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Abstract—In this paper, we consider the problem of “evil twin”
attacks in wireless local area networks (WLANS). An evil twh is
essentially a phishing (rogue) Wi-Fi access point (AP) thalboks

like a legitimate one (with the same SSID name). It is set up

by an adversary, who can eavesdrop on wireless communicatie
of users’ Internet access. Existing evil twin detection sations
are mostly for wireless network administrators to verify whether
a given AP is in an authorized list or not, instead of for a
wireless client to detect whether a given AP is authentic or\al.

Such administrator-side solutions are limited, expensiveand not
available for many scenarios. For example, for traveling uers
who use wireless networks at airports, hotels, or cafes, tlyeneed
to protect themselves from evil twin attacks (instead of refing

on those wireless network providers, which typically may no
provide strong security monitoring/management service)Thus, a
lightweight and effective solution for these users is higlyl desired.
In this work, we propose a novel user-side evil twin detectio
technique that outperforms traditional administrator-si de detec-
tion methods in several aspects. Unlike previous approackeour
technique does not need a known authorized AP/host list, thaiit
is suitable for users to identify and avoid evil twins. Our technique
does not strictly rely on training data of target wireless neworks,

nor depend on the types of wireless networks. We propose to

exploit fundamental communication structures and properies

attack is easy to be successful. The attacker typicallytiposi
(physically) the “evil twin” closer to the victim users than
trusted AP (good twin) so that the evil twin has the strongest
signal within the range of the victim machine. Many users
will be tempted by the higher signal strength if they want
to manually choose an AP. In many cases, the end-users’
computers will automatically choose the evil twin conneati
when there are multiple APs associated with the same SSID.
This is because when the wireless card senses local awilabl
wireless networks, most operating systems will choose tiee o
with the best Received Signal Strength Indication (RSS]) [2
for each unique SSID based on the belief that all APs that have
the same SSID and different frequency channels are orghnize
under the same centralized server. Thus, such an evil twin
attack is also very stealthy. In addition, these attackshard
to trace because they can be launched and shut off suddenly
or randomly, and last only for a short time after the attacker
achieves her goal.

An attacker typically launches evil twin attacks near free
hotspots, such as airports, cafes, hotels and librariasutin

of such evil twin attacks in wireless networks and to design setting up the evil twin, the attack can intercept sensi-

new active, statistical and anomaly detection algorithmsOur
preliminary evaluation in real-world widely deployed 80211b and
802.11g wireless networks shows very promising results. W&an
identify evil twins with a very high detection rate while keeping
a very low false positive rate.

I. INTRODUCTION

tive data such as passwords or credit card information by
shooping at the communication links, or launching man-in-
the-middle attacks. The attacker can also manipulate DNS
servers/communications, control the routing, and launohem
severe phishing or other attacks. In short, evil twin is dosesr
threat to wireless LAN security.

Wireless networks are becoming extremely popular with All existing evil twin detection solutions can be classified

the rapid advance of wireless LAN techniques and the widl®o two categories. The first approach [12], [5], [8], [1[],
deployment of Wi-Fi equipment. Users can easily accef], [9], [1], [3], [13] monitors Radio Frequency (RF) airwes
the Internet wirelessly when they are at home, at work, and/or additional information gathered at router/swisched
even traveling. However, there is an emerging threat that cdhen compares with a known authorized list. The second
severely compromise the security of wireless users — esbproach [33], [35], [34], [24], [32], [14], [31] monitorsdffic
twin attacks. An evil twin in a wireless LAN is essentiallyat wired side (a traffic aggregation point such as gatewag) an
a phishing (rogue) Wi-Fi access point (AP) that looks like determines if a machine uses wired or wireless connections.
legitimate one (with the same SSID name), but actually h&sich information is further compared with an authorizatisin
been set up by an adversary, who can eavesdrop on wirelesdetect if the associated AP is a rogue one. These appr®ache
communications of users’ Internet access. are limited because they all require the knowledge of an
An evil twin attack is easy to launch. First, by using specifiauthorization list of APs and/or users/hosts. We consitesd
readily-available software [4], an attacker can simplyf@pure solutions to be network administrator oriented, as opposed
a laptop to be an access point in a wireless network. Thea, user oriented. That is, they are designed for a wireless
the attacker can figure out the SSID and the radio frequenogtwork administrator to perform authorization and access
that the legitimate AP is using. Finally, the attacker caisiph control policies for wireless APs/users. However, for @i
victim users, by deploying her own access point with theser, it is of particular importance to be able to identity
same SSID as the legitimate AP is utilizing. An evil twirevil twins. For example, traveling users who use wireless



