
YANG, SONG AND GU: ACTIVE USER-SIDE EVIL TWIN ACCESS POINT DETECTION USING STATISTICAL TECHNIQUES 1

Active User-side Evil Twin Access Point Detection
Using Statistical Techniques

Chao Yang, Yimin Song, and Guofei Gu, Member, IEEE

Abstract—In this paper, we consider the problem of “evil twin”
attacks in wireless local area networks (WLANs). An evil twin
is essentially a rogue (phishing) Wi-Fi access point (AP) that
looks like a legitimate one (with the same SSID). It is set up by
an adversary, who can eavesdrop on wireless communications of
users’ Internet access. Existing evil twin detection solutions are
mostly for wireless network administrators to verify whether
a given AP is in an authorized list or not, instead of for a
wireless client to detect whether a given AP is authentic or
evil. Such administrator-side solutions are limited, expensive,
and not available for many scenarios. Thus, a lightweight and
effective solution for these users is highly desired. In this work,
we propose a novel user-side evil twin detection technique that
outperforms traditional administrator-side detection methods in
several aspects. Unlike previous approaches, our technique does
not need a known authorized AP/host list, thus it is suitable for
users to identify and avoid evil twins. Our technique does not
strictly rely on training data of target wireless networks, nor
depend on the types of wireless networks. We propose to exploit
fundamental communication structures and properties of such
evil twin attacks in wireless networks and to design new active,
statistical and anomaly detection algorithms. Our preliminary
evaluation in real-world widely deployed 802.11b and 802.11g
wireless networks shows very promising results. We can identify
evil twins with a very high detection rate while maintaining a
very low false positive rate.

Index Terms—Wireless Security, Rogue AP Detection, Evil
Twin Attack.

I. INTRODUCTION

W IRELESS networks are becoming extremely popular
with the rapid advance of wireless LAN techniques

and the wide deployment of Wi-Fi equipments. While users
(especially smartphone users) can access Wi-Fi wireless inter-
net “hotspot” connections in public more easily, they become
to be more vulnerable to fraud and identity theft, referred to
as Evil Twin attacks. Evil twin is a term for a rogue Wi-
Fi access point that appears to be a legitimate one offered
on the premises, but actually has been set up by a hacker to
eavesdrop on wireless communications among Internet surfers
[1]. Evil twin attacks, essentially a real-world wireless version
of phishing scams, have been reported and studied by many
security researchers [2], [3], [4], [5], [6]. Particularly, in 2011,
security experts from Guardian launched two evil twin attacks
conducted with volunteers, in which they successfully gather
users’ usernames, passwords, messages and even credit card

Chao Yang, Yimin Song and Guofei Gu are with the Department of
Computer Science and Engineering, Texas A&M University, College Station,
TX, 77840. E-mail: {yangchao,songym,guofei}@cse.tamu.edu
A preliminary (short) version of this paper appeared in DSN’10. This material
is based upon work supported in part by the Texas Higher Education
Coordinating Board under NHARP Grant no. 01909.

information [7]. The fact that such attack can work is mainly
because many public Wi-Fi hotspots have no (or weak) form
of identification except their Wi-Fi names (SSID), which can
be easily impersonated.

An evil twin attack is easy to launch. As illustrated in
Fig. 1, by using specific readily-available software [8], an
attacker can simply configure a laptop to be a rogue access
point (AP) to mimic the legitimate access point used in a
free public Wi-Fi area. Such areas could be restaurants (e.g.,
MacDonald’s), cafes (e.g., Starbucks), airport lounges, student
community areas or hotel lobbies. Then, by physically setting
the evil twin AP near-by the target victims, the rogue AP
can attract the victims’ wireless connections, either through
passively waiting or actively sending de-associate frames to
force victims to change connections. Then, by simply relaying
victims’ network packets between the attacker’s rogue AP
and the legitimated AP, the attacker can both provide Internet
access to victims and steal victims’ personal information,
without the need of creating additional network connection
channels to the Internet such as wired channels or 3G. In this
way, the rogue AP essentially works as an “evil twin” AP,
(networking-topologically not necessarily physically) between
victims and the legitimate AP.

