness (invariant expression), scalability (exponential
explosion), non-determinism (trace replay) or coarse granularity
(network flow/flow rule level) issues.

Unlike existing approaches, we leverage the concept of forensics
which records system activities in runtime and makes use of them
for diagnosis. Suppose we have enough information about what
happened in the SDN framework, for the above running example,
our concrete diagnosing steps can be like follows:

Step 1.We first analyze the forwarding rules in the data plane
to find out the set of rules that result in the forwarding problem.
We identify them as “suspicious” forwarding rules. In the running
example, the rules that forward the traffic whose MAC belongs to
Host 2 to the attacker are suspicious rules.

Step 2. Based on the suspicious rules, we can list all OpenFlow
messages that install/modify these rules.

Step 3. By recording the execution traces of the SDN appli-
cations, we can trace the relevant control plane activities which
generate the messages.

Step 4. By analyzing the causal relationship among different
activities in the execution trace that generate the messages, we
finally find out that the wrong forwarding decision is made by two
previous data plane activities. One is the new flow event from Host
1. The other is the new flow event (using spoofed source MAC)
from the attacker. Obviously, the spoofed packet from the attacker
is the root cause of the problem.

In summary, our idea is to record detailed activities in both the
control and data plane and build the causal relationship between
them. Nevertheless, realizing the forensics and diagnosis in SDN
networks requires tackling three challenging problems:
• First, how to decide useful activities that are necessary for the
diagnosing purpose?

• Second, how to build the causal relationship among different
activities?
• How to efficiently query/locate the suspicious activities from
the big data?

Besides, our system has the following design goals:
Fine Granularity: We aim to provide fine-grained details for

the execution traces (e.g., every main step that makes the forward-
ing decision) and root causes of forwarding problems (e.g., which
message/event/packet/piece of code is the root cause).

Minor Overhead: Forensics systems will introduce unavoidable
overhead. To analyze the runtime behaviors of the SDN framework,
unlike existing information flow analysis approaches (e.g., dynamic
taint-tracking), we aim to design a relatively lightweight solution.

Easy-to-Query:Our tool aims to support both directly querying
for network forwarding issues and querying for detail activities in
both the control plane and the data plane, and provide user-friendly
query interfaces.

3 MODELING OF THE SDN ACTIVITIES
In this section, we explain ForenGuard’s modeling of activities in
both the SDN control plane and the data plane.

Data Plane Activities: The purpose of recording the states of
the data plane is to understand the forwarding behaviors at any
time. First, we give a definition of the data plane state:

Definition 1: At time t , the state of the data plane (denoted as
st) is the value of the set of all flow entries at all switches at time t .

st = {r1, r2, ...rn }|t ime=t

ri = (switchID, entryID, (match,action,priority)) (1)

Definition 2:A transition (denoted as ai) of the data plane is one
OpenFlow message that is triggered by or will trigger the change
of the state.

For instance, the FlowMod message sent from the control plane
will install/modify/remove a flow rule in one switch. And FlowRemoved
message sent from the data plane means a flow rule has been ex-
pired/removed. These two messages are types of transitions. We
use→ to describe the transition of data plane state. So if an activity
ai triggers that the state of the data plane transits from sx to sy ,
then: sx

at−−→ sy .
The state of the data plane can clearly show the forwarding

behavior at that time. And the transitions can explain the reason
of the state changes. In our diagnosis steps, we first search for
the corresponding data plane state that starts to have the faulty
forwarding behavior and then find the activity which causes the
transition to that state. For instance, in our running example, when
Host 2 observes that there is no network connection between Host
1 and Host 2, we start to search the state that tells us how the data
plane forwards the traffic of Host 2 (either source or destination
address is Host 2). We can quickly find that in some state, there is a
forwarding path that matches Host 2’s traffic but is between Host 1
and another location (not Host 2). Then by searching the transitions
and corresponding activities, we find that there are several FlowMod
messages that make the faulty forwarding path. After we find the
faulty data plane states and corresponding activities, our next step
is to move to the control plane and understand why and how the
control plane makes such forwarding decisions.

Diagnosis

Preprocessor

Global Control Flow
Graph Analysis

Data Dependency
Graph Analysis

Instrumentation

App.class
Run

Activity Logger

Data Plane
Activity Collector

Control Plane
Activity Collector

Causal Dependency
Generator

Queries

Likely Root
Causes

Database

Figure 3: System Design of ForenGuard

Operation Definition
Init(f, A, td) Start the function f of app A in thread td
End(f, A, td) Terminate the function f of A in thread td
Read(v, td) Read variable v in thread td
Write(v, td) Write variable v in thread td

Dispatch(e, td) Dispatch event e in thread td
Receive(e, td) Receive event e in thread td

Run(A) run() function of a singleton task in app A
Send(sw, msg, td) Send messagemsд to

switch sw in thread td
Table 1: Control Plane Operations

Control Plane Activities: We aim to record the execution of
the control plane to understand how each application receives and
dispatches events, and makes forwarding decisions during runtime.
Wemodel the execution of the controller as a sequence of operations
to functions, state variables and events.

The operations in Table 1 list the activities that we think can
explain the major decision-making logic of the control plane. We
can divide the operations into three categories: function operations,
variable operations and communication operations. The initiation
and the termination of a function instance show the dynamic call
graphs. Specifically, the Run operation means that some applica-
tions may have a singleton task that maintains a life-cycle of a
run() function. This function itself could trigger some events or
modify the value of state variables. For example, some singleton
tasks will periodically clear the values of some state variables (e.g.,
clear the list of hosts information). For variable operations, the
read and write operations of state variables help to understand the
information flows in runtime. We define the state variables as the
global variables in every application (e.g., the MAC/VLAN to port
mapping table in the running example).2 The other three opera-
tions are communication operations. The Send operation means
this function generates new OpenFlow message to the data plane,
which may trigger the state transition in the data plane.

The purpose of logging the execution of the control plane is to
help pinpoint the root cause of some suspicious messages. When
we figure out the suspicious messages that trigger the data plane
state to have forwarding problems, we can observe the steps how
the control plane generates the messages. When diagnosing the
forwarding problem, the logged execution can explain which ap-
plication, which operations and which events/variables affect the
decisions made by the control plane. In the running example, when
2In our implementation of ForenGuard that works on Java-based controllers, the
state variables are the instance variables of the main class of each application.