networks at airports, hotels, or cafes need to protect tekes ETsniffer in several real-world wireless networks, includ
from evil twin attacks (instead of relying on those wireless ing both 802.11b and 802.11g. Our evaluation results
network providers, which typically may not provide strong  show that ETSniffer can detect an evil twin quickly and
security monitoring/management service). Thus, a ligigite with high accuracy (a high detection rate and a low false
and effective solution for these client users is highly haki positive rate).
but is currently missing.
In this paper, we propose a novel user-side evil twin detec-
tion technique which has the following advantages comparedexisting rogue AP detection solutions can be classified
to a traditional administrator-side solution: (i) Our te@fue into two categories. The first approach monitors RF airwaves
does not require a known authorized AP/user list; (i) An enahd/or additional information gathered at routers/svatchnd
user can be warned of an evil twin immediately to prevetihen compares with a known authorized list. For example,
being exposed to the attacker, even when the attack may lasDefense [12], similar to several other studies [5], [8],
for a short time and a typical administrator-side solutiosym [10], [7], [6], [9], [1], [3], [13], scans RF from the Intrahne
not help that much; (iii) From the user side, the paramete#$s to locate suspicious ones, and then compares specific
in a detection system can be customized according to lotahgerprints” of the RF with an authorized list to verify.
environment which may lead to a more accurate result; (i®pecifically, for the scanning part, some studies [9], [B], [
The user-side detection is resource-saving. The systerbearrely on sensors instead of sniffers to scan the RF, and some
activated only once when the users are trying to connecttudies such as [13] propose a method to turn existing deskto
new wireless AP. In addition, there is no need to modify theomputers into wireless sniffers to improve the efficierray
network architecture or any client- or server-side applices. verification, these studies verify MAC addresses, SSID/@nd
Our technique exploits the fundamental communicatidocation information of the AP by using an authorized list.
structure and properties of an evil twin attack: an evil twiklowever, these studies still have the risk of falsely claigna
typically still requires the good twin for Internet acce$hat normal neighbor AP as a rogue AP with a high probability. To
is, an evil twin sits in the middle of the victim host and theolve this problem, they need to further verify whether such
good twin to relay communications. Thus, the wireless hopsrogue AP is indeed in the internal network. For example,
for a user to access Internet are actually increased (froen ddeyah’s work [15] uses a verifier to send packets to the
to two). In contrast, although legitimate wireless provide wireless side, if such packets are received by the internal
may use wireless bridges to extend the coverage, they sknsor, the associated AP is internal and thus an Evil Twin.
not change the single hop physical layer wireless channelThe second approach of rogue AP detection, proposed
to users. Based on this observation, we design new, actiire[33], [35], [34], [24], [32], [14], [31], detects evil twis by
statistical and anomaly detection algorithms to detect ewifferentiating whether clients come from wireless netegoor
twins by differentiating the wireless hops (one or two hopsyired networks, relying on the differences in diverse nekwo
In addition, we consider the effect of throughput variangerotocols. If a client comes from a wireless network while it
due to wireless network saturation and different RSSI rangés not authorized to do so (comparing with an authorizedg, list
We propose two algorithms: one is named Trained Meahe AP attached to this host is considered as a rogue AP. Wei's
Matching (TMM), requiring training knowledge of one-hopwork [34] is one of the earliest studies. [32], [24], [14] use
and two-hop wireless channels; and the other one is nanwmine statistical features of the traffic time ([14] reliestba
Hop Differentiating Technique (HDT), which does not relyentropy, [32] relies on the median and the entropy, and [24]
on any training information or knowledge. We apply theseelies on the mean) to make decisions. [33], [19] detect eogu
algorithms in the forms of sequential probability ratiottesAP by analyzing the TCP-ACK pairs in their mathematical
(SPRT) [30]. model. [31] treats different ranges of a TCP connection
In short, our paper makes the following contributions:  separately. [22] relies on the RTT sent to hosts to dististyui
« We propose the first user-side evil twin detection solutiolyLAN, and it takes some traffic factors into consideration
to the best of our knowledge. Our technique does not rdly increase the precision. [17], [28] rely on the frequené ra
on “fingerprint” checking of suspect devices nor requiradaptation in the wireless network to distinguish it wittrewd
a known authorized AP/host list. Thus, this solution isetworks. However, this line of work should solve the proble
particularly attractive to traveling users. of falsely claiming an authorized wireless user who commect
« We propose to exploit the intrinsic communication strudeo Intranet with wireless networks. Thus, they may still chee
ture and property of evil twin attacks. Furthermore, weo further verify a wireless device is an authentic AP or not
propose two statistical anomaly detection algorithms favith some “fingerprint” from authorized lists. [20], [26] er
evil twin detection, TMM and HDT. In particular, our two hybrid studies that provide the fingerprint comparisions
HDT improves TMM by removing the training require-the integrated systems.
ment. HDT is resistant to the environment change suchOur work, ETSniffer, is different from all previous
as network saturation and RSSI fluctuation. (administrator-oriented) work, since we do not require the
« We implement our techniques in a prototype system, EKnowledge of an authorized AP/host list. This is the firstruse
Sniffer (Evil Twin sniffer). We have extensively evaluateaide evil twin detection scheme, to the best of our knowledge

