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Abstract. Malware often encounters network failures when it launches
malicious activities, such as connecting to compromised servers that
have been already taken down, connecting to malicious servers that are
blocked based on access control policies in enterprise networks, or scan-
ning/exploiting vulnerable web pages. To overcome such failures and
improve the resilience in light of such failures, malware authors have
employed various strategies, e.g., connecting to multiple backup servers
or connecting to benign servers for initial network connectivity checks.
These network failures and recovery strategies lead to distinguishing
traits, which are newly discovered and thoroughly studied in this pa-
per. We note that network failures caused by malware are quite different
from the failures caused by benign users/software in terms of their failure
patterns and recovery behavior patterns.
In this paper, we present the results of the first large-scale measure-
ment study investigating the different network behaviors of both benign
user/software and malware in light of HTTP errors. By inspecting over
1 million HTTP logs generated by over 16,000 clients, we identify strong
indicators of malicious activities derived from error provenance patterns,
error generation patterns, and error recovery patterns. Based on the in-
sights, we design a new system, Error-Sensor, to automatically detect
traffic caused by malware from only HTTP errors and their surround-
ing successful requests. We evaluate Error-Sensor on a large scale of
real-world web traces collected in an enterprise network. Error-Sensor
achieves a detection rate of 99.79% at a false positive rate of 0.005% to
identify HTTP errors generated by malware, and further, spots surrep-
titious malicious traffic (e.g., malware backup behavior) that was not
caught by existing deployed intrusion detection systems.

1 Introduction

Malicious servers, such as command and control (C&C) servers, exploit servers
and drop-zone servers, have become an essential part of recent cyber crimes.
Most miscreants today rely on the malicious servers to control and monetize their
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malicious software (malware). However, cyber criminal structures suffer from a
single-point-of-failure problem when the malicious servers are discovered and
blocked by defenders. To overcome such failures, cyber criminals have developed
a variety of techniques to evade possible detection and launch more stealthy
malicious activities. For example, a fast-flux service [30] allows cyber criminals
to quickly change the IP addresses of malicious domains to avoid IP-based access
controls. A domain generation algorithm (DGA) [1,33] allows cyber criminals to
dynamically generate domain names to bypass domain-based blocking. Cyber
criminals also compromise a large number of legitimate web servers as “stepping
stones” or “redirectors” to keep their malicious activities surreptitious.

To defend against the sophisticated cybercrime systems, most, if not all or-
ganizations have already deployed a variety of security products to detect and
block the malicious servers. Blacklists and intrusion detection systems (IDSes)
are widely deployed in most companies. Several modern domain reputation sys-
tems [14,10] are also designed to search for the evidence of malicious activities
observed at the domain names. The competition of such sophisticated evasion
techniques deployed by cyber criminals and advanced detection systems deployed
by companies results in two kinds of server connectivity failures in an enterprise
network: DNS failures and HTTP errors. DNS failures occur when malware tries
to connect to non-existing domains, and have been widely studied by researchers
for malware detection [21,41], especially for DGA-based malware [12].

In this paper, we focus on HTTP errors which have been less investigated
in previous work. We refer HTTP errors as HTTP connection failures whose
response status codes are larger than 400, as defined by the HTTP standard [2].
HTTP errors often occur when malware connects to compromised servers that
have been cleared by administrators (e.g., resulting in HTTP 404 Not Found
error), or to malicious servers that are blocked by an IDS or a web proxy (e.g.,
resulting in HTTP 403 Forbidden error) based on the policy violation.

During our investigation, we note that HTTP errors provide several new
insights. First, malware often generates HTTP errors in the course of mali-
cious activities. Most of the errors are caused by connecting to benign servers
with bad parameters, connecting to compromised servers that have already been
cleaned, or scanning vulnerable webpages that have been removed/protected.
HTTP errors are also commonly generated because of the traffic blocks by the
enterprise/ISP web proxy/gateway for policy violation or malware infection (e.g.,
403 errors). Second, inspecting HTTP errors helps find out malware intelligence.
When malware faces HTTP errors, it may start “recovery” behaviors to main-
tain the functionality of malicious infrastructures, and to ensure the reachability
to the malicious infrastructure, such as connecting to some benign servers for
network connectivity testing or connecting to other alternative malicious servers.
Such recovery behaviors may not be easily characterized by existing IDSes, and
malware bypasses security products to successfully connect to their backup ma-
licious servers. In our experiments, we found that an IDS only detected limited
parts of backup servers. Third, HTTP error-based detection is complementary to
DNS failure-based detection. All the traffic related to HTTP errors have success-
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ful DNS resolution, therefore DNS failure-based detection becomes less effective.
Fourth, compared to existing work [40,27] which requires the entire enterprise
network traffic as an input, inspecting HTTP errors dramatically reduces the
amount of traffic to be analyzed (e.g., reducing 96.8% of traffic in the real enter-
prise network in our experiment). Fifth, different from other existing work that
relies on malicious server reputation [14] and client side behavior patterns [18],
focusing on the characteristics of HTTP errors detects malware-generated traffic,
including both malicious and compromised servers, without requiring multiple
infections, server reputation information, or infection/URL signatures.

It is not trivial to distinguish benign traffic and malicious traffic simply based
on the HTTP errors because the act of generating HTTP errors itself is not a
sign of inherently malware infection. However, since cyber criminals would pre-
pare for network failures in their malware for resilient malicious operations,
there exist different error generation patterns (e.g., frequencies, sequences, and
statistics) between the errors generated by malware and the errors generated by
benign users/software. In addition, to conquer such possible failures, malware
often employs “recovery” mechanisms when facing network failures while benign
users/software may have less or no pre-arranged recovery routines. Therefore, in
this paper, through examining over 1 million HTTP errors from a large enter-
prise network, we derive new insights to detect malicious traffic, and design a
lightweight yet effective detection system, Error-Sensor.

In summary, our work makes the following contributions:

– We conduct the first large-scale measurement study on 1 million HTTP errors
collected in an enterprise network, and identify strong indicators of malicious
activities derived from error provenance patterns, error generation patterns,
and error recovery patterns.