Host 2 reports the connection problem and we already find the
suspicious OpenFlow messages, we can observe that the function
processPacketIn receives some new flow events, checks the value
of some fields in the MAC/VLAN to port mapping and generates
the suspicious messages. So the new flow event that triggers the
function to generate the faulty flow rule is the direct cause, and
the runtime value of the mapping table is the indirect cause of the
problem. Then we keep searching previous operations that write
the certain filed of the mapping table. At last, we find another event
which shows a new flow causes such MAC/VLAN to port pair to
the mapping table, which is the root cause of the reported problem.

4 SYSTEM DESIGN
In this paper, we propose a fine-grained forensics and diagnosis
system, named ForenGuard, which can help network administra-
tors to pinpoint security issues in software defined networks. The
key idea behind is that ForenGuard makes the trade-off between
SDN controller performance and the cost of monitoring sensitive
operations. To this end, ForenGuard is designed as three-fold.
First, ForenGuard applied static program analysis to identify the
minimal set of variables and operations whose changes may be
associated with future security issues. For convenience, we refer
to these variables and operations as state variables and operations
(according to our model of the control plane in Section 3). To mon-
itor these variables and operations in the run-time with minimal
overhead, ForenGuard instrumented the code of the target con-
troller. To monitor the information flow in the run-time, we also
design a novel lightweight flow tracking approach, which is also
implemented in the instrumentation. Second, ForenGuard deploys
and runs the newly instrumented SDN controller. By analyzing the
controller log in real time, the network activities are constructed
based on causal relationship. Finally, once administrators find a
routing problem, ForenGuard can help figure out the root reason
of the problem using an easy-to-query interface.

4.1 System Architecture
ForenGuard works on top of the SDN control plane and does not
disrupt the normal operation of other controller applications. As
showed in Figure 3, our system consists of three modules: 1) Pre-
processor, which conducts static analysis to extract the concise set
of activities for the recording purpose and further instruments SDN
controller to monitor the sensitive operations and apply our light-
weight information flow tracking approach; 2) Activity Logger,

which runs the instrumented controller and dynamically recon-
structs the causal relationships from the collected activity logs; 3)
Diagnosis, which provides an easy-to-use diagnosis interface and
can help pinpoint the root reason of a security problem. In the
following of this section, we describe the design details of each
module and corresponding techniques.

4.2 Preprocessor
The goals of the Preprocessor module are three-fold: using static
analysis to extract activities, generating data dependency graphs
and instrumenting the controller. The Preprocessor module stati-
cally analyzes the source code of an SDN controller.3 As explained
in Section 3, to reason about how each forwarding decision has
been made from the control plane, we need to record the impor-
tant operations and the information flows (e.g., which flow rule is
triggered by which data plane events.). However, dynamic analysis
(e.g., taint analysis) to track the information flows will inevitably
add huge runtime overhead, which is unacceptable in the SDN
control plane, while static analysis is not precise. Instead, we aim
to achieve a trade-off between the overhead and precision. Foren-
Guard statically identifies the state variables, analyzes the data
flows and instruments the read/write operations of the variables.
Then, these state variables and operations are further recorded to
build the information flows. For example, in the running exam-
ple in Section 2, ForenGuard is able to analyze the information
flows from the data sources (e.g., the PacketIn event and/or one
filed of the MAC/VLAN to port map) to the generated messages.
Next we will detail how ForenGuard conducts static analysis and
instrumentation.

Static Analysis: The Preprocessor module consists of two sub-
modules: global control flow graph analysis and data dependency
graph analysis. Given an SDN controller application, ForenGuard
runs the sub-module global control flow graph analysis to first con-
vert its source code into an intermediate representative language
(bytecode) and transform to a global control flow graph (CFG).
Then, ForenGuard identifies the important operations according
to the controller model by searching CFG and the paths to the op-
erations. In the meantime, ForenGuard also identifies the state
variables and searches all read/write operations of the variables.
Here, we define the state variables as the class instance variables
of the application. The insight behind is that, except the inputs
(events) from south or north bound interfaces, instance variables
are normally used to store the states of the application and make
forwarding decisions. For example, in the motivating example, all
previously learned information is saved in the MAC/VLAN to port
map data structure. And every output flow rule is generated based
on both the input events and the runtime values of the MAC/VLAN
to port map data structure. Specially, we do not count variables
that are used for logging (log system of the controller itself, not
ForenGuard) or debugging, which are useless for our purpose.

Next, ForenGuard constructs the data dependency graph by
applying the backward data flow tracking technique on the state
variables identified in the previous analysis. To support the above

3We assume the SDN controller and third-party applications should be open source to
the network administrator and operators.

PacketIn
Event

sw

pkt

macVlanToSw-
itchPortMap

msg

Figure 4: Data Dependency Graph of the Running Example

macVlanToSwitchPortMap

LearningSwitch Application

Event1 Event2 Event3

Write Write Write

Event4

Read

New Flow
Rule

Which event other than 4
caused the new flow rule?

Figure 5: Challenge of Coarse-granularity

analysis, several challenges are addressed. First, different from regu-
lar programs, an SDN application does not have entry points, since
the main function is missing. To apply data flow tracking as normal,
entry points must be explicitly defined. To this end, our SDN model
in Section 2 is leveraged, which provides sufficient hints. The major
part of each application is multiple event-driven handler functions.
The event handler functions are registered in the Core Services to
subscribe the corresponding events. Therefore, we set the handler
functions as the entry points for the data dependency analysis.

Second, to adapt data flow tracking on a SDN controller, we
define sources and sinks as follows. The data sources we use are
the parameters of the handler functions including the events and
corresponding metadata (e.g., in-port of a new flow) and the state
variables from read operations. The data sinks are state variables
from write operations and generated flow rules (e.g., Line 27 of the
running example).

ForenGuard performs context-sensitive, field-sensitive data
flow analysis on controllers to build the data dependency graph
(DDG). Figure 4 shows the data dependency graph (DDG) of the
running example. The data of the MAC/VLAN to port map could be
from the input parameters (sw and pkt) which are extracted from
the PacketIn event. The generated flow rule msд (if that branch
is triggered) is affected by the input parameters and the map. At
runtime, ForenGuard will generate more concrete and precise
information flows based on the logs of read/write operations of the
state variables.