II. RELATED WORK
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IIl. PROBLEM STATEMENT client receivesP; and P,, respectively. Then the IAT can be
computed ad'p, — Tp, .
For the second question, in a real wireless network envi-
ronment, two main factors will affect IAT: Received Signal
@ Strength Indication (RSSI) [2] and wireless network satara
U In wireless networks, RSSI fluctuates due to the multi-path
and fading effects of the radio signal propagation. Sincetmo
wireless network cards have a transmission rate adaptation
mechanism to adjust to different RSSI levels, the fluctumtio
(a) Normal AP scenario (b) Evil twins AP scenario of RSSI directly influences the practical available wirsles
Fig. 1: lllustration of the target problem in this paper bandwidth, causing the f!uctuation o.f IAT. Iq addition, wire
t " less network saturation is another influencing factor. When
] o ) multiple devices synchronously attempt to send packetiseo t
_ The goal of our work is to detect evil twin attacks in reaame AP, the medium access collisions emerge and spur the
time under real wireless network environments, i.e., we®m phenomenon of network saturation. This phenomenon stechas
detect whether there sits an evil twin AP between a normal Aﬁ’:ally increases the time for transmitting packets froniient
and the user. Considering the normal AP scenario, depiotedd the AP. Specifically, according to CSMA/CD mechanism,
Figure 1(a), a user communicates with a remote server througe collisions set the exponential back-off time and actéam
a normal AP using 802.11 WLAN; on the other hand, in thgn additional distributed inter-frame spacing (DIFS) [12P]
evil twin AP scenario, depicted in Figure 1(b), the victimime and a short inter-frame spacing (SIFS) [11], [29] time.
client communicates with a remote server through an eyeyious work such as [18], [16] shows that the throughput
twin AP and a normal AP. In both two scenarios, the normalecreases with the increased number of the wireless glients
AP connects with the remote server through wired (Ethern@é)ading to larger IAT.
networks. Obviously, compared with the normal AP scenario, For the last question, we develop two new algorithms:
the evil twin AP scenario has one more wireless hop. Thigained Mean Matching (TMM) and Hop Differentiating Tech-
observation gives us the intuition to detect evil twin &8&c nigue (HDT). Both algorithms utilize wireless IAT network
by differentiating one-hop and two-hop wireless channels. statistic, consider the influencing factors of RSSI and -satu
To achieve the goal, we must answer the following thregtion, and employ Sequential Probability Ratio Test (SPRT
questions: (1) What statistics can be used to effectively diechnique to make the final detection.
tinguish one-hop and two-hop wireless channels on the user
side? (2) Are there any dynamic factors in a real network IV. SERVERIAT ANALYSIS
environment that can affect such statistics? (3) How togiesiA. Theoretic Analysis of Server IAT
robust and efficient detection algorithms with the consitien In this section, we show the theoretic analysis of Server IAT
of these influencing factors? Next, we provide a high-lengAT computed by the data packets sent from the server) and
description about our solutions to these questions and thgpher demonstrate that Server IAT can be used to difféatnt
explain details in Section IV and V. one-hop wireless channels and two-hop wireless channals, a
For the first question, we choose Inter-packet Arrival Timg, ;s it can be used to detect evil twin attacks.
(IAT) as the detection statistic. IAT is a time interval bem  Fjrst e list used variables in our detection model and
two consecutive data packets sent from the same device (fhsir settings (based on IEEE 802.11 standard [19]) in Table
remote server or the connected AP) to the client. In order &nce we consider both influencing factors (RSSI and network
compute IAT more effectively and accurately, we adopt & neytyration), to better describe our model, we define theiaipec
ACK-packet sending policy — an immediate-ACK policy, i.e.yjreless network environment with a perfect signal strangt
ETSniffer always immediately acknowledges every data ackrss| = 100%) and no wireless collisions as “an ideal network
received and the server sends next data packet only Wh&{ironment'. LetAAg and KAS be one Server IAT under
receiving an acknowledge for the previous drleis different e “real network environment” and the “ideal network envi-
from traditional delayed-ACK policy in wireless networksionment”, respectivelyBy and By denote the bandwidth of
in which a receiver sends an ACK packet after receivingireless network and Ethernet, respectively. patenote the
two continuous packets (or after the delayed-ACK timer isandwidth occupancy of Ethernét, is the initial contention
trigge_red) [21]: [23]. Under the_immediate-ACK policy, ifwindow size.Tp;rs is one DIFS time andls;rs iS one
ETSniffer receives two consecutive data packBfsand P»,  S|FS time. Tz denotes the back-off time which follows a
and sends corresponding ACK packets and As. Then, yniform distribution in terms of the contention window size
on the client side the packet sequence is in an order BLCK(MAC) and L ok (rcp) are the size of an ACK-packet
PLA P A,. If we let Tp, and Tp, be the time when the jn the MAC layer and in the TCP layer, respectivelyp
1 . _ . _ denotes the size of one data packet that the client receives
Note that this is not a global policy. It only affects the sfiecprobing o . . .
sessions initialized by ETSniffer for detection. We discasr implementation and LP is the average packet size on the Internet, which is
to enforce such policy in Section VI-A. usually between 300 and 400 bytes [27].



TABLE I: Variables and settings in our model Thus, from Figure 2, we can get that

Protocol 802.11b 802.11g Ade - ” )
Bw 1IMBps | 54MBps 5=Tpy = PlL ) @
ﬁ/E 1003')\ng8 10011\238ps — Torps + % S Tpips + Tom + %
0
Tpirs 50ps 50us +Tvmax +Tprirs + Ter + ;_‘1:/ [©)
Tsirs 10us T0us -
Lackmac) | 278Bytes | 278Bytes = 2T€1Fs + TSIFS++L2TBF s
Licrk(rcp) | 338Bytes | 338Bytes 4 JACK(MAC) . ACK(TCP) T 2P | o ax @
Lp 402Bytes | 402Bytes w
L; 375Bytes | 375Bytes Thus,
E(AAS)one—hop = 2TDIFS + Tsirs + 2E(TBF)
. Lackwmac) t Lackrcep) +Lp FETayax)  ©
Then, based on IEEE 802.11 standard and our settings, we Bw
can show that the mean dfAg is theoretically differentiable n

between the normal AP scenario and the evil twin scenarioTheorem 2. If we denOteE(AAS)twofhop as the mean of

Server IATAAg in a two-hop wireless channel, then in the
evil twin AP scenario, we can get

A4 ~ -
e SIFS DIFS | BF MAX SIFS DIFS | BF MAX E(AAS)two—hop = 4TDIFS + TsiFs + 4E(TBF)
fen
: : : : . Lack(mac) t2Lack(Trep) +2Lp + BT ) ®
Wireless Pi  ACK(MAC) Ar  ACK(MAC) P, ACK(MAC) A ACK(MAC) B MAX
- DIFS [ BF SIFS DIFS | BE

Tw

Lackwac) Lackacep)tlp
By . B

: R : . Where, Tpr o x = max (TSIFS + +Twait)
Wired |P, : A Py . Ay Pyl E

: and B(Ty,q4t) = 2—(1‘0,—/)) * ﬁ

Proof: (See our extended version [25] due to space
limitation of this paper) [ ]
From theorem 1 and 2, if we l6f(Ag) be the difference
of E(AAS)one—hop and E(AAs)two—nop, then
Theorem 1.~If wg denoteE(AAg)one_hop as the meap of E(AS) _ E(AAS)WO%OP _ E(AAS)OM%OP
Server IATAAg in a one-hop wireless channel, then in the

Server

Fig. 2: Server IAT illustration in the normal AP scenario éan
hop wireless channel) in an ideal network environment.

normal AP scenario, we can get — Tprrs + 2E(Thr) + Lsckrepy +Lp )
Bw
B(AAS)onc—hop = 2TDIFS + Ts1Fs + 2B(Tpp) Under the real network environment, either the decrease