– We design malware traffic detection from a new perspectives, i.e., HTTP error
generating patterns and malware evasion intelligence in the face of HTTP
errors, and develop Error-Sensor to automatically detect malware traffic.

– Error-Sensor is able to detect both compromised servers and malicious
servers, even when benign servers are used by malware for Internet reacha-
bility testing, through analyzing HTTP error traffic. Furthermore, Error-
Sensor does not rely on any infection/URL signatures, nor require multiple
infections in a network unlike existing work.

– We evaluate Error-Sensor with large-scale, real-world enterprise network
traces. Error-Sensor achieves a detection rate of 99.79% at a false positive
rate of 0.005% to identify HTTP errors generated by malware. In addition,
Error-Sensor finds surreptitious malware-generated traffic missed by an
existing IDS, and uncovers evasion strategies employed by malware.

2 Background

2.1 HTTP Errors

A typical HTTP error is sent to the client web browser from a website when a
problem is encountered while accessing a webpage. Based on the definition of
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HTTP response status codes in RFC 7231 [2], the 4xx class of status code is
used to indicate the cases where the client caused an error.

In this paper, we focus on HTTP errors whose HTTP response status codes
are in the 4xx class because we note that most errors generated by malware
activities belong to this category. For example, network scanning attacks may
lead to 404 Not Found errors due to scanning non-existing vulnerable target
webpages, or 403 Forbidden errors due to scanning webpages in protected paths.
Policy violation requests also lead to 403 Forbidden errors. The complete list of
all the error codes and their corresponding reasons can be found in [2] as the part
of the HTTP/1.1 standard. For the simplicity reason, the term error denotes
the HTTP error unless stated otherwise in the remaining of the paper.

We use a combination of a client, a server, a webpage, and an error code
to represent a unique HTTP error, i.e., 〈clienti, serverj , pagek, error code〉. For
example, an HTTP request from client i to URL http://compromised.com/

compromised page.html with 404 error is denoted as 〈clienti, compromised.com,
compromised page.html, 404〉.

2.2 Problem Statement

In this paper, we focus on the HTTP error traffic and their nearby successful
request traffic (e.g., non-error traffic of a given client at about the same time as
the error traffic), and conduct a large-scale systematic analysis of HTTP errors
in the wild with a special focus on the error patterns and the corresponding
recovery behaviors of error generators.

We first uncover the differences between the errors generated by users/software
and the errors generated by malware. Based on the insights obtained from the
analysis, then, we design a new method to detect malware-generated errors and
extract malware evasion intelligence. In this context, intelligence means the eva-
sion strategies used by malware in the face of HTTP errors, such as connecting
to multiple alternative malicious servers, compromised servers and other benign
servers for Internet connectivity testing.

We, however, do not aim to detect all the malicious traffic in an enterprise
network, and may miss malware-generated traffic that never produces errors.
Rather, our approach complements existing DNS failure based detection meth-
ods which address fast-fluxing and DGA [21,41,12] because all the errors here
still have successful DNS resolutions. Furthermore, our approach complements
existing detection systems [26] as we identify malware evasive traffic by extract-
ing the malware evasion intelligence without having malware samples in hand.

3 Insights into HTTP Errors

In order to gain more in-depth understanding of HTTP errors generated by both
malware and users/software, we first studied one day of real-world network traffic
from a large enterprise network, from which we extracted all the error traffic4.

4 We excluded the cases where a client generated only a single error in the entire
observation window, which might not provide sufficient insights for our study.
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As a result, we collected more than 1 million HTTP error requests, and obtained
279,942 unique HTTP error requests (e.g., 〈clienti, serverj , pagek, error code〉),
which only represents 3.2% of the entire one day of HTTP requests.

Table 1: Dday Data Sets
# of clients # of unique errors # of errors

B 16,205 71,998 925,277
M 233 9,792 190,394
MIDS 233 965 35,239

Among the errors, 965 servers were detected as malicious servers by the
deployed commercial intrusion detection system (IDS), and we labeled the errors
asMIDS . Then we labeled the errors generated by the clients who sent requests
to the servers in MIDS as malicious errors M. It is worth noting that the
errors inM were generated by the malware infected clients; however, it does not
mean that all of them are actually malicious errors. In this way, we collected
9,792 unique malicious errors. To collect benign errors, we first collected clients
who never connected to malicious servers (servers in M) nor generated policy
violation requests. Then we labeled all the errors generated by these clients as
benign errors B, and collected 71,998 unique benign errors. Table 1 summarizes
the data sets collected for the study, we label this one day of data as Dday.

3.1 Key Observations

O1: Most benign errors are generated by an accident. When a client
receives an error from a server, if the client makes at least one non-error connec-
tion to the same server during the observation time window5, then we consider
such an error is generated by a mistake and define it as an accidental error.

When a user faces an error, such as 404 Not Found error, the user may click
other webpages on the same server either to figure out why the error is caused or
to continue searching for other pages. In case of benign software, it may generate
multiple different requests to the same server. Even if some of the requests are
failed due to the misconfiguration, it still has some successful connections to the
same server. For example, in our data set, Symantec liveupdate service always re-
ceived 404 errors due to the misconfiguration of the proxy when it tried to request
http://liveupdate.symantec.com/liveupdate 3.3.0.107 english livetri

.zip. However, the service also sent requests to http://liveupdate.symantec

.com and other URIs on the domain liveupdate.symantec.com, which led to
some successful connections. Consequently, we observed that a client encounter-
ing some errors on a server also had some successful contentions to the same
server during the observation time window. However, malware may immediately
try to connect to other backup servers in the face of errors. In fact, malware is
typically programmed to request a certain number of pages on the same mali-
cious servers or compromised servers. In addition, if an error is caused by an IDS
or policy violation blocking, malware has no chance to establish any successful

5 The observation time window was set to one day for Dday.
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connections to the malicious servers. Therefore, we would observe fewer number
of accidental errors in malware-generated errors.

While examining the errors in Dday, we found that 84.95% of benign errors
belonged to accidental errors while only 3.94% of malicious errors belonged to
accidental errors. Further study showed that most of malicious accidental errors
were generated by web browsers requesting other web resources (e.g., JavaScript
and image files) on the same servers, which led to successful connections.