Technical Challenges: Wediscuses two technical challenges about
the static analysis: inaccuracy and coarse-granularity. The inac-
curacy of static analysis is well-known since it just explores all
possible data flow paths but cannot track if one certain path is
actually triggered in runtime. Another challenge is that static anal-
ysis can only provide coarse-grained data flow tracking results.

That is because each state variable may contain many fields, and
it is hard to track which field every event actually accesses. In
our running example, the MAC/VLAN to port mapping data struc-
ture contains multiple key-value pairs/entries/entries. Illustrated
in Figure 5, suppose we already know Event 4 reads the variable
macVlanToSwitchPortMap and then processes a new flow rule
which causes the forwarding problem, however, it is still not clear
which entry of the variable Event 4 reads, and which previous event
adds/modifies this entry. To address them, we instrument the source
code of the controller and applications to profile the detailed field
read/write operations of each state variable.

Instrumentation: Based on the static analysis results, another
sub-module instrumentation starts to instrument the controller ap-
plications at the bytecode level. The target of the instrumentation is
to profile important operations of the control plane at runtime. The
instrumented code will record the source code context (e.g., class
name, line number, thread ID) as the metadata with the involved
heap memory information (the virtual memory address in JVM)
of the operation. Specially, for variable read/write operations, we
do not record the runtime values of the variables for two reasons:
First, recording the runtime values of the variables is too costly.
Second, our purpose is to track the information flows, which has
no need to track the concrete variable values. For example, we aim
to track an information flow starting from a data plane event e1
changing the value of a.x (whose virtual memory address ism1).
Further, another information flow reads this memory location and
finally generates a messagemsд1 which installs a new flow rule .
Then we can build the the causal relationship from e1 tomsд1.

4.3 Activity Logger
After the Preprocessor module, we deploy the instrumented con-
troller in an SDN network. The Activity Logger module works as a
controller component and dynamically collects activities from both
the control plane and the data plane and further builds the causal
dependency relationships. The activities are handled by the three
sub-modules: 1) Data Plane Activity Collector collects the runtime
data plane activities; 2) Control Plane Activity Collector collects
the runtime control plane runtime activities; 3) Causal Dependency
Generator builds the causal dependency relationships between the
collected activities and saves them into a database.

Data Plane Activity Collector: Section 3 defines the activities
of the data plane. The Activity Logger module first keeps tracking
all OpenFlow messages between the control plane and the data
plane. Since we consider switches could be compromised in our
threat model, the Data Plane Activity Collector sub-module does not
directly monitor the states of the data plane switches through some
administering channels (e.g., ovs-ofctl, ovs-dpctl). Instead, to flexibly
track the states and any transitions of the data plane, the Data
Plane Activity Collector sub-module makes use of the OpenFlow
messages to speculate the states of the data plane switches. In the
OpenFlow protocol, any changes in the data plane forwarding tables
(install, modify, delete, expire) should be enforced by or inform the
control plane via OpenFlow messages. Therefore, by tracking and
analyzing all OpenFlow messages, it is already able to understand
the state and changes of the data plane forwarding tables. In our
tracking solution, the Data Plane Activity Collector sub-module

always maintains a data structure that stores the current state of the
data plane forwarding tables. Whenever it observes the OpenFlow
message which shows a change of data plane forwarding table,
the module will generate the new state of the table based on the
meaning of that OpenFlow messages. For example, a FlowRemoved
messages will indicate that a flow entry in one forwarding table
has expired. Thus, the sub-module can delete the flow entry from
its own data structure and log the change. In the future diagnosis
phase, if the stored data plane state does not match the actual data
plane forwarding behaviors, then there could be attacks from the
compromised switches.

Control Plane Activity Collector: The control plane activities
that we aim to collect are shown and explained in Section 3. The
previous Preprocessor module already instruments the source code
with the logic of recording these control plane activities. Thus in
runtime, the instrumented statements will forward the log infor-
mation to the Control Plane Activity Collector sub-module.

Causal Dependency Generator: The Causal Dependency Gen-
erator sub-module collects and processes the activities received
from the Data Plane Activity Collector and Control Plane Activity
Collector sub-modules. It reconstructs event-oriented execution traces
of the control plane and the state transition graphs of the data plane,
and then combines them together. State transition graphs include the
data plane forwarding states and state transitions. Event-oriented
execution traces include the function-level call graphs (function
operations and communication operations) and information flows
(variable operations) of the control plane. Figure 6 shows an exam-
ple of these two types of data structures. In this figure, Sx denotes
data plane forwarding states, ex denotes events, fx denotes func-
tion calls and a.x and b .y denote variables. Using these graphs, we
can reason the causal relationship between activities.

Algorithm 1: Function Call Graph Reconstruction
Input: S = list of function calls in [(thread ID: T , function

name:M), ...]
Input: G = adjacency list representing the global control flow

graph {node:[adjacency nodes], ...}
Output: L = list of function calls representing dynamic

call-graphs {thread:[[function calls],...], ...}
stack[:]← ∅ # Initiate the stack as empty only at the first run
of the algorithm

L[:][-1]← 0;
foreach Si in S do

while stack[Si .T] , ∅ do
R← stack[Si .T].top();
if there is a path from R to Si .M in G then

break
stack[Si .T].pop();

if stack[Si .T] , ∅ then
L[Ti][-1].append(Si)

else
L[Ti].append(new List(Si))

stack[Ti].push(Si .M)

S0 S1 S2 S3

FlowMod
Message

FlowMod
Message

FlowRemov
ed Message

Receive(e1)

Init(f1)

Read(a.x)

Write(b.y)

Send(msg1)

State Transition
Graphs

End(f1)

Thread-1

Receive(e2)

Init(f2)

Init(f3)

Dispatch(e3)

End(f3)

End(f2)

Thread-2

Event-Oriented
Execution Traces

Information
Flow

Figure 6: Execution Traces of the Control Plane and State
Transition Graphs of the Data Plane

We design an algorithm (shown in Algorithm 1) to reconstruct
the dynamic function-level call graphs. The output of the algorithm
is a list of execution traces. Each execution trace is a sequence of
function operations which represents the entire execution from the
start of an event handler function to the end of the handler function.
We build the data dependency relationships of different variables
in each application, in the Activity Logger module, based on the
recorded read/write operations of the fields of the variables. For
example, suppose we have the result that event e has data flow rela-
tionship with the state variablev .a. When we dynamically log there
is a write operation to v .a with its object ID in the heap memory,
and this execution trace is triggered by an event e1, we can build the
information flow from e1 to v .a. In our running example, for every
generated OpenFlow message, we can find the data sources which
cause the messages. When diagnosing some suspicious messages,
we can directly find the data sources of the messages, which could
be the root causes. The Causal Dependency Generator sub-module
maintains a list of all runtime objects which are fields of the state
variables and the current data sources. After each operation, the
Causal Dependency Generator sub-module may update the data
sources of some objects. For example, a write operation will clear
the previous data sources for the object and may build new data
sources for this object.