. Lackmac) t Lackarep) tLp

+e(Tyax) @ Of RSSI or the increment of wireless collisions can increase
Server IAT, causing the distribution of Server IAT not scestg

- o (T . Lackwiac) Lackaormytie ) as that under the ideal network environment. However, the
s IMAX SIFS By, ) Bg wait

., Lp evil twin scenario has one more wireless hop leading to a
21=e) "~ FE larger probability of increasing Server IAT than that of the

g Prr100f: rI]n thle normal AP scenario, considecrjing theo%rocmormal AP scenario. Therefore, if we IB{AAs)one—nop and
ure that the client receives two consecutive data padkets ; _ }
and P, from the remote server and it sends ACK packéts E(AA.S)WO*’W” as two means of\ Ay in one-hop _and two
and A, correspondingly, we show the analysis in Figure Hop wireless channels under the real network environmemt, w
When A; arrives at the AP, the AP will wait for on€s; an get
t|m(re1 anld theré_send_ ar;] ACE:}E—packet in IEhe I;/IAC la e}_gba]g?(
to the client. Since in the Ethernet, packets from othefitraf B(A¢) = E(AAS)iwo-nos — E(AAS) one—non ~ B(A
may occupy the wired link, the AP will have to wait for some (As) (Ads)two—hop (Ads) hop (As)
extra time tfo finish transmittingl; . We denote this extra time — 9T 2E(T Lickrep) +Lp 8
asT,qi;. Commonly, the ﬁackets to the server will form an =2Tprrs +2E(Tr) + B (8)
M/D/1 queue. Based on the M/D/1 queue theory, we can get ] ] .

We can see that the mean &Ag in the evil twin AP

BTy = — 2 LB scenario is larger than that in the normal AP scenario, thus
e e this observation can be used to detect evil twin attacks.
After receiving A, the server will send?, to the AP. If the g practical Validation of Server IAT

AP has not finished sending the ACK packet in the MAC layer ) ) _ )
to the client, the AP could not begin to sefd to the client. In this section we show our experimental results to validate

Thus, afterA; arrives at the AP from the client, the AP will ; ; ; ; ;
have to usgﬂjlmx time to begin to prepare sendit to the whether Server IAT is an indeed suitable and effectivestati

Bw

and B(Tyait) =

client, where to differentiate one-hop and two-hop wireless channels.
To minimize data bias, for both one-hop and two-hop
Tarax = maz <TSIFS + fackwac) Lack(rop) P +Tw,m> wireless situations, we build our datasets under real mtwo
Bw Bp

environments at three different times. We compute Server 1A
in one-hop and two-hop wireless channels by collecting the



packets under the conditions of RSSI = 100 and RSSIIAT in the two-hop (evil twin AP) scenario, denoted as
50. The result is shown in Figure 3. We can see that the pap. We compute the average @b yap and us pap,
distribution of Server IAT keeps stable when RSSI is 100%s Ty, set as the boundary to differ one-hop and two-hop
The two means of IAT in one-hop and two-hop wirelesServer IAT. In addition, in order to use SPRT technique, we
channels are about 1,300ms and 3,300ms, respectively. Bistain two probabilities of a Server IAT in these two sceosuri
gap of these two means is obvious. Although when the sigredceeding the trained threshold, denotedFasand P, by
strength decreases (e.g., RSSI at 50%), the distribution aafmputing the percentage of collected Server IATs dewgatin
Server IAT is not so stable as that when RSSI is 100, thiom Ty in the normal and evil twin AP scenario, respectively.

gap can still be legibly observed. In the detection phase, given a sequence of Server IAT
observations, represented by} ;, we use a binary random
o 0 variablev; to denote whether th&h observed Server IAT be-
-e- one—hop; RSSI=100%(1) -o- one-hop; RSSI=50%(1) A | . .
o} oo RSI-100%4(9) 009 —oermssssona || Jongs to evil twin AP scenario or not. Specifically,if > Ty,
% ~=—two-hops; =100 —+—two-hops; RSSI=50%(1) L H : H H H . .
sorg i T st || o0s f ”&ZiRiEifSiiIZZEZZZ} then i =1, mdu_:atmg an estlmgted evil twin Ap scenario;
3 4 two-hops RSSO || 3 \ : otherwise;y; = 0, indicating an estimated normal AP scenario.
2 o1 i £ 0.04 ) n H
« i ) « Thus, we get a sequence pf}; . Let H; be the hypothesis
oost | J b 0.02 that it belongs to an evil twin AP scenario atf}, be the
i el Ao o : hypothesis that it belongs to a normal AP scenario. We denote
0 2000 4000 6000 8000 2000 4000 6000 8000 10000 .
Server IAT (ms) Server IAT (ms) P(’Yz — 1|H1) — 91 and P(’Yz — 1|H0) — 90. ACCOfdlng to
(a) RSSI=100% (b) RSSI=50% the training data, we can sét = P, and§; = P,. We

can compute the log-likelihood ratit,, with the assumption
that the Server IAT observations are i.i.d. (independemt an
identically-distributed) as the following formula:

Pr(yi...vn|H1) T [1ie, Pr(yilHi)
PT(’}/l ’7n|H0) H?:l PT‘(’%‘|H0)
Pr(vi|H1)

by 9
Pr(vi|Ho) ©)