Fig. 1. Illustration of launching an evil twin attack.
An evil twin attack is also easy to be successful. Since the

“evil twin” AP is usually (physically) set closer to victims
than the legitimate AP, the evil twin AP usually shows
stronger wireless signal than the legitimate AP within the
range of victims. Many end-users’ laptops or smartphones may
automatically connect to the “evil twin” AP with the highest
signal strength among multiple APs associated with the same
SSID. This is mainly because when the wireless card senses
local available wireless networks, most operating systems of
laptops or smartphones will choose to connect to the AP with
the highest Received Signal Strength Indication (RSSI) [9] for
each unique SSID, as these operating systems believe different
APs with the same SSID belong to the same organization. In
addition, such an attack can also be set to hard to trace, since
the attacker can shut off the attacks suddenly or randomly after
achieving the malicious goals, leading to a very short time to
detect. Through successfully launching such evil twin attacks,
the attacker can intercept sensitive data such as passwords
or credit card information by snooping at the communication

2 YANG, SONG AND GU: ACTIVE USER-SIDE EVIL TWIN ACCESS POINT DETECTION USING STATISTICAL TECHNIQUES

links, or launching man-in-the-middle attacks as shown in the
real-world experiments [7]. The attacker can also manipulate
DNS servers/communications, control the routing, and launch
more severe phishing or other attacks. In short, evil twin
attacks compose a serious threat to wireless LAN security.

Most existing evil twin detection solutions can be classi-
fied into two categories. The first kind of approaches [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19] monitor
Radio Frequency (RF) airwaves and/or additional information
gathered at routers/switches and then compare with a known
authorized list. The second kind of approaches [20], [21],
[22], [23], [24], [25], [26] monitor traffic at the wired side
(a traffic aggregation point such as a gateway), and determine
whether a machine uses wired or wireless connections. Such
information is further compared with an authorization list to
detect if the associated AP is a rogue one. These approaches
are limited because they all require the knowledge of an
authorization list of APs and/or users/hosts. We consider these
solutions to be network administrator oriented, as opposed
to user oriented. That is, they are designed for a wireless
network administrator to perform authorization and access
control policies for wireless APs/users. However, for a client
user, it is of particular importance to be able to identify evil
twins. For example, traveling users who use wireless networks
at airports, hotels, or cafes need to protect themselves from
evil twin attacks (instead of relying on those wireless network
providers, which typically may not provide strong security
monitoring/management service). In addition, to protect wire-
less security, IEEE 802.1x protocol is also designed to provide
a secured authentication mechanism for the wireless devices
to connect to a LAN or WLAN. However, 802.1x needs
an trustable authentication server to authorize the wireless
devices, which may not be practical or convenient for the
huge amount of traveling users to detect evil twin attacks
by themselves in the most of current public areas. Thus, a
lightweight, effective and user-side solution for these client
users is highly desired but is currently missing.

In this paper, we propose a novel user-side evil twin detec-
tion technique which has the following advantages compared
to a traditional administrator-side solution: (i) Our technique
does not require a known authorized AP/user list; (ii) An end
user can be warned of an evil twin attack immediately to
prevent being exposed to the attacker, even when the attack
may last for a short time and a typical administrator-side
solution may not help that much; (iii) From the user side, the
parameters in a detection system can be customized according
to local environment which may lead to a more accurate result;
(iv) The user-side detection is resource-saving. The system can
be activated only once when the users are trying to connect a
new wireless AP. In addition, there is no need to modify the
network architecture or any client- or server-side applications.

Our technique exploits the fundamental communication
structure and properties of an evil twin attack: an evil twin
typically still requires the good twin for Internet access. That
is, an evil twin sits in the middle of the victim host and the
good twin to relay communications. Thus, the wireless hops
for a user to access Internet are actually increased (from one to
two). In contrast, although legitimate wireless providers may

use wireless bridges to extend the coverage, they do not change
the single hop physical layer wireless channel to the users.
According to the 802.11 protocol, we also observe that as long
as the attacker obeys the TCP protocol and the IEEE 802.11
standard, the increased delays introduced by one additional
wireless hop cannot be neglected. Based on these observa-
tions, we design new, active, statistical and anomaly detection
algorithms to detect evil twins by differentiating the wireless
hops (one or two hops). In addition, we consider the effect of
throughput variance due to wireless network saturation and dif-
ferent RSSI ranges. We propose two algorithms: one is named
Trained Mean Matching (TMM), requiring training knowledge
of one-hop and two-hop wireless channels; and the other one
is named Hop Differentiating Technique (HDT), which does
not rely on any training information or knowledge. We apply
these algorithms in the form of Sequential Probability Ratio
Test (SPRT) [27].