O2: Malware infected clients generate more errors than benign
clients. We define the malware infected clients as the clients who send at least
one request to malicious servers. In our study, we define all the clients inMIDS

as malware infected clients. Similarly, benign clients are the clients in B.

Intuitively, benign clients would generate fewer number of errors than mal-
ware infected clients would do because benign HTTP requests constructed by
web browsers or benign software are typically well formatted, and the remote
servers would respond those requests properly. On the contrary, there exist lots
of uncertainties for malware generated HTTP requests, including the request
format and the response from the remote servers. For example, an IDS blocks
confirmed malicious servers, and malicious requests exploiting vulnerable web
pages may lead to unacceptable request formats.

During our study on Dday, we found that about 94% of benign clients gener-
ated less than 10 errors per day. However, only around 38% of malware infected
clients generated less than 10 errors per day. The maximum numbers of errors
were 2,767 and 60 for malware infected clients and benign clients, respectively.
We used the number of errors per day rather than the error ratio to evaluate
clients. It was because, compared to the volume of benign traffic, the volume
of malware related traffic was very small so that the error ratio could be easily
influenced by different volume of benign traffic. We also filtered out the clients
with less than 100 requests per day to exclude the cases where fewer errors were
simply due to fewer requests by benign clients.

O3: Most benign errors are generated by benign software. User-
Agent is the field in an HTTP header to indicate who initiates the request.
Typical values of the field are different browsers, spiders, or other end user tools.
To understand who generate errors, we inspect the User-Agent for each error.

We define two kinds of User-Agents: browser User-Agents and custom User-
Agents. Browser User-Agents are the User-Agents whose values reflect the ver-
sion of different browsers. [3] lists the User-Agents of commonly used web browsers.
Since it is difficult to collect all the User-Agents of different browsers for different
versions, in this paper, we use keywords, such as Mozilla, and Opera, to label if
a User-Agent is a browser User-Agent or not. Specifically, all the User-Agents
started with these keywords are labeled as browser User-Agents. In practice,
unless a user changes the User-Agent of the HTTP header, browser-generated
errors usually include such keywords at the beginning of their User-Agents by
default. Custom User-Agents are defined as User-Agents other than browser
User-Agents. In practice, most software uses their customized User-Agents in
order to be easily recognized by the servers.
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During our study on Dday, we collected 15,115 and 136 User-Agents for be-
nign errors and malicious errors, respectively. We found that only 12.52% of
benign errors were generated by browsers while 93.38% of malicious errors were
generated by browsers. This showed that most benign errors were generated by
custom software which kept requesting no longer available resources. Since differ-
ent benign software usually had different customized User-Agents, we observed
a large number of diverse custom User-Agents.

O4: The errors generated by malware have different generating pat-
terns from the errors generated by benign software. To further analyze
the network patterns of errors, we first clustered the errors based on the similar-
ity of their pages and parameters. The detailed clustering algorithm is described
in Section 4.3. In this way, we obtained 42 clusters for malware-generated errors
(CM) and 716 clusters for benign errors (CB).

We examined their network patterns from three perspectives: (a) error se-
quences, (b) error patterns, and (c) error frequencies. From the error sequence
perspective, 72.35% of benign errors in CB were generated in a sequence. That
is, the client sent requests to servers in a specific order. The sequence typi-
cally followed the order of the servers loaded in a web page, or the order of the
servers listed in a configuration file, which was steady over time. Only 33.33% of
malware-generated errors were observed in a sequence. From the error pattern
perspective, all the browser-generated errors were generated in a batch when a
page was loaded. Most benign software also generated errors in a batch since
it immediately tried to connect to multiple alternative servers in the face of
errors. In fact, most, if not all of these alternative servers, still led to errors
due to the same misconfiguration, and such errors kept appearing unless a user
corrected the configuration. On the contrary, malware generated errors with a
delay before trying alternative servers to avoid a traffic spike and to make its
activities stealthy. From the error frequency perspective, we found that around
70% of errors in CB had less than 10 minimum frequency while around 70% of
errors in CM repeatedly sent error requests more than 10 times per day. Surpris-
ingly, the highest frequency for benign errors was 6,398 where Microsoft-Symbol-
Server kept downloading non-existing boinc exe.pdb from berkeley.edu and
microsoft.com. However, the highest frequency for malware-generated errors
was only 920 where a client kept accessing file.php from three malicious servers.

O5: Malware has more recovery behaviors than benign software.
Due to the possible blocks by an IDS or ill-formatted exploit requests, malware
usually employs recovery mechanisms to assure their malicious activities. We
explore URI path correlation and temporal correlation to characterize such re-
covery intelligence. For example, the recovery behavior sending the same request
to multiple alternative servers to avoid a single point of failure would lead to
successful requests including the same URI (path and parameters) with error
requests, and testing the network connectivity when facing errors would lead to
successful requests having temporal correlation with error requests.

During our study on Dday, 66.67% of malware-generated errors exhibited
such recovery behaviors. On the contrary, benign software typically tried a few
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Fig. 1: Overview of Error-Sensor

alternative servers in the same domain or kept generating the same errors due to
a lack of pre-arranged recovery methods. Only 8% of benign errors had temporal
correlation with successful requests, and only 20% of them had similar pattern
correlation with successful requests.

Lessons learned: Malware-infected clients usually generate more HTTP er-
rors than benign clients, and most of the errors are related to malware activities.
Based on our observation, malware-generated errors have significantly different
error generating patterns and recovery behavior patterns from the errors gen-
erated by benign users/software. These different patterns exist because benign
clients often lack recovery routines in the face of HTTP errors.