Fig. 3: IAT distribution in one- and two-hop wireless chalsne

V. DETECTIONALGORITHM

Based on our theoretical analysis and practical validation A, =In
in the previous section, we present two algorithms to detect
evil twin attacks: Trained Mean Matching (TMM) and Hop
Differentiating Technique (HDT). Both algorithms utiliZe-
guential Probability Ratio Test (SPRT) technique [30]. TMM )
algorithm requires knowing the distribution of Server 1A a According to SPRT [30], we perform a threshold random
a priori (trained) knowledge. However, HDT algorithm doeWalk to calculate th(_e Iog-llkellho_od ratio. The walk stafrism
not need such a requirement. Instead, it is directly based &#©- If7: = 1, then it goes up with a length af(6:1) —In(6o);
theoretical analysis. Thus, it is more suitable for scesarill 7 = 0, then it goes down with a length @f(1—61)—In(1—
where the distribution of IAT is either unknown, instable, o?0)- We define every random walk as one decision round. Let

unable to be (perfectly) trained. us denoten and 8 as the user-chosen false positive rate and
_ _ _ false negative rate, respectively. If the random walk reat¢he
A. Trained Mean Matching Algorithm upper boundary3 = In(1 — 3) — Ina, we report evil twin AP

1) TMM Algorithm Description: We have demonstratedscenario; if it reaches the lower boundaty= In 5 —In(1—-a),
that the distributions of Server IAT in one-hop and twowe report normal AP scenario; otherwise, it is pending and we
hop wireless channels differ significantly. According tasth watch for the next decision round.
observation, in this section, we develop a detection algori ~ 2) Discussions of TMM AlgorithmBased on the training
named Trained Mean Matching (TMM). Specifically, given &chnique, TMM algorithm affords an effective approach to
sequence of observed Server IATSs, if the mean of these Sergietect evil twin attacks. However, in some cases, it is toefi
IATs has a higher likelihood of matching the trained mean @onsuming or impractical for a normal user to acquire a prior
two-hop wireless channels, we conclude that the client udgswledge, particularly the training data for two-hop véss
two wireless network hops to communicate with the remoghannels. In addition, the trained knowledge in one wiseles
server indicating a likely evil twin attack, and vice versa. networkis hardly directly applicable to another networke$e

In the training phase, we adopt a quadratic-mean tedhwitations motivate us to design a new effective and pcatti
nique to train a detection threshold. First, we colledton-training-based algorithm to detect evil twin attackdep
Server IAT in both one-hop and two-hop wireless charifferentiating Technique (HDT).
nels. Then, we compute the mean and the standard de- ) o )
viation of Server IAT collected in the one-hop (normaP- Hop Differentiating Technique
AP) scenario, denoted gs yap and o, nyap, respectively. In HDT algorithm, instead of using the absolute value of
Then, we filter out the Server IATs beyond the ranglT, we adopt another metric — the ratio of a Server IAT to
[v1,NaP — 01 NAP, 1.NAP + 01, vap]|. Next, we derive the an AP IAT. We define it as SAIR (Server-to-AP IAT Ratio).
second mean using the residual Server IAT, denoted ldext, we theoretically prove that it can be used to robustly
t2, N ap. Similarly, we can obtain the second mean of Serveletect evil twin attacks.



1) Theoretic Analysis of SAIRBefore illustrating our the- Theorem 3. If we denoteE(aone—nhop) aNd E(Gone—hop) aS
oretical analysis of SAIR, we first make three reasonabilee mean ofx and & in one-hop wireless channels, then we
assumptions: can get: for WLAN 802.111 (one—hop) < E(Gone—hop) =

« The wireless network environment does not change ek00; for WLAN 802.119,E(cone—hop) < E(Gone—hop) =

tremely dramatically, which implies a relatively steady-11-

RSSI and collision number at least during the period  prgof: (See our extended version [25]) -
when we collect one pair of Server IAT and AP IAT
to compute a SAIR. Theorem 4. If we denoteE(awo—hop) aNd E(&two—hop) @S

« In the evil twin AP scenario, the RSSI and the situation dh€ mean ofx and & in two-hop wireless cha[mels, then we
network saturation of the link between the victim clienf@n get: for WLAN 802.110(avwo—hop) 2 E(Gtwo—hop) =
and the evil twin AP are not worse than that between tHe74; for WLAN 802.119,E(ctwo—hop) > E(Gtwo—hop) =

victim and the normal AP. 1.94.
« The Ethernet is not under the situation of severe network  proof: (See our extended version [25]) -
congestion. From Theorem 3 and 4, we can see that the theoretical mean

For the first assumption, since the time cost during colleatf « in evil twin AP scenario is significantly larger than that
ing one pair of Server IAT and AP IAT is in seconds, it ign the normal AP scenario, thus it can be used to detect evil
reasonable to assume the wireless network environment dbweis attacks.
not change dramatically during such a short time intervat. F  2) HDT Algorithm Description: In the previous section,
the second one, since the attacker wants to successfullg aliwve have proved that SAIRs in one-hop and two-hop wireless
victim clients to connect with the evil twin AP, it is morechannels differ significantly. Even under the real network
likely for the attacker to provide a better RSSI and a smallenvironment, we can still compute a theoretical SAIR bound t
wireless collision probability. For the last one, if thesed distinguish these two scenarios. According to this obsema
severe network congestion in the Ethernet, few people wouid this section, we develop a non-training-based detection
choose the normal AP to surf the Internet. algorithm named Hop Differentiating Technique (HDT).

Next, we introduce some variables to better describe ourDifferent from the TMM algorithm, in HDT algorithm, we
model. LetAA,4 be the AP IAT anda be the SAIR, under use a theoretical value of threshold rather than a trained i
the real network environment. LétA4 4 be the AP IAT and  old to detect evil twin attacks. In the theoretical compiotat
be the SAIR under the ideal network environment. Then, wihase, we theoretically compute a threshejdas the SAIR

can get boundary to differentiate one-hop SAIR and two-hop SAIR.
- Besides, in order to use SPRT technique, we also compute the

_ B4 and & — éAS (10) upper bound for the probability of the SAIR exceeding the

AAy AAy thresholday in the normal AP scenario, and the lower bound

Then, based on IEEE 802.11 standard and our settings, (RE the probability of the SAIR exceeding the threshalgl
next prove that the mean of is theoretically differentiable N the evil twin AP scenario. The specific explanations about

between the normal AP scenario and the evil twin AP scenarfl§® computation of these three parameters will be discussed

and thus can be used to effectively detect the evil twin ketac SNOtY- _ . .
Similar to Theorem 1, we can get the mean of AP IAT as In the detection phase, similar to the TMM algorithm, we
illustrated in Figure 4. also use SPRT technique to make the final decision. The main

difference from TMM algorithm is that HDT algorithm uses

E(AAD) one—nop = 2Tn1rs + 2Ts1rs + 2E(Tsp) the observed SAIR rather than IAT in one decision round to
perform the threshold random walk.