4.4 Diagnosis
We design a command line tool for the users to query for recorded
activities in the SDN framework. The usage of the tool is shown as
the following:

Usaдe : Diaдnosis [options]

The user can set up different options to satisfy their different query
requirements. The option:

− − query = trace |messaдe |event | f unction |variable

tells the tool what to retrieve from the database and what to output.
For all queries, our tool supports to set up a time filter:

− − af ter = yyyyMMddHHmmss

− − be f ore = yyyyMMddHHmmss |now
By using the above two options, we can query for activities within a
given time period. Our tool supports both fast querying for forward
issues and querying for detailed activities. In the following we will
explain how to use our tool to fast query for forwarding problems
and how to query detailed activities.

Motivated from networking diagnosis tools, ForenGuard sup-
ports automatically querying for network forwarding problems
including reachability, isolation, routing loop and way-point rout-
ing. Our tool provides an option:

− − problem = routinдloop |routinдpath |waypoint
The argument routinдloop is to detect routing loops and will output
corresponding activities. The argument routinдpath is to output
the activities which are related to a certain network flow. To use
this argument, the user should also specify the matching conditions
for this network flow. For example, the user can use − − srcip and
− − dstip to specify a flow between two ip addresses. Our tool
currently supports to use the 5-tuple packet header to specify a
network flow. This argument can verify both the conditions of
reachability and isolation. The argumentwaypoint is to query for
forwarding rules of certain traffic going through certain specific
way_point. To use this argument, the user should specify both the
network flow and the − − dpid of the way_point switch.

Users can also query for detailed activities through our tool. As
shown previously, by using the − − query option, the users specify
what kinds of activities they want to query. The user can use the
argument trace for the corresponding execution traces,messaдe for
communication OpenFlow messages, event for event trigger and
dispatch activities, f unction for function call activities andvariable
for variable access activities. The user can also set up several filters
to specify what kinds of activities are needed. For example, to query
for the execution traces that are relevant to a network flow whose
source IP is 10.0.0.2 and destination port is 80, we can write:

− − srcip = 10.0.0.2 − −dstport = 80

For messages, we can specify the application name and message
types (PacketIn, FlowRemoved and etc.). Our tool is independent
of controller types, programming language and hardware specifics.

Many network problems are caused by application crashes in
the SDN control plane [37]. Unlike other types of root causes, the
application crash does not directly output any harmful flow rules
to the data plane. To diagnose this kind of problem, by showing the
execution traces of the control plane, we can locate the crash point
in the program first (e.g., in which function) and then list relevant
activities in the execution trace. For example, many application
crashes are caused by data races at instance variables [44]. From
the execution traces, we can list the recent read/write operations
of variables and check if there is data race happened.

4.5 Flexibility of Tuning Stored Activities
According to the modeling of the SDN activities in Section 3, by
default our forensics function records all types of activities into

Data Plane Control Plane
Activities States Functions Variables Events OF Messages
Tunable × ✓ ✓ × ×
Data Size 28.6% 26.5% 11.5% 20.2% 13.2%

Table 2: Options to Tune the Recorded Activities

the database. To provide better flexibility, before deploying our
system, we allow the users to tune their required types of activities
to database storage (instead of all types) to reduce some storage
overhead.

The options to tune the activities to be stored are shown in
Table 2. To build the causal relationship of different activities, some
types of activities are essential. For example, ForenGuard provides
flow-level forensics and diagnosis. Thus the data plane states and
the state transitions (i.e., OpenFlow messages) are necessary. To
build the causal relationship between different modules/apps in the
controller, the event dispatching and receiving information is also
necessary. Other than these, other types of activities are tunable
to be stored or not, because they are only used in the intermediate
stages of building the information flows. According to the recorded
data of several diagnosis cases shown in Section 5, we provide the
rough percentage of data size of each type of activity in Table 2.

5 EVALUATION
In this section, we present the implementation details and the eval-
uation results of ForenGuard.

5.1 Implementation

Controller Module # of Edges in # of State Instrumented
the call-graph Variables Lines of Code

Forwarding 32 5 197
Hub 23 0 25

LearningSwitch 18 1 173
Topology 148 8 192

MacTracker 12 1 16
Firewall 27 1 145

LinkDiscovery 96 14 498

Table 3: Static Analysis and Instrumentation Results of Part
of Controller Applications

We implement a prototype system of ForenGuard on top of
the Floodlight [3] controller (Java language) version 1.0. Foren-
Guard extends the Soot [27] framework which provides the global
control flow analysis, data dependency analysis and instrumenta-
tion function on the intermediate representation Jimple code of
the controller. We separately analyze each module/application in
Floodlight controller and set the event handler functions as the
entry points for analysis. Our data dependency analysis is built
on top of the flow-insensitive, context-sensitive and field-sensitive
analysis using Soot Pointer Analysis Research Kit (SPARK).

Instrumentation: We do not instrument any statement which
only accesses variables that are used for collecting system logs ,
debugging or providing interfaces. For read/write operations of
state variables, we add instrumentation to log every read and write
statement that accesses static and instance field variables on the

heap memory. We observe that the SDN controller leverages hetero-
geneous storages for network state using complicated data types
(e.g., the HashMap in the running example). For some methods
of these kind of data types (e.g., HashMap.put()), the Jimple code
would miss the read/write operations. This is because the analysis
will not go through the HashMap.put() function and only consider
this is a read operation (but actually a write operation). Therefore,
we maintain a static mapping of those methods and their read/write
operations for a set of commonly used data types. For example, we
consider ArrayList.add() as a write operation. Besides, we log the
memory access operation in a fine-grained field level (e.g., each
entry of the hash map).