4 System Design

4.1 System Overview

We leverage the insights described in Section 3 to build a novel detection system,
named Error-Sensor, which aims to detect malware behaviors by examining
HTTP errors. Such malware behaviors may include HTTP attacks on benign
servers (e.g., scanning vulnerable pages), communication with malicious server
(e.g., C&C servers and compromised servers), and other benign behaviors (e.g.,
testing network connectivity). Since Error-Sensor relies on the network be-
haviors of malware in the face of errors, it detects malware traffic even when
there are only a few (or just one) compromised clients in an enterprise network.
In this paper, we focus on malware traffic related to HTTP errors, and malware
traffic that is not correlated with errors is out of the scope of this work. We
discuss the coverage of Error-Sensor in Section 6.

Fig. 1 shows the overview of Error-Sensor where it takes the entire HTTP
traffic as an input. The filtering component first filters out noisy error traffic,
and then forwards both the remaining error traffic and the select successful re-
quest traffic surrounding the remaining errors. Then, Error-Sensor groups the
errors based on their HTTP URI pages and parameters, and all the errors shar-
ing similar HTTP pages and parameter patterns are grouped together. During
this process, Error-Sensor extracts various statistical features from three per-
spectives: error provenance, error generation and error recovery. The resulting
feature vectors are then sent to the Error-Sensor classifier which is trained
to distinguish malware-generated errors from benign errors.

4.2 Filtering

The goal of filtering is to reduce the amount of traffic to be processed by Error-
Sensor and to filter the noisy errors. We define noisy errors as the errors gen-
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erated by the clients who generate only a single error during the entire observa-
tion window6 since it is difficult to acquire useful information from them. Since
Error-Sensor relies on HTTP error patterns to identify malware-generated
errors, in the filtering step, we filter out all the successful request traffic except
for the successful requests within the time window Tw of error traffic. As a result,
96.8% of entire network traffic were filtered in our one day of enterprise traffic
Dday. As a result, 9.3% of errors were further filtered out. All the remaining
HTTP requests are denoted in a form 〈clienti, serverj , pagek, error code〉. We
acknowledge that we may miss some malware traffic by filtering out noise errors
when malware probes C&C servers with a single request per day. However, it
could be addressed by extending the observation time window.

4.3 Clustering

Given the filtered error traffic, the next step is to cluster them into groups.
The rationale behind this step is that when facing errors, malware may start
their recovery behaviors which would result in similar errors or similar successful
connections. Since we rely on the recovery behaviors generated by the same
client, we group the errors by each client rather than across different clients. In
this way, compared to existing correlation-based detection method [18], Error-
Sensor is capable of detecting malware traffic even when there is only a single
infected client.

The key challenge for clustering is to determine which errors could be con-
sidered as the same. A straightforward way is to consider errors to be the same
only when their URLs, including paths, pages, parameter names, are exactly
matched. For example, during the vulnerable webpage scanning process, mal-
ware may send requests to multiple domains with the same target page files
and the same exploit codes, or the clients may send requests to multiple com-
promised servers with the same compromised pages and parameters. However,
certain malware campaigns may utilize obfuscated paths, such as Base64 or URL
encoding for the page names. To address this problem, we set a threshold Tlen

7

for the length of page names. If the length of the page name is shorter than
Tlen, we consider that it is unlikely an obfuscated page name, and group the
errors based on page names and parameters. On the other hand, if the length
of the page name is longer than Tlen, we consider that the page is obfuscated,
decode the page name with a URL decoder, and group the similar errors based
on len(page name) and parameters. The clusters with a single error will be
discarded because most of these errors are caused by misconfiguration where a
client repeatedly sends the same requests to only one server.

4.4 Classification

In this step, Error-Sensor takes the clusters of errors and their surrounding
successful HTTP requests as an input, and produces a verdict on whether the

6 Our observation window was set to 1 day.
7 Tlen was empirically set to 25 based on [40].



10 Jialong Zhang, Jiyong Jang, Guofei Gu, Marc Ph. Stoecklin, and Xin Hu

clusters are malicious or not. Based on our key observations presented in Sec-
tion 3, we develop a set of 18 features that describes the characteristics of an
error cluster as summarized in Table 2.

Table 2: Feature Selection
Category Features Feature Domain Novelty

Error
Provenance

Client Reputation (f1) Integer New
Server Reputation (f2) Integer [40]
Software Error Ratio (f3) Real New
Accidental Error Ratio (f4) Real New
Referer Error Ratio (f5) Real [31]
Suspicious Server Ratio (f6) Real New

Error
Generation

Sequence (f7) Boolean New
Periodmin (f8) Integer New
Periodmedian (f9) Integer New
Periodmax (f10) Integer New
Frequencymin (f11) Integer New
Frequencymedian (f12) Integer New
Frequencymax (f13) Integer New
Batchmin (f14) Integer New
Batchmedian (f15) Integer New
Batchmax (f16) Integer New

Error
Recovery

Temporal Correlation (f17) Boolean [17]
URI Path Correlation (f18) Boolean New

Error Provenance Pattern (EPP): This category consists of six features
for evaluating the overall reputation of an error cluster.

Client Reputation (f1) evaluates the client reputation of each cluster, which is
measured by the number of errors generated by the clients in a cluster. It is worth
noting that the number of errors generated by the clients includes the errors that
were not initially clustered in the cluster, and the value of client reputation may
be larger than the actual size of the cluster. Based on our observations discussed
in Section 3, malware infected clients generate a lot more errors than benign
clients does. In terms of reputation, the more errors a client generates, the lower
reputation the client has.

Server Reputation (f2) evaluates the reputation of servers in an error cluster,
which is measured by the average number of clients connecting to the servers.
The more popular (i.e., more clients communicating with) a server is, the less
likely the server is malicious.

A Software Error Ratio (f3) evaluates who generates errors, which is defined
by the number of custom (non-browser) User-Agents over the total number of
errors in a cluster. As noted in Section 3, majority of benign errors was generated
by custom (non-browser) User-Agents while malware often used browser User-
Agents to remain more stealthy.

An Accidental Error Ratio (f4) evaluates how errors are generated, which is
defined by the number of accidental errors over the total number of errors in a
cluster. As noted in Section 3, malware often quickly gives up failed servers and
moves on to other alternative servers, resulting in a high accidental error ratio.