In short, our paper makes the following contributions:
• We propose a new lightweight user-side evil twin de-

tection solution. Our technique does not rely on “finger-
print” checking of suspect devices nor require a known
authorized AP/host list. Thus, this solution is particularly
attractive to traveling users.

• We propose to exploit the intrinsic communication struc-
ture and property of evil twin attacks. Furthermore, we
propose two statistical anomaly detection algorithms for
evil twin detection, TMM and HDT. In particular, our
HDT improves TMM by removing the training require-
ment. HDT is resistant to the environment change such
as network saturation and RSSI fluctuation.

• We implement our techniques in a prototype system, ET-
Sniffer (Evil Twin sniffer). We have extensively evaluated
ETsniffer in several real-world wireless networks, includ-
ing both 802.11b and 802.11g. Our evaluation results
show that ETSniffer can detect an evil twin quickly and
with high accuracy (a high detection rate and a low false
positive rate).

II. RELATED WORK
Existing rogue AP detection solutions can be mainly

classified into two categories. The first approach moni-
tors RF airwaves and/or additional information gathered at
routers/switches and then compares with a known authorized
list. For example, AirDefense [10], similar to several other
studies [11], [12], [13], [14], [15], [16], [17], [18], [19],
scans RF from the Intranet APs to locate suspicious ones,
and then compares specific “fingerprints” of the RF with
an authorized list to verify. Specifically, for the scanning
part, some studies [16], [17], [18] rely on sensors instead
of sniffers to scan the RF, and some studies such as [19]
propose a method to turn existing desktop computers into
wireless sniffers to improve the efficiency. For verification,
these studies verify MAC addresses, SSID, and/or location
information of the AP by using an authorized list. However,
these studies still have the risk of falsely claiming a normal
neighbor AP as a rogue AP with a high probability. To solve
this problem, they need to further verify whether such a rogue
AP is indeed in the internal network. For example, Beyah’s
work [28] uses a verifier to send packets to the wireless side. If

YANG et al.: ETSNIFFER 3

such packets are received by the internal sensor, the associated
AP is internal and thus an Evil Twin.

The second approach of rogue AP detection, proposed
in [20], [21], [22], [23], [24], [25], [26], [29], detects evil
twins by differentiating whether clients come from wireless
networks or wired networks, relying on the differences in
diverse network protocols. If a client comes from a wireless
network while it is not authorized to do so (comparing with
an authorized list), the AP attached to this host is considered
as a rogue AP. [24], [23], [25] use some statistical features
of the traffic time ([25] relies on the entropy, [24] relies on
the median and the entropy, and [23] relies on the mean) to
make decisions. [30] detect rogue AP by analyzing the TCP-
ACK pairs in their mathematical model. [26] treats different
ranges of a TCP connection separately. [31] relies on the
RTT sent to hosts to distinguish WLAN, and it takes some
traffic factors into consideration to increase the precision.
[32], [33] rely on the frequent rate adaptation in the wireless
network to distinguish it with wired networks. However, this
line of work should solve the problem of falsely claiming an
authorized wireless user who connects to Intranet with wireless
networks. Thus, they may still need to further verify a wireless
device is an authentic AP or not with some “fingerprint” from
authorized lists. Two hybrid studies provide the fingerprint
comparisons in the integrated systems [34], [35].

Recently, Jana et. al. focus on the similar threat models as
the ones depicted in our work [2]. This work utilizes the fact
that different APs usually have different clock skew to detect
unauthorized wireless access points. However, this work still
utilizes the “fingerprint” technique, which needs a whitelist of
authorized access points. Han et. al. [3], [29] utilize time inter-
val information to detect rouge APs. Specifically, it calculates
the round trip time (RTT) between the user and the DNS server
to independently determine whether an AP is legitimate or not
without assistance from the WLAN operator. Since this work
mainly utilizes the training detection technique and uses a
relatively static threshold to differentiate normal and malicious
scenarios, it needs to pre-collect the information of the target
wireless network. Thus, such learning-based approaches highly
depend on the knowledge of the target wireless network. They
could not be effectively applied to those traveling users at the
client side, since once the traveling users are in different areas,
the network situation may have significantly changes.