Event Dispatching: There are two types of event dispatch-
ing schemes in FloodLight controller, which are queue-based and
observer-based. Queue-based schemes are mostly used for the Core
Services to dispatch data plane events (e.g., PacketIn Event).
Observer-based schemes are mostly used for inter-application event
dispatch. For queue-based schemes, we log the write/read the global
queue as Dispatch and Receive operations. For observer-based
schemes, we log the statements of dispatching the events as the
Dispatch operations and the invocations of handler functions as
the Receive operations.

System Environment:We select MongoDB [6] as our database
to store the activities and their causal relations. We use Mininet
[5] to emulate the SDN data plane topologies. For the performance
evaluation, we use Cbench [1] as a benchmark tool to generate
OpenFlow messages. The setting of our host machines is dual-core
Intel Core2 3GHz CPU running 64-bit Ubuntu Linux. We select
some controller modules and show the static analysis and instru-
mentation results in Table 3.

5.2 Effectiveness Evaluation
Running Example: We first illustrate the forensics of the running
example (mentioned earlier as Listing 1 in Section 2) and how
ForenGuard helps diagnose the networking forwarding problem.
If we observe that one host lost its network connectivity, we can
use the routing_path() function to diagnose the issue. By call-
ing the routing_path() function, ForenGuard can automatically
find out the suspicious activities that cause the network problem.
We visualize the activities that are recorded in the database (left
side) and the result output by ForenGuard (right side) in Figure
7. To make the graph concise, we omit the timestamps and thread
information of each activity and use numbers (instead of the actual
names) to denote activity details (e.g., using f1,2,3... to show func-
tion calls). We can observe that, the two installed flow rules are
the direct reason that causes the forwarding issue. Behind the two
installed flow rules, there are four PacketIn events (Event1-4 in
the figure) that are the potential root causes. By further checking
the detailed information of these four events, we can reason where
and why the events come from. Event 1 and 3 are triggered by the
packet from the attacker to Host1 at Sw1 and Sw2. Event 4 and 2 are
triggered by the response packet from Host1 to the attacker at Sw2
and Sw1. Therefore, we find Event 1 and 3 are the root causes of
the issue and we can also locate the attacker. The figure shows that
ForenGuard can significantly reduce the human effort to diagnose
network forwarding problems.

Write

Write

Write

WriteRead Read

OF_PacketOut:
flooding

OF_PacketOut:
flooding

OF_FlowMod:
Flow rule

OF_FlowMod:
Flow rule

Switch 1

Switch 2
Query: routing_path(...)

Event1 Event2 Event3 Event4

Figure 7: Simplified Dependency Graph of Execution Traces of the Running Example. Box denotes switches, Hexagon denotes
events, Circle denotes function calls, Diamond denotes variable fields, Trapezium denotes OpenFlow messages.

Attack Code Root Causes Problem # of Most Relevant # of Most Relevant # of Involved
Data Plane Activities Control Plane Activities Applications

A1 Loss of LLDP Packets [35] Routing Loop 6 18 5
A2 Race Condition [44] Application Crash 3 9 2
A3 Link Fabrication [19] Packet Loss 2 16 5
A4 Switch Table Flooding [28] Disconnection 1 flooding 1
A5 Switch ID. Spoofing [28] Disconnection 1 3 1
A6 Malformed Control Message [28] Disconnection 1 3 1
A7 Control Message Manipulation [28] Disconnection 1 3 1
A8 PacketIn Flooding [41] Application Crash flooding flooding 6
A9 Host Location Hijacking [19] Disconnection 2 14 1
A10 LoadBalancer Misconfiguration Load Unbalanced 3 14 1
A11 Firewall Misconfiguration Routing Loop 2 10 1

Table 4: Diagnosis Cases

Extended Evaluation: We reproduce 11 attack cases that cause
network forwarding problems and use ForenGuard to diagnose
the root causes. Most these attacks are reported from previous
research [19, 28, 35, 41, 44]. Table 4 summarizes the cases and the
observed problems from the data plane. Among these attacks, A3,
A8 and A9 can be generated by an attacker from a compromised
host. Attacks A1, A2, A4, A5 A6 and A7 are initiated from the data
plane switches or man-in-the-middle attackers who can manipulate
the control messages between the control plane and the data plane.
Attacks A10 and A11 are from the north bound configuration of
the controller through the REST interface. All the above attacks
generate thousands of data plane activities and tens of thousands of
control plane activities totally. To demonstrate how ForenGuard is
helpful to diagnose the root causes, we also show the most relevant
control and data plane activities that can identify the attacks after
using ForenGuard to narrow down the recorded activities. The
numbers of control/data plane activities show the most relevant
activities after narrowing down from a large dataset of logs. Many
attacks involve more than one application (e.g., A1), which means
individually checking every application is hard to diagnose the root
cause of these attacks. However, ForenGuard is able to find out the
involved applications quickly and help to diagnose the problems.

By leveraging the simplified dependency graphs (e.g., the exam-
ple in Figure 7) generated by ForenGuard, the network administra-
tor can further pinpoint the root causes of each network forwarding
problem. In the following, we show how an administrator can bene-
fit from ForenGuard and pinpoint the root causes of two problems
from Table 4 step by step.

Pinpoint the Problem in A3: Similar to the Host Location
Hijacking attack in the running example, a malicious attacker can
also launch Link Fabrication attack by poisoning state variables in
some applications. Host 10.0.0.2 reports a packet loss problem to
ForenGuard and the output results are shown in Figure 8. We omit
some redundant activities and the the detailed information of most
activities in the execution trace but remain the description of the
important activities. From the results, we can first observe the flow
rule that directly causes the packet loss problem. This flow rule
is triggered by a PacketIn event and affected by a pre-generated
routing decision. Then we can keep reasoning who makes this
routing decision. The routing decision is triggered by a linkUpdate
event, and this event is caused by a PacketIn event at Sw1 from
port 3, which is the root cause of this packet loss issue. By further
checking the details of this PacketIn event, we can see that this
event is triggered by a faked LLDP packet from Port 3 of Sw1, which
is where the attacker locates.