A Referrer Ratio (f5) evaluates where errors are generated. A referer provides
information about the locations of the links from where a user reaches an error
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page. Most malware8 and benign software typically generate errors without ref-
erers (i.e., direct requests) while users/browsers typically generate errors with
referers indicating the previous page of the error page. By default, a browser
automatically add a referer field to each request [5]. We define the referrer ratio
as the number of unique referers in a cluster divided by the number of errors in
the cluster. Malware-generated errors would have zero or very low referer ratio.

A Suspicious Server Ratio (f6) also measures the reputation of the servers in
each error cluster. If a server generates only error traffic without any successful
communication with its clients, Error-Sensor flags the server as suspicious.
These servers might be less popular servers which only few clients visit and
generate errors, or malicious servers blocked by an IDS. The suspicious server
ratio is defined as the number of suspicious servers divided by the total number
of servers in the cluster. A higher suspicious server ratio in a cluster indicates
that the cluster is more likely to be connected only by malware.

Error Generation Pattern (EGP): This category of features consists of
four sub-groups of features extracted from error traffic.

A Sequence Pattern (f7) characterizes whether the errors in a cluster are gen-
erated in a sequence. The rationale behind the feature is that the errors gen-
erated from browsers and benign software often follow a certain sequence while
malware-generate errors are often observed in an arbitrary order. For example, a
client may generate a series of 404 errors to outdated Ubuntu source repositories
in the same sequence over time because the source list of update servers (e.g.,
/etc/apt/sources.list) is fixed. However, malware may randomly select C&C
servers to send requests, which leads to an arbitrary order of requests.

A Period Pattern (f8, f9, and f10) measures the minimum time interval for mal-
ware to generate the same errors (repeated errors). We observed that most user-
generated errors did not yield repeated ones, and benign software generated
errors often had short time interval of generating the same errors. However,
malware typically employs some delay before reconnecting to the failed sever to
avoid sudden traffic spikes. To characterize the timing pattern of repeated errors,
we calculate the minimum, median, and maximum values of the minimum time
interval between repeated errors.

A Frequency Pattern (f11, f12, and f13) measures how many recurring errors are
generated for each error per day. Most benign errors are typically generated
once or per usage. For example, a set of recurring 404 errors caused by using
an outdated Ubuntu source list is generated only when a user issues apt-get

command. However, malware may periodically try to connect to malicious C&C
servers to obtain new commands or updates. Considering not all of the errors
in a cluster are repeated, we assess the maximum, median, and minimum of the
error frequency for each cluster to characterize the error generating frequency.

A Batch Pattern (f14, f15, and f16) measures the minimum time interval for
malware to contact other alternative servers in a cluster. Most benign errors are
often generated in a batch while malware may generate errors with some delays

8 Although it is trivial for an attacker to manipulate the Referer field, it is easy to
detect by checking if the current page is embedded in the referred page.
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to avoid sudden spikes and to evade possible detection. For example, a set of
404 Not Found errors are usually generated at once when a page includes lots
of missing/outdated links for scripts and resources. Typically, benign software
quickly tries to reconnect to alternative servers in the face of errors. However,
when malware faces errors, it may slowly complete its recovery behaviors (e.g.,
1 minute to send multiple requests [36]), or delay sometime before contacting to
other alternative servers to remain stealthy.

Error Recovery Pattern (ERP): This feature group consists of two fea-
tures to characterize the error recovery patterns of malware in the face of errors.

Temporal Correlation (f17) characterizes the recovery behaviors of malware based
on temporal correlation among errors and their nearby successful traffic. The
rationale behind the feature is that when malware faces errors, it would start
recovery mechanisms within a certain time. For example, malware may send
requests to benign servers (e.g., google.com/xyz and facebook.com/xyz as
shown in Table 7) to check network connectivity after several failed connections
to malicious servers. Therefore, if a server frequently appears together with error
requests, it is highly likely to be a part of malware recovery routines.

To characterize temporal patterns, we define a time window Tw to set the corre-
lation scope, and all the requests surrounding the errors within Tw time window
are extracted. To quantify the temporal correlation, we utilize association rule
learning [9], which is widely used to discover significant relations between vari-
ables in a large database in information retrieval. We use the association rule
learning to find out associated traffic with target errors. For each error traffic
e, we extract surrounding traffic of e within Tw window, defining them as an
error bucket. In this way, all the traffic in the same error bucket is considered
as related traffic, and a recurring error generates a set of error buckets. Then,
for each error bucket, we measure support Supp(X) and confidence Conf(X)
in association rule mining to identify highly correlated traffic. Supp(X) of traf-
fic set X is defined as the number of error buckets containing traffic set X,
which reflects how frequently traffic X appears together with the target error e.
Conf(X) is defined as Supp(X) over the frequency of traffic set X appearing
in the traffic, Conf(X) = Supp(X)/Freq(X), where Freq(X) is the frequency
of traffic X in the surrounding traffic of target error e. Therefore, if traffic set
X frequently appears together with the target error e (i.e., high Supp(X)) and
only appears together with target error e (i.e., high Conf(X)), traffic set X is
greatly correlated with error e and is highly likely to be the traffic of recovery
mechanisms for error e. As a result, temporal correlation feature returns True if
Supp(X) is higher than threshold TSupp

9, and Conf(X) is higher than threshold
TConf

10; otherwise, it returns False. For the errors with the frequency less than
2, temporal correlation feature returns False since it is difficult to determine if
they are truly correlated or not. The correlated traffic helps to identify backup

9 We empirically set TSupp = 2, which means that the traffic set X appears together
with target error e at least twice.

10 We empirically set TConf = 0.8, which means the majority of X appear together
with error e. A lower TConf leads to low false negatives with high false positives.
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malicious servers and to understand sophisticated evasion intelligence employed
by malware.
URI Path Correlation (f18) characterizes the recovery behaviors of malware
based on URI pattern correlation among errors and their surrounding success-
ful traffic. We note that malware may generate the same requests to multiple
servers to avoid a single point of failure. In this case, some of malware traffic
may lead to errors while others may be successful. For example, when malware
connects to compromised servers, some of the compromised servers may have
already been cleaned by administrators and lead to 404 errors while others may
redirect clients to malicious servers. However, both error traffic and successful
traffic would have similar content patterns (e.g., pages and parameters), and we
measure the similarity between traffic using the method discussed in Section 4.3.
If traffic set X is similar to target error e, path correlation feature returns True;
otherwise, it returns False.