(12) 3) Threshold Setting For HDT Algorithmin this section,
we develop a discrete numerical algorithm to theoretically
compute the SAIR thresholdy for HDT algorithm, with

a goal of minimizing the probability of making a wrong
- decision. According to Theorem 3 and 4, we can know that

b AAA , the thresholdvy should be between 1 and 2. So, if we denote

Client SIS [DISTEE] [SPS] - [ors [r) > Pl = P(aonefhop Z Oéa) and P2 = P(O‘twofhop Z Oég), the

Wireless | P | ACK(MAC) A ACKMAC) Py|  ACKMAC) As problem can be transformed to compuéay),

AP / x / / \, , S.t.,
lSfes|  LDIFS[BE ] Gy = arg minlSaeSQ(Pl +1-— PQ) (12)

Fig. 4. AP IAT illustration in an ideal network environment.|, the process of our computation, we tet increase from 1

to 2 in fine-grained steps. In every step, we increageby
We have the following two theorems that give us theoretiz.01 and comput®; +1— P,. Onceqy reaches 2, we can find
evidence on the effectiveness of this detection statistic.  the value ofay leading to the minimaP; +1 — P». According

2Lackmac) + Lackrep) + Lp

+ B

A 4




to 802.11 standard, we can derive the following resultsajtiet We achieve the immediate-ACK policy by setting the TCP
regarding to this computation can be found in our extenddtximum Segment Size (MSS) in the TCP header equal to
version [25]): the TCP Window Size. In this way, a TCP server should wait
. If we consider the packets without any collisions, thenfo receive the ACK packet for the previous data packet before
- for Protocol 802.11hy, = 1.31, P, < 21.8%, Py > sending out the next data packet. Note, since our immediate-

76.9%: ACK policy is only applicable to the specific probing connec-
- for pr(')tocm 802.11gpp = 1.48, P, < 27.3%, P, > tions initialized and controlled by ETSniffer, this polioyill
71.5%: B ~notdevour network bandwidth. In addition, we use a fixed and

a§gwa_1||_number for MSS settin_g in every conne_ctior_1 to guamante
sufficient data packets received to detect evil twin attaBlys
initiating TCP connection with customized TCP option and
setting to make the server respond in the way we desire (e.g.,

« If we consider the packets whose collision numbers
under three, then,

- for Protocol 802.11bgy = 1.34, P; < 21.2%, P

Y

74.9%; sending packets with small size), ETSniffer can collectgyio
. f701r 2P(7r(.)tocol 802.11gn9 = 1.48, P1 < 27.3%, P2 > ackets needed for detection even from a small-sized wes pag
. 0,

(which may only result in one or two packets in the normal
C. Improvement by Data Preprocessing setting).

In this section, we describe two data preprocessing tech-
nigues to improve the results: data filtering and data smooth
ing. For the first technique, we filter noisy data (according
to the theoretical Server IAT) with large number of network
collisions. For the second technique, we use the mean of
multiple collected input data, rather than only one co#elct
data, to smooth the input. AP

user
Ar.Az.Az.XoI24

. user
A1.Az2.A3.X3/24

tamulink
® (normal AP)
A1.A2.A3.X1/24

1.C2.0.2/24
1) Data Filtering: In order to filter noisy data, we only @c e ETHERNET
consider the packets whose collision number is at most three e e
(According to [29], when the number of users is under 20,
the probability that a packet has at most 3 collisions is over g network cloud

85%). In this way, we can both filter the noisy data and keep

sufficient data to implement the detection. Thus, accortling

IEEE 802.11 standard and our filter policy, we filter out thEig. 5: Experimental environment setting for the evaluatid
packets whose AP IATs exceeding 21,p000r Server IAT the normal AP scenario.

exceeding 39,8Q0s.

2) Data Smoothing:To further improve the result, we also We set up our ETSniffer in the campus network of the
use the mean of multiple input data rather than only one inpl@xas A&M University. To achieve user-side detection, we
data in one decision round. Specifically, we use the meaniBstall ETSniffer in a laptop with a wireless network card.
multiple Server IATs or the mean of multiple SAIRs instead he ETSniffer can capture the packets, along with the ctirren
of only one Server IAT or one SAIR in one decision round t§mestamp, to compute IAT and SAIR. To simulate a normal
perform the threshold random walk. We name TMM algorithfAP scenario, we use a laptop installed with ETSniffer as a
and HDT algorithm using multiple Server IATs and multtiser/detection client to communicate with a campus server

SAIRs as multi-TMM algorithm and multi-HDT algorithm, through TAMULIink (an official Texas A&M’s campus wire-
respectively. less network Access Point). To simulate an evil twin AP

scenario, we deploy another laptop as a wireless accestk poin
VI. EVALUATION to act as an evil twin AP near to the detection client. The evil
We evaluate the results and the performance of our evil twiwin AP has the same SSID as the TAMULInk, yielding a good
attack detection algorithms through implementing a de&act RSSI to the detection client between 80% and 100%. And
prototype system named ETSniffer (Evil Twin Sniffer). Insth the evil twin AP connects to the server through the campus
section, we describe our evaluation methodology, inclgdiMTAMULInk AP. Thus, in this scenario, the detection client
the experimental setup, datasets, effectiveness, efficieand communicates with the server through a two-hop wireless
cross-validation. channel. The actual experimental environment setting @n b