FlowMod msg4
Install Sw3 : R2

R2:srcip =
10.0.0.2, action:

forward = 2
10.0.0.2

Sw2

Sw3

Sw1

1
2

3

1 2

1

2

3

sw3

Packet_In Event
from Sw3 : 3

Routing
Decision

Write Read

Packet_In Event
from Sw1 : 3

sw1

SingletonTask.
run()

linkUpdates
Event

storageService
Read

Write

handleLldp()

Figure 8: Diagnosing a Packet Loss Problem Using Foren-
Guard

Pinpoint the Problem in A11: There is a Firewall application
in which users can configure firewall rules (e.g., block a black list
of IPs). When the user observes a network disconnection from the
data plane, he can report this problem to the network administrator
by using the function routing_path(). The detailed output from
ForenGuard are shown in Figure 10. The diagnosis process of
ForenGuard is as follows: It will first search for forwarding graphs
for the flows of the user and find the flow rules that drop the
packets from this user. Then it keeps searching for the control
plane execution traces that generate those messages. ForenGuard
can quickly locate the Firewall application and observe the flow
rule which drops the packets triggered by a new flow event and
one entry of the variable rules which is configured from the REST
API before.

5.3 Overhead and Scalability
ForenGuard instruments logging code into the controller and will
add unavoidable overhead to the SDN control plane. To quantify
the added overhead, we measure two performance metrics of the
SDN controller with and without ForenGuard. One is the through-
put overhead and the other is latency overhead, i.e., how much
our system will affect the message processing throughput and la-
tency of SDN controllers. To evaluate the throughput overhead,
we use the Cbench tool to generate a large amount of new flow
events and evaluate the maximum processing rate in the control
plane. To evaluate the delay overhead, we make use of two frequent
OpenFlow messages, PacketIn message and StatsReq/Res mes-
sage. The PacketIn message is triggered by a new flow or a flow
entry matching and sent from the data plane. The StatsReq/Res
message is used for the control plane to query for flow stats from
the data plane.

To measure the delay of processing PacketInmessages, we use a
machine with two network cards to keep sending network packets
through one network card to the network. The other network card

of this machine is connected to the controller port of the switch and
will receive the corresponding PacketInmessages. To measure the
delay of processing StatsRes messages, we use the same machine
to keep sending stats query messages to the data plane and measure
the delay between the StatsReq and StatsRes messages.

Figure 9 shows the overhead evaluation results. Figure 9 (a)
shows the throughput results with and without using ForenGuard.
We can observe that ForenGuard decreases the throughput of the
SDN control from 751.2 to 660.1 messages per second, i.e., about
12.1% decrease. Figure 9 (b) and (c) show the delay overhead when
using ForenGuard. For PacketIn messages, the average process-
ing time with and without ForenGuard is 0.886ms and 0.719ms,
which means about 23.4% overhead. Similarly, for StatsReq/Res
messages, the average processing time with and without Foren-
Guard is 1.12ms and 0.928ms, which means about 20.4% overhead.
We think the overhead increased by ForenGuard is reasonably
acceptable, especially compared with dynamic taint-tracking ap-
proaches which normally suffer a slowdown of 2-10 times [46].

The scalability results are important since network operators
should decide how much computing and storage resources are
needed to support ForenGuard. We measure the scalability of data
generating rate in our system. The data generating rate measures
how much data will be generated by our system and stored into the
database. To measure the data generating rate, we use Mininet to
emulate several network topologies (from a small size to a 10-switch
topology). Every end host in the data plane will generate 10 new
flow events (PacketIn messages) per second to the control plane.
We keep running the system for around one hour per topology.
Shown in Figure 11, the rate of logged data increases linearly with
the size of the data plane. The workload of with about 1,000 new
flows per second (the 10-switch topology) is comparable to the
workload of typical enterprise networks [33]. For this workload,
ForenGuard will averagely generate about 0.93GB data per hour
into the database.

6 RELATEDWORK
Digital Forensics:Digital forensics is a well studied research topic.
In the past decade, research of network-level forensics focuses more
on handling the large amount of data (storing, indexing and re-
trieval) in large-scale, complex networks. TimeMachine [30] records
raw network packets and builds the index for the headers of the
likely-interesting packets. Anteater [29] monitors the data plane
state and uses formal analysis to check if the state violates specified
invariants. Teryl et al. proposed a storage system [39] to efficiently
build the index of payload information of network packets. VAST
[40] is a platform that uses the actormodel to capture different levels
of network activities and provides a declarative language for query.
Network provenance [49] is also a relevant research topic in recent
years. The basic principle of ForenGuard is similar to network
provenance, which is to track causality and capture diagnostic data
at runtime that can be queried later. Unlike existing tools [14, 42]
which mostly target declarative languages or require at least some
manual annotations from software developers, ForenGuard can
directly work on the general-purpose programming language (e.g.,
Java). On host-level forensics, Forenscope [13] proposes a frame-
work that can investigate the state of a running operating system

(a) (b) (c)

Figure 9: Overhead of ForenGuard

addRule()

R5: srcip = 10.0.0.2,
action: drop

receive()

Firewall App

matchWith
Rule()

Write

...

Packet_In
Event

List<> rules

OF_FlowMod
Flow rule

REST API
Event

Read

Figure 10: Diagnosing aDisconnection ProblemUsing Foren-
Guard

Figure 11: Log Data Generating Rate

without using taint or causing blurriness. BackTracker [26] records
the files and processes in the operating system and builds them in a
dependency graph for intrusion detection. Different from all above

work, ForenGuard focuses on a unique context of SDN which
decouples control and data planes and also requires both network
and host level tracking.

SDN Troubleshooting: Peyman et al. [24] used packet header
space analysis to statically check network specifications and con-
figurations. Veriflow [25] and NetPlumber [23] verify network in-
variants dynamically when flow rules update. These verification
approaches highly rely on the predefined invariant policies, but
the lack of expressiveness can only help with known violations.
OFRewind [43] can record and replay the communication messages
between SDN control plane and data plane. STS [35] improves the
delta-debugging algorithm that can generate a minimal sequence
of inputs that can trigger a controller bug. However, the delta-
debugging algorithm does not scale well with the network size and
STS can only provide coarser-grained culprits. The most relevant
work to our paper is NetSight [17] and path query [31]. NetSight
[17] monitors packet history to analyze the data plane behaviors
and troubleshoot the network. Path query [31] provides a query
language for path-based traffic monitoring. Compared with Net-
Sight, we directly record the activities of the control and data planes
for troubleshooting. Also, unlike path query which provides the
monitoring of network performance issues, our tool provides the
monitoring and diagnosis of network forwarding/security issues.