Building and Using a Classifier: Considering a set of diverse features, the
classes of malicious error clusters and benign error clusters may not be linearly
separable in their feature space, which makes Support Vector Machine (SVM)
be less effective. In addition, tuning the parameters for diverse data is not trivial
and parameter-free classifier would be desirable. Therefore, we leverage a ran-
dom forest classifier (RFC) for classification, which does not require parameter
tuning and is robust to handle outliers. The only two required parameters for
RFC are the number of decision trees (Nt) and the number of features (Nf )
per decision tree, and these parameters are independent of nuances of the data
and have standard selection rules11. If the classifier determines that a cluster is
malicious, then Error-Sensor also outputs its recovery servers based on the
servers extracted through temporal and URI path correlation.

5 Evaluation

We collected 5 days of real-world web proxy logs from a large enterprise network,
called D5days. The logs were gathered by Symantec ProxySG [4] infrastructure
deployed at multiple locations inside the enterprise network. The proxy logs con-
sist of connection information (e.g., source/destination IP addresses, ports, and
timestamps) and HTTP header fields (e.g., Hosts, URLs, User-Agents, referers,
and HTTP response codes). Overall, we collected and analyzed over 170 GB
of raw proxy logs including about 1.5 billion web requests and responses. The
ProxySG has a built-in intrusion detection system (IDS) with blacklists which
flags known threats by matching signatures.

5.1 Effectiveness of Error-Sensor

10-fold Cross Validation. The ground truth data in Dday (shown in Table 1)
consisted of 716 benign error clusters and 42 malicious error clusters. Training a

11 Nt is typically data independent and was set to 100, and the value of Nf was log(total
number of features)+1.



14 Jialong Zhang, Jiyong Jang, Guofei Gu, Marc Ph. Stoecklin, and Xin Hu

classifier on this unbalanced data set may bias the classification model towards
the abundant class (benign errors in our case), and may be tailored for less
important features, i.e., the features that may cause noises rather than contribute
to the accurate classification. We addressed this problem by stratified sampling.
For each client, we randomly selected a benign error cluster and keep all the
malicious error clusters. As a result, our balanced training set Dtrain contained
136 benign error clusters and 42 malicious error clusters. We then trained a
random forest model, and ran 10-fold cross validation on Dtrain. Error-Sensor
achieved an average true positive rate of 98.3% at 2.2% false positive rate in
terms of error cluster classification. The two false positive clusters included
a total of 4 errors, and the single missed false negative cluster consisted of 2
errors. Therefore, the detection rate was 99.79% at 0.005% false positive rate in
terms of individual error classification. We also applied our trained model on
the remaining ground truth data (Dday − Dtrain), including 580 benign error
clusters, and no false positive was reported.

We further performed in-depth investigation of the misclassified cases. We
checked the values in their features and compared the difference between 〈TP, FN〉
and 〈FP, TN〉 to see which features led to misclassification. For the one false
negative cluster, we found that there was no suspicious server (f6=0), no ac-
cidental error (f4=0), and no recovery behaviors (f17=False, f18=False), which
resulted in being classified as a benign cluster. For the two false positive clusters,
we found that both had a high suspicious server ratio (f6=1), no accidental error
(f4=0), and high period time, which looked very similar to malicious errors.

Table 3: Performance with Different Features
Algorithms TP rate FP rate F-score ROC Area

ERP, EGP & EPP 0.983 0.022 0.983 0.994
ERP & EGP 0.944 0.165 0.942 0.972
Only ERP 0.815 0.502 0.79 0.701

To comprehend how different feature combinations would affect the perfor-
mance of the classifier, we tested different feature groups on Dtrain. Starting with
only error recovery pattern (ERP) features from Table 2, we combined other fea-
ture categories one by one (error generation pattern (EGP) features, and error
provenance pattern (EPP) features), and evaluated the performance of the clas-
sifier. As shown in Table 3, we observed that using only ERP features detected
the majority of malicious errors, however led to a large number of false posi-
tives. The combination of ERP features and EGP features significantly improved
the detection rate, and reduced the false positive rate. By combining all feature
groups, the performance of the classifier further improved.

Real-World Application. To further evaluate the effectiveness of Error-
Sensor, we applied it to D5days. Table 4 reports the number of the error clusters
detected by Error-Sensor. Since Day-4 and Day-5 were the weekend, less
amount of traffic was produced and Error-Sensor therefore detected fewer
malicious clusters. We verified reported clusters with the ground truth. If at
least one error was flagged by an IDS, we denoted it as IDS in the table. If at
least one error was labeled as policy violation by the proxy, we denoted it as
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Table 4: Malicious Error Clusters Detected by Error-Sensor
Day-1 Day-2 Day-3 Day-4 Day-5

Error-Sensor 239 216 164 45 26
IDS 32 34 17 10 6

Policy Violation 193 173 138 32 20
VirusTotal 3 0 2 0 0
Expired 1 3 0 2 0

False Positives 10 6 7 1 0

Policy Violation12. We also queried servers to VirusTotal [8] to see if the servers
were blacklisted. If at least one server was labeled by VirusTotal as malicious, we
denoted the cluster as VirusTotal. We checked Whois information of the servers.
If at least the registration of one server was expired, we denoted it as Expired.
We believe an expired server has a higher possibility of being exploited by cyber
criminals since it has a short lifetime. For the remaining errors, we conservatively
labeled them as false positives as no validated malicious evidence was available.

For example, on Day-1, Error-Sensor detected 239 malware-generated er-
ror clusters. Among them, 32 clusters were confirmed by an IDS, and 193 clusters
belonged to the policy violation category. There were 3 clusters flagged by Virus-
Total which were missed by the IDS and the proxy policy-based detection. There
was 1 cluster containing only expired domains, indicating highly likely malicious
servers. Although we had a relatively large number of false positive clusters, the
sizes of the top 2 largest clusters were only 8 and 5 respectively, and all the other
clusters had the size of 2 or 3. There were also several duplicate false positives
recurring every day simply due to the software misconfiguration. For example,
we found a client kept requesting index.rdf to multiple servers for RSS feeds.
Some of the requests were successful while some led to 404 Not Found errors,
which triggered temporal correlation and URI path correlation features.