A. Implementation and Experimental Setup seen in Figure 5 and 6.

We have implemented ETShniffer using Windows raw sockds; Datasets
since we need packet level control (including TCP parame-We have collected data in real network environments, and
ters). As mentioned earlier, in order to guarantee the effcy  built our datasets at different time and with different RSSI
and accuracy of the computation of IAT, we adopt a nelgvels. To better evaluate our results, in our experimemts,
acknowledgment mechanism, named immediate-ACK poliayenote different RSSI levels into 6 ranges: A, B+, B-, C+,



*.ﬂm".'i"k<“>““"’°ke': e TABLE V: False positive rate for HDT and TMM

A ‘.A::f.;(,/u B+ B- C+ C- D
802.11g(HDT) 2.19% 1.41% | 2.06% | 1.93% | 2.48% | 6.52%
user 802.11b(HDT) | 8.39% | 8.76% | 5.39% | 6.96% | 5.27% | 5.15%
TErenifr "7 - o “*"""’"“’“ 802.11g(TMM) | 1.08% | 1.76% | 1.97% | 1.48% | 1.75% | 1.73%
£C20. omal AP) 802.11b(TMM) | 0.78% | 1% | 1.07% | 1.27% | 6.65% | 7.01%
Ar.Az.Az X124
AP
C1.C,.0.2/24
(O ETHERNET ) ) A
e round. But once the number of input data attains to some
1.C2.0.3/24 . . .
bound (in our experiment, the bound is 70), the performance
network cloud become relatively steady.
Fig. 6: Experimental environment setting for the evaluatid i ﬁ: _V,ﬂ__/
the evil twin AP scenario. 098] S
0.96-/ 0—4’ e
ooaf o enee e
C-, and D, as illustrated in Table Il. As described in Section 2ol o
g —e—RSSI Range: A
a 09 —&— RSSI range: B+
TABLE II RSSI ranges and correspondm levels osal - o- RSS! Range: B-
Range B+ B- C- E RSSI Range: C+
Upper 100% 80% | 70% 60% 50% 40% 20% 0.86p o RSS! range: C-
Lower | 80% | 70% | 60% | 50% | 40% | 20% | 0% 0.8a} RSS! range: D
0.82 L v L L v L L L

10 20 30 40 50 60 70 80 90 100
Number of input data in one Decision Round

V-C1, we filter the packets whose collision humbers exceed

three. The percentages of filtered packets are shown in Table
m Fig. 7: Detection rate for multi-HDT using different number

of input data in one decision round.

TABLE Il The ercenta e of flltered ackets . . . :
Tech T Protocol p g p The results, obtained by setting the number of input data in

802.11g 0.80% o.se% 3.91% 3.72% 4.69% 7.09% one decision round as 50 and 100, are shown in Table VI, VII,

HDT
ggz-ﬁg égggf é-gggf 22;2;“' géégf ggéjf’ 160-032?;@ VIIl. From these tables, we can see that for both algorithms,
. . ( . (] . (] B (] . (] B (] . .
TMM T T 099% | 104% | 333% | 482% | 7.42% | 8.29% the results computed by using 100 input data are better than

that using 50 input data. Especially, when we use 100 input
data in one decision round, we can get a nearly perfect result

C. Effectiveness

We evaluate the effectiveness of our algorithms based ®ABLE VI: Detection rate for multi-TMM and multi-HDT,
different RSSI ranges and two IEEE WLAN protocols When the number of input data in one decision round is 50
A B+ B- C+ C- D
802.11b and _802.11g. In the normal AP scenario, the_R\_ Mgoz_llwmrmm 59.65% | 100% | 100% | 95.95% | 100% | 150%
refers to the link between the user and the normal AP; in tN@62 TTamutww | 100% | 100% | 100% | 100% | 100% | 100%
evil twin AP scenario, the RSSI refers to the link betwegn802.11gnt-vom | 100% | 99.11% | 98.73% | 99.88% | 95.83% | 88%
the user and the evil twin AP. The results are shown pf%21tmiron | 100% [ 100% | 100% | 100% | 100% | 100%
Table IV and V, which clearly verify the effectiveness of
our algorithms. In addition, we can also find that the resultsABLE VII: Fal . ¢ ti-TMM and i
obtained in 802.11g are better than those obtained in 862. 11 alse positive rate for multi- and muit-

This is caused by the low bandwidth and larger initial WindO\,\_I]DT when the number of input data in one decision round is

size in 802.11b protocol, leading to a larger variance of IA y BT B- o c 5)
distribution. 802.11gnuitvm) | 0% | 0.77% | 0% 0% 0% 0%
802.11kmulti-TMM) 0% | 0.03% | 0.02% | 0.11% | 0.73% 0.1%

802.11gnulti-HDT) 0% | 0.96% | 0.16% | 0.13% | 0.55% | 0.96%

TABL “{A'D te%tlon rate for HDT dCT_'VM 5 802.11hmution | 0% | 1.07% | 1.16% | 1.02% | 1.36% | 1.41%

802.11g(HDT) | 99.08% | 98.72% 93.53% 94.31% 87.29% | 81.39%
802 LIB(HDT) | 99.92% | 99.99% | 99.96% | 99.95% | 96.05% | 9464% | 1o pecic
802.11g(TMM) | 99.39% | 99.97% | 99.49% | 99.5% | 98.32% | 94.36% - lime Efnciency

802.116(TMM) | 99.81% | 9543% | 94.81% | 96.09% | 9194% | 8571% |  |n this section, we evaluate the time efficiency of our
algorithms. We use the average number of decision rounds
As described in Section V-C2, we use multi-TMM ando output a correct decision as the evaluation metric. We als
multi-HDT to improve the results. The results of these twase cumulative probability to express the process of the log
algorithms are shown in Figure 7. We can find that thiikelihood ratio to reach the bounds. The result is shown in
detection rate increases with more input data in one decisiBigure 8.