SDN Security: SDN security gradually becomes a trending re-
search topic in both academia and industry. Most existing work falls
into two themes. The first theme makes use of the logically central-
ized control plane to implement security logic (e.g., monitoring and
measurement [47, 48], access control [18, 32], firewall and IDS [20],
DDoS detection [2, 16], security services composition [36]). The sec-
ond theme focuses on the security challenges that are introduced
by SDN itself. AVANT-GUARD [38] and FloodGuard [41] target
on the denial-of-service threat to the control plane. FortNOX [34]
proposes a security enforcement kernel to controllers. TopoGuard
[19] detects and mitigates the topology poisoning attack caused
by spoofed network packets from the attackers. Rosemary [37] en-
hances the resilience of the control plane by using a sandbox-based
approach to prevent faulty applications from crashing the entire
control plane. DELTA [28] introduces a fuzzing-based penetration
testing framework for different controllers. ConGuard [44] detects
harmful race conditions that could be exploited to launch attacks

in the SDN controllers. Compared with SecureBinder [21] which
targets a new attack which fools the network infrastructure devices
(e.g., DHCP server), our tool targets the attacks that fool the SDN
controller applications.

7 DISCUSSION AND FUTUREWORK
ForenGuard takes the first and significant step towards a network
security forensics and diagnosis system in the SDN context. How-
ever, ForenGuard is still preliminary and has several limitations
for future research work to improve, which we will discuss below.

Limitation on Threat Model. In this work, we do not assume
malicious SDN apps in the first place because currently apps are
well vetted before deployment due to their extreme importance to
the operation of the entire networks. We also note that existing
Java-based SDN apps leave less or no room for buffer overflow and
code injection attacks. In the worst cases, even if an exploited mali-
cious SDN app may directly attack ForenGuard, this could easily
expose their existence; or they could intentionally generate fake
executing logs to mislead the forensics function of ForenGuard,
for which we think there are still anomalies that could be detected
from code or behavior level. Nevertheless, we note that vetting/de-
tecting malicious apps is a separate/orthogonal topic different from
the forensic/diagnosis research targeted by this paper. Our future
work will look into those issues.

Extension toOtherControllers andDistributedControllers.
ForenGuard leverages some generic principles used by all these
controllers (e.g., how they dispatch and receive events), as well as
some heuristics of the Java language (e.g., reasoning about refer-
ence data types like Set, List, Array and their methods according to
Java 7). Therefore, we believe our technique is relatively generic
and extensible to other mainstream Java-based controllers (e.g.,
OpenDaylight, ONOS) as well. However, we admit that it requires
more efforts to implement our proposed approach to other non-Java
controllers.

ForenGuard could also be extended to support different types
of distributed controller models. For example, in the ONOS [7]
model of distributed controllers, ForenGuard can work on each
individual core/controller in the forensics stage, and then perform
the diagnosis through the merged forensic data. This is one of our
future work.

Accuracy of the Static Analysis. Our current implementation
of ForenGuard relies on existing static analysis techniques in Soot.
The techniques are known to be not 100% accurate. For example,
the static data flow tracking is not flow-sensitive. However, we
think the issue of the static analysis itself is beyond the scope of
this study. ForenGuard is focusing more on what to forensic and
how to diagnose security problems. However, our tool could also
benefit from any future research in the area of improving static
analysis.

Room for Optimization. Though ForenGuard provides the
customizability to tune the recorded activity types, there is still
room for the optimization of the storage. For example, ForenGuard
could benefit from previous work (e.g., VAST [40]) which proposed
several compression schemes for forensic data. In our future work,
we will investigate more optimization schemes and study the proper
design for our case.

8 CONCLUSION
In this paper, we propose ForenGuard, a first-in-its-kind SDN
forensics and diagnosis tool that integrates both control and data
planes, as well as both network and host level forensics and di-
agnosis. ForenGuard dynamically records fine-grained activities,
builds them as event-oriented execution traces of the control plane
and state transition graphs of the data plane, and provides diagnosis
functions for users to locate the suspicious activities and pinpoint
the root causes of the forwarding problems. The evaluation results
show that ForenGuard is useful in SDN networks and only adds
acceptable runtime overhead to the SDN control plane.

ACKNOWLEDGMENTS
This material is based upon work supported in part by the Na-
tional Science Foundation (NSF) under Grant no. 1617985, 1642129,
1700544, and 1740791. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF.

REFERENCES
[1] Cbench Controller Benchmarker. https://github.com/andi-bigswitch/oflops/

tree/master/cbench.
[2] DefenseFlow: SDN Applications and DDoS Attack Defense. http://www. rad-

ware.com/Products/DefenseFlow/.
[3] Floodlight Controller. http://www.projectfloodlight.org/floodlight/.
[4] LearningSwitch Application. https://github.com/floodlight/floodlight/blob/

master/src/main/java/net/floodlightcontroller/learn-
ingswitch/LearningSwitch.java.

[5] Mininet: Rapid Prototyping for Software Defined Networks. http://yuba. stan-
ford.edu/foswiki/bin/view/OpenFlow/.

[6] MongoDB. https://www.mongodb.com/.
[7] ONOS Controller Platform. https://onosproject.org/.
[8] OpenDayLight controller. https://www.opendaylight.org/.
[9] OpenFlow: Innovate Your Network. http://www.openflow.org.
[10] POX Controller. http://openflow.stanford.edu/ display/ONL/POX+Wiki.
[11] S. Crosby A. and D. S. Wallach. 2009. Efficient Data Structures for Tamper-evident

Logging. In Proceedings of the 18th Conference on USENIX Security Symposium
(Usenix Security).

[12] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. 2012. A NICE Way
to Test OpenFlow Applications. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[13] E. Chan, S. Venkataraman, F. David, A. Chaugule, and R. Campbell. 2010. Foren-
scope: a framework for live forensics. In Proceedings of the 2010 Annual Computer
Security Applications Conference (ACSAC).

[14] A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. 2017. One Primitive to Diagnose
Them All: Architectural Support for Internet Diagnostics. In Proceedings of the
Twelfth EuroSys Conference 2017 (EuroSys).

[15] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann. 2015. SPHINX: Detecting
Security Attacks in Software-Defined Networks. In Proceedings of the 22th Annual
Network and Distributed System Security Symposium (NDSS).