5.2 Robustness of Error-Sensor

To evaluate the robustness of Error-Sensor, we measured the gain ratio with
10-fold cross validation to quantify the most discriminant features, which has
been proven to be more robust than other alternative metrics, such as the infor-
mation gain or the Gini index. Table 5 presents the top-5 features in a descending
order of their gain ratios. The Avg. Rank is the average rank over 10 fold cross
validation, and the Avg. Merit reflects how important a feature is (the higher,
the more important) averaged over the cross validation. The numbers following
± denote the standard deviations.

Table 5: Error-Sensor Gain Ratios of the Top 5 Features
Features Avg. Rank Avg. Merit Robustness

Suspicious Server Ratio (f6) 1 ± 0 0.848 ± 0.023 High
Accident Error Ratio (f4) 2 ± 0 0.566 ± 0.025 Low
Periodmedian (f9) 3.9 ± 0.94 0.475 ± 0.03 Medium
Periodmax (f10) 4 ± 0.77 0.483 ± 0.04 Medium
Client Reputation (f1) 4.8 ± 0.87 0.435 ± 0.021 High

12 Manual investigation confirmed all of the errors in the cluster were policy violation.
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We also conservatively define the robustness of the features based on how
difficult it is for cyber criminals to evade detection. If an attacker cannot manip-
ulate or control a feature, we define the robustness of the feature as High. For
example, an attacker cannot simply control how many errors are generated by a
client; thus, we label the robustness of Client Reputation feature as High robust-
ness. If an attacker is able to manipulate a feature, with some associated costs,
we define the robustness of the feature as Medium robustness. For example, to
influence Periodmedian feature, an attacker is required to frequently make requests
with a higher risk of being flagged as suspicious due to sudden connection spikes.
In other words, an attacker might be able to evade the feature while increasing
the probability of being detected. For the feature that does not require a high
cost for an attacker, we label them as Low robustness. For example, an attacker
may simply send requests to the valid page of the target server in order to es-
tablish successful connections and avoid accidental errors. We manipulated the
value of Accident Error Ratio (f4), Periodmedian (f9), and Periodmax (f10) to zero
to simulate possible evasion by an attacker on these less robust features. Then,
we applied our previously trained model to the prepared evasive attack, and
achieved 88.09% of the detection rate.

5.3 Case Study

In this section, we demonstrate the benefits of Error-Sensor with real cases
detected by Error-Sensor. Due to the space limit, we only include a few of
malicious servers in the tables.

Table 6: Conficker Botnet
Server Path IDS Category

IDS
149.20.56.32 /search Malicious Outbound Data/Botnets
195.22.26.231 /search Malicious Outbound Data/Botnets
96.43.141.190 /search Malicious Outbound Data/Botnets

Error-Sensor
205.164.24.45 /search Placeholders
149.20.56.33 /search Computers/Internet

216.172.154.35 /search Placeholders

Case #1: Error-Sensor detected more malicious servers missed by an
existing deployed IDS. Most IDSes use blacklists or signatures to detect malicious
traffic, and they may miss recent sophisticated and evasive malware traffic. Ta-
ble 6 shows the Conficker botnet [28] cluster. This cluster included 6 C&C servers
of the Conficker botnet, which labeled by the deployed IDS as Malicious Out-
bound Data/Botnets. However, there were still 3 more malicious servers missed
by the IDS, but detected by Error-Sensor. These severs were labeled as Place-
holders and Computers/Internet categories by the IDS, and were not flagged or
blocked by the IDS. On the contrary, Error-Sensor captured those 3 surrepti-
tious malicious servers through temporal correlation and path correlation, which
demonstrates the capability of Error-Sensor to identify stealthy attacks.

Case #2: Error-Sensor detected the evasive recovery mechanisms em-
ployed by malware. Regardless of the maliciousness, the recovery mechanisms of
malware provide critical information to analyze and detect sophisticated mal-
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Table 7: TDSS Botnet
Server Path IDS Category

IDS
loftgun01.ru /wet.php Malicious Sources
postbox901.ru /wet.php Malicious Sources
teranian111.ru /wet.php Malicious Sources

Error-Sensor
sbolt71.ru /wet.php Spam

www.google.com /efwgh/index.php Search Engines/Portals
www.facebook.com /dwrgh/index.php Social Networking

ware, which is often neglected by existing systems or IDSes. As shown in Table 7,
the IDS detected 3 malicious servers used by the TDSS botnet [29]; however, the
IDS mislabeled one malicious server as Spam category, and failed to block the
malware traffic. Error-Sensor, on the contrary, precisely detected the missed
malicious server through URI path correlation, and further identified 5 benign
servers used in malware evasive recovery routines (e.g., testing network connec-
tivity by connecting to benign popular servers not to raise suspicion) through
temporal correlation. Further study confirmed that those benign servers were
indeed reported to be used by malware [6].

Table 8: Cutwail Botnet
Server Path IDS Category

IDS
diamondcpu.com / Malicious Outbound Data/Botnets
emailmsn.com / Malicious Outbound Data/Botnets

erzt.com / Malicious Outbound Data/Botnets

Error-Sensor
dangerous-minds.com / Newsgroups/Forums

deloitte.com / Financial Services
linuxmail.org / Email

Case #3: Error-Sensor detected more decoy and malicious servers in-
volved in malicious activities, but missed by the IDS. Table 8 shows the Cutwail
botnet [7] cluster, which is notorious for sending spam emails. Based on the mal-
ware analysis report [7], the malware embeds the list of 176 hard-coded decoy
servers, and it sends dummy HTTP requests to the randomly chosen server from
the decoy server list before communicating with actual C&C servers. This is to
minimize the exposure of actual malicious C&C communication traffic; however,
it results in generating numerous errors to decoy servers. The IDS detected 13
of those decoy servers and one C&C server confirmed in [7]. Error-Sensor
detected 168 new servers missed by the IDS by leveraging URI path correlation
and temporal correlation. Since all the dummy HTTP requests to the decoy
servers shared the same request pattern with the requests to C&C servers, it
was not trivial to distinguish C&C communication from decoy communication.