TABLE VIII: False positive rate for multi-TMM and multi- Training RSS! Range: A Training RSS! range: D

HDT, when the number of input data in one decision round i 1 . IR
. . . . 0.9 = .
100 (detection rate is always 100% in this case) : .
A | B+t ]| B cr c- D £09 £
802 11gmui-am) | 0% | 0% | 0% 0% 0% 0% 507 go7
802. 11lpmut-am) | 0% | 0% | 0.01% | 0.01% | 0.02% | 0.01% % od |——orgna %04 —e—orginal
802.11gnui-HoT) | 0% | 0% | 0% 0% 0% 0% . oo
802.11mui-npT) | 0% | 0% | 0.02% | 0.02% | 0.03% | 0.03% b o9 '
o A B+ B- C+ c- D 0 A B+ B- C+ c- D
RSSI RSSI
' oaggeeste T vy ’ ' ' (a) Training RSSI range is A (b) Training RSSI range is D
0.95f 1
Fig. 9: The detection rate for TMM algorithm under different
0.91,
. RSSI ranges.
5 o8}
8
& 08
G I we conduct a cross-validation under different locations: F
%7rs |- > -RssiRange &- ] TMM algorithm, we train the Server IAT threshold using the
(@] . . .
07fo - - -RSS| Range C+ 1 data collected in one wireless environment, and execute the
ol ° :z: :“"geg‘ ] detection in another location. From Figure 10 and 11, we can
ange . . . . .
° see that, if we train and test in different environments gée
5 10 15 20 25 30 35 40 45 50 formance of TMM algorithm decreases obviously. However,

Number of Decision Rounds to output a correct result

the performance of HDT algorithm keeps steady.
Fig. 8: Cumulative probability of the number of decision

rounds for HDT algorithm to output a correct result. ——] ! .
0.8 f—_.\\i

From Figure 8, we can see that when RSSI is high, ot o~ : =
HDT algorithm can output a correct decision within a few 2o [——oigna
decision rounds. Although when RSSI drops, it needs mot
decision rounds, even under a low RSSI (e.g. RSSI range .

D), our algorithm can obtain a correct result within 45 diecis A R =
rounds, consuming a very short time. TMM has a very similar (@ TMM algorithm (b) HDT algorithm
performance.

on Rate
o o
@, ©
o
o
©

cti
0
Detection Rate
o
b
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Fig. 10: Detection rate under different 802.11g networks.
E. Cross-Validation

Form Section VI-C, we can find that both TMM algorithm
and HDT algorithm demonstrate high efficiency and effec
tiveness. Especially, TMM algorithm, based on the traine: ois i 0.1
knowledge, performs a little bit better than HDT algorithm. :
However, as described in Section V-A2, in many practica

—e—original

" cross

0.1]

Ise Positive

] 0.1
—e— original

False Positive

©

cases, the prior knowledge is difficult to be obtained. Ir® | o orose oo
addition, TMM algorithm does not accommodate well to \/_“/
. . /—_N_A_
the changes of the wireless network environment. Thus, t &——r———7"7—— ¢+~—0r——"w—— -}
evaluate such limitations of TMM algorithm, in this sectjon res res!
(a) TMM algorithm (b) HDT algorithm

we design cross-validation experiments under differevelte
of RSSI and different locations. Fig. 11: False positive rate under different networks.
1) Cross-validation under different RSSIn this sec-
tion, we implement the cross-validation under differentSRS
ranges. Specifically, we train the Server IAT threshold for VII. DISCUSSION ANDFUTURE WORK
TMM algorithm using the data from only one RSSI range Several relevant studies (e.g., [33], [34]) showed that the
and execute the detection phase using the data from all R@8lays from the wired link is not comparable to those in the
ranges. We show two scenarios in Figure 9 in this paper Wédreless link. In our experiment, the (remote) server isrfou
complete result can be found in [25]). From Figure 9, we cgwired) hops away from the AP. While more wired hops will
see that the detection rate drops dramatically, revealM¥IT involve likely more “noise”, we note that SPRT technique can
algorithm’s tight dependency on the (perfect) trainingadat tolerate reasonable noise if we trade off for more decision
2) Cross-validation under different locationsio validate rounds. In reality, we recommend to use a server within small
the performance of TMM and HDT in different environmentshops. However, if the user has to use a server with many hops,



we could consider using techniques similar to “tracerowte” [12] AirDefense.
know the (wired) transfer time and then exclude/subtragtth

to minimize the (noisy) effect at wired side.

attempt to evade the detection. Since they are in the middle
of the user and normal AP, they can attempt to manipulate llﬁé]
packet relay time to affect IAT. They cannot decrease IAT, bu
they can delay the forwarding to increase IAT. For exampl&?!
in order to evade HDT, the attacker should intentionally
increase AP IAT to make it less differentiable than Servers]

IAT. However, this actually violates the attacker’s infent

to be a fast AP because the user will definitely favor an A[Iy]
will good speed and if the evil twin chooses to do so it may

lose the attraction to the victims. In addition, in suchaiioin,

(18]

the user is still easy to detect such anomaly by using TMM
algorithm. Thus, we conclude that our detection algorithniss]

are still reasonably effective.

Our current work focuses on evil twin AP detection, wherg,,
the evil twin AP will utilize the normal AP to connect to
Internet. This is a very realistic threat faced by public V\NL#\

provided at airports, hotels, libraries, or cafes, etc.unfature

[21]

work, we plan to extend our evil twin AP detection to more
general maliciousAP detection, where a malicious AP may22]
not require the normal AP to relay traffic, or may not need to
impersonate a normal AP. We also plan to study the problem in

wireless infrastructures (e.g., 3G or WiMax) that have mult[23

hop legitimate wireless channels.

VIII. CONCLUSION

[24]

In this paper, we have proposed a novel lightweight user-

side evil twin attack detection technique. We presented t
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