[16] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. 2015. Bohatei: Flexible and Elastic
DDoS Defense. In Proceedings of The 26th USENIX Security Symposium (Usenix
Security).

[17] N. Handigol, B. Heller, V. Jeyakumar, D. MaziÃĺres, and N. McKeow. 2014. I
Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot
Networks. In Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[18] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu. 2016. Towards SDN-Defined
Programmable BYOD (Bring Your Own Device) Security. In Proceedings of the
22th Annual Network and Distributed System Security Symposium (NDSS).

[19] S. Hong, L. Xu, H. Wang, and G. Gu. 2015. Poisoning Network Visibility in
Software-Defined Networks: New Attacks and Countermeasures. In Proceedings
of the 22th Annual Network and Distributed System Security Symposium (NDSS).

[20] H. Hu, W. Han, G. Ahn, and Z. Zhao. 2014. FlowGuard: Building Robust Firewalls
for Software-defined Networks. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking (HotSDN).

[21] S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and D. Bigelow. 2017.
Identifier Binding Attacks and Defenses in Software-Defined Networks. In Pro-
ceeding of the 24th USENIX Security Symposium (USENIX Security).

[22] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and W. Lee.
2017. Rain: Refinable Attack Investigation with On-demand Inter-Process Infor-
mation Flow Tracking. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS).

[23] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. 2013.
Real Time Network Policy Checking using Header Space Analysis. In Proceedings
of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[24] P. Kazemian, G. Varghese, and N. McKeown. 2012. Header Space Analysis:
Static Checking for Networks. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[25] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. 2013. Veriflow:
Verifying Network-Wide Invariants in Real Time. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI).

[26] S. T. King and P. M. chen. 2003. Backtracking intrusions. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP).

[27] P. Lam, E. Bodden, O. Lhotak, and L. Hendren. The soot framework for java
program analysis: a retrospective. In CETUS 2011.

[28] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras. 2017. DELTA: A
Security Assessment Framework for Software-Defined Networks. In Proceedings
of The 2017 Network and Distributed System Security Symposium (NDSS).

[29] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King. 2011.
Debugging the Data Plane with Anteater. In Proceedings of the ACM SIGCOMM
2011 Conference (SIGCOMM).

[30] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and F. Schneider. 2008.
Enriching Network Security Analysis with Time Travel. In Proceedings of the
ACM SIGCOMM 2011 Conference (SIGCOMM).

[31] S. Narayana, M. T. Arashloo, J. Rexford, and D. Walker. 2016. Compiling Path
Queries. In Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[32] A. Nayak, A. Reimers, N. Feamster, and R. Clark. 2009. Resonance: Dynamic
Access Control for Enterprise Networks. In Proceedings of the 1st ACM Workshop
on Research on Enterprise Networking.

[33] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. 2005. A First
Look at Modern Enterprise Traffic. In Proceedings of the 2005 Internet Measurement
Conference (IMC).

[34] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. 2012. A Security
Enforcement Kernel for OpenFlow Networks. In Proceedings of ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN).

[35] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang, Z. Liu, A.
El-Hassany, S. Whitlock, H.B. Acharya, K. Zarifis, and S. Shenker. 2011. Trou-
bleshooting Blackbox SDN Control Software with Minimal Causal Sequences. In
Proceedings of ACM SIGCOMM Computer Communication Review.

[36] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson. 2013. FRESCO:
Modular Composable Security Services for Software-Defined Networks. In Pro-
ceedings of the 20th Annual Network and Distributed System Security Symposium
(NDSS).

[37] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran, J. Noh, and
B. B. Kang. 2014. Rosemary: A Robust, Secure, and High-Performance Network
Operating System. In Proceedings of the 21th ACM Conference on Computer and
Communications Security (CCS).

[38] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. 2013. AVANT-GUARD: Scalable and
Vigilant Switch Flow Management in Software-Defined Networks. In Proceedings
of the 20th ACM Conference on Computer and Communications Security (CCS).

[39] T. Taylor, S. E. Coull, F. Monrose, and J. McHugh. 2012. Toward Efficient Querying
of Compressed Network Payloads. In Proceedings of the 2012 USENIX Annual
Technical Conference (USENIX ATC).

[40] M. Vallentin, V. Paxson, and R. Sommer. 2016. VAST: A Unified Platform for
Interactive Network Forensics. In Proceedings of the 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[41] HaopeiWang, Lei Xu, and Guofei Gu. 2015. FloodGuard: A DoS Attack Prevention
Extension in Software-Defined Networks. In Proceedings of the 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[42] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. 2017. Automated Bug
Removal for Software-Defined Networks. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

[43] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldman. 2011. OFRewind:
Enabling Record and Replay Troubleshooting for Networks. In Proceedings of the
2011 USENIX Annual Technical Conference (USENIX ATC).

[44] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu. 2017. Attacking the Brain: Races
in the SDN Control Plane. In Proceedings of The 26th USENIX Security Symposium
(Usenix Security).

[45] A. Yavuz, P. Ning, and M. Reiter. 2012. Efficient, compromise resilient and append-
only cryptographic schemes for secure audit logging. Financial Cryptography
and Data Security (2012).

[46] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. 2007. Panorama: Capturing
System-wide Information Flow for Malware Detection and Analysis. In Proceed-
ings of the ACM Conference on Computer and Communications Security (CCS).

[47] C. Yu, C. Lumezanu, V. Singh, Y. Zhang, G. Jiang, and H. V. Madhyastha. 2013.
FlowSense: Monitoring Network Utilization with Zero Measurement Cost. In
Proceedings of the 14th International Conference on Passive and Active Measurement
(PAM).

[48] M. Yu, L. Jose, and R. Miao. 2013. Software Defined Traffic Measurement with
OpenSketch. In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[49] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. 2011. Secure
Network Provenance. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP).

	Abstract
	1 Introduction
	2 Background and Example
	2.1 Abstract Model of SDN framework
	2.2 Threat Model and Assumptions
	2.3 Running Example
	2.4 Problem Statement

	3 Modeling of the SDN Activities
	4 System Design
	4.1 System Architecture
	4.2 Preprocessor
	4.3 Activity Logger
	4.4 Diagnosis
	4.5 Flexibility of Tuning Stored Activities

	5 Evaluation
	5.1 Implementation
	5.2 Effectiveness Evaluation
	5.3 Overhead and Scalability

	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	References