6 Discussion

Limitation: Since Error-Sensor focuses on HTTP errors to detect malware
traffic, it would not report malware that never generates HTTP errors. However,
malware often uses HTTP [27] as either their server communication channels
(e.g., C&C servers, redirectors, and payment servers) or attack channels (e.g.,
scanning vulnerable web pages/vulnerabilities, and attacking other web servers)
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because HTTP is commonly allowed to cross enterprise network perimeters [20].
This gives Error-Sensor a great chance to detect malware traffic when such
HTTP connections generate errors. In addition, malware may try to use HTTPS
to evade detection, and this can be addressed by deploying web proxy servers
that perform SSL-MITM in enterprise networks [25].
Evasion: An attacker who gains the knowledge about Error-Sensor might
try to mislead our system by manipulating features.
Error Provenance Pattern: This group of features characterizes the properties of
error sources, and it is not trivial for an attacker to influence some features. For
example, an attacker may not precisely determine when and how many malware
generates connection errors, especially when malicious/compromised servers get
cleaned. Malware may monitor web traffic and try to manipulate a User-Agent
field; however, it requires periodic monitoring and other key features help detect
malicious errors as a User-Agent alone is not the most significant feature. An
attacker may also easily change a Referer field; however, forged Referers can be
detected by checking if the current page is embedded in the Referer page or
sending the same requests to the Referer page.
Error Generation Pattern: Malware may try to change its communication pat-
terns to yield different error generation patterns. However, it is not trivial for
an attacker to achieve the goal without raising suspicion. For example, sending
requests in a batch may cause connection spikes, which could be captured by
existing detection systems [36]. Furthermore, an attacker may lose their reliable
control if malware sends requests too slowly or randomly [20].
Error Recovery Pattern: Malware may evade temporal correlation by adding a
large delay when facing errors. This can be addressed by tuning Tw threshold
to handle the requests with a larger delay at an extra processing time cost. To
evade URL path correlation, malware requires to target different pages and to
generate different parameters. However, depending on the vulnerabilities and
malicious activities, it is complicated for malware to change its attack patterns.
For example, for scanning attacks on vulnerable pages, the specially crafted URI
names and parameters cannot be changed, otherwise the attack does not work.

Although malware authors may be able to evade an individual feature, it
is challenging to evade all of them. We believe Error-Sensor presents a new
detection perspective, and a practical complement to existing malware traffic
detection approaches in the battle against malware.

7 Related Work

Malicious Traffic Detection: Malicious traffic detection has been widely stud-
ied by identifying malicious domains from different angles. Many approaches de-
tected malicious domains from the DNS point of view. Bilge et al. [14] utilized
various features to evaluate the reputation of a domain. Kopis [11] monitored
DNS traffic at the upper DNS hierarchy to detect malicious domains. Another
line of research focused on network traffic analysis. Some approaches [27,25]
detected malicious domains by extracting signatures from malware traffic. Gu
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et al. [19,18] proposed anomaly-based botnet detection systems that looked for
similar network behaviors across client hosts. Yen et al. [37] detected malware by
aggregating traffic that shared the same external destinations or similar payload,
and involved internal hosts with similar OS. Hu et al. [20] designed methods to
detect regular callback patterns often generated by botnets in enterprise net-
works. Recently, Yen et al. [36] proposed a system to detect suspicious activities
in enterprise networks by mining the features from the logs of a diverse security
products. Zhang et al. [39] detected malicious servers by studying the redirec-
tion between visible servers and invisible servers. Kwon et al. [22] designed a
system to detect lockstep behaviors, which captured a set of downloaders that
were remotely controlled and the domains that they accessed.
Failure-based Detection: Zhu et al. [41] employed a supervised machine
learning method to classify different attacks using a combination of DNS query
failures and network traffic data collected for individual hosts. Yadav et al. [35]
utilized the failures around successful DNS queries and the entropy of the do-
mains belonging to those queries to detect botnet. Jiang et al. [21] characterized
DNS query failures by analyzing DNS failure graphs to identify suspicious and
malicious activities. Recently, Antonakakis et al. [12] extracted statistic features
from DNS failures and built models for DGA botnets, which are then used for
online detection. Thomas et al. [32] analyzed non-existent domain queries at
several premier Top Level Domain (TLD) authoritative name servers to iden-
tify strongly connected cliques of malware related domains. Beside the DNS
failure-based study, Beverly et al. [13] used network errors (e.g., TCP timeouts,
retransmissions, reset) caused by bots for spam mitigation.
Malware Recovery Behavior Analysis: Some approaches [15,16] used the
game theory to model interactions between an attacker and a honeypot operator
to improve the information gained from honeypot. Nadji et al. [24] systematically
designed a set of rules to proactively inject false network information in order
to reveal the backup behaviors of malware. Dynamic binary analysis systems
revealed malware behaviors by forcing execution of all possible branches, as
addressed in [23,34]. Zhang et al. [38] analyzed the underlying triggering relations
of a massive amount of network events, and explored such triggering relations
to detect the stealthy malicious activities.

8 Conclusion

In this paper, we studied malware-generated web traffic from a new perspective,
i.e., HTTP errors. We conducted the first large-scale measurement study on
HTTP errors generated by both benign users/software and malware. We showed
that malware-infected clients typically generated more HTTP errors than benign
clients did, and there existed distinguishing patterns between the errors gener-
ated by malware and the errors caused by benign users/software. Leveraging our
new findings, we designed a new system, Error-Sensor, to detect malware traf-
fic. Our evaluation on real-world data sets demonstrated the effectiveness and
robustness of Error-Sensor in detecting malware-generated traffic and com-
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prehending the malware evasion intelligence. We believe that Error-Sensor
presents a new detection method and greatly complements existing works.
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