Our work, ETSniffer, is very different from existing ap-
proaches. Firstly, unlike those administrator-oriented ap-
proaches highly relying on a whitelist of authorized APs/hosts,
our approach is a client-side one, which does not require the
knowledge of an authorized AP/host list. Secondly, unlike
[3], [29] merely based on the learning knowledge, our work
designs two different algorithms (a learning-free algorithm
and a learning-free algorithm) to detect evil twin attacks.
For the learning-based algorithm, we theoretically obtain the
threshold from the intrinsic WLAN properties rather than
using relatively static and empirical values, through exploiting
fundamental communication structures and properties in the
evil twin scenario. In addition, we also utilize SPRT technique
to tolerate reasonable noise. Thirdly, our work is somehow
motivated by Wei et. al. [20], which mainly aims at detecting

rogue APs by using statistical methods (SPRT) to check
whether the network packets go through a wireless channel or
not. However, our work designs two algorithms to detect evil
twin attacks, based on two different wireless network statistics
and our analyses of intrinsic wireless network properties, with
the considerations of dynamic changes of real-world wireless
network parameters. Also, unlike [20] designed as a server-
side approach, our work is a client-side approach suitable for
traveling users. Thus, our work is a good supplement to such
lines of approaches.

III. PROBLEM STATEMENT

The goal of our work is to detect evil twin attacks in real
time under real wireless network environments. In our targeted
evil twin attacks, the evil twin AP pretends to be a legitimate
one to allure victims to connect and utilizes the legitimate AP
to relay users’ network packets to the Internet. As described in
Section I, this kind of evil twin attacks are very practical and
easy to launch in many public free Wi-Fi hotspots [36], [4], [7]
and have caught security researchers’ eyes [3]. Under such evil
twin attacks, attackers can easily steal victims’ information
without the need of creating additional network connection
channels to the Internet. Also, we clearly acknowledge the
limitation of our work on detecting other types of man-in-the-
middle attacks, which will be discussed in Section VII.

Next, we briefly describe the topological difference between
the normal AP scenario and evil twin AP scenario under
our target evil twin attacks, which provides the intuition of
our detection approach. As illustrated in Fig. 2(a), under the
normal AP scenario, a user communicates with the remote
(DNS/Web) server through the normal AP (a one-hop wireless
channel); on the other hand, as illustrated in Fig. 2(b), under
the evil twin AP scenario, the victim client communicates with
the remote server through an evil twin AP and a normal AP (a
two-hop wireless channel). Thus, compared with the normal
AP scenario, the evil twin AP scenario has one more wireless
hop. This observation gives us the intuition to detect evil
twin attacks by differentiating one-hop and two-hop wireless
channels from the user-side to the remote server.

(a) Normal AP scenario (b) Evil twin AP scenario
Fig. 2. Illustration of normal scenarios and evil twin scenarios.

To achieve our research goal, we have to answer the
following four questions: (1) What statistics can be used to
effectively distinguish one-hop and two-hop wireless channels
on the user side? (2) Are there any dynamic factors in a real
network environment that can affect such statistics? (3) How
to design robust and efficient detection algorithms with the
considerations of these influencing factors? (4) What kinds
of remote servers can be utilized to measure those statistics?
Next, we provide a high-level description about our solutions
to these questions (Details refer to Section IV and V).

4 YANG, SONG AND GU: ACTIVE USER-SIDE EVIL TWIN ACCESS POINT DETECTION USING STATISTICAL TECHNIQUES

For the first question, we choose Inter-packet Arrival Time
(IAT) as the detection statistic. IAT is the time interval between
two consecutive data packets sent from the same device
(the remote server or the connected AP) to the client. In
order to compute IAT more effectively and accurately, we
adopt a new ACK-packet sending policy – Immediate-ACK
policy1 in our detection software ETSniffer, i.e., it immediately
acknowledges every data packet received and the server sends
the next data packet only when receiving an acknowledge for
the previous one. We achieve this through setting a specified
value of Maximum Segment Size (MSS) in the TCP header
in the initial packets sent from ETSniffer, as explained in
Section VI-A. Note that ETSniffer does not need to change
any existing network protocols, software, or hardware on
either client or server side. This policy does not affect normal
network communications under default TCP protocol. Instead,
it only affects the specific probing sessions initialized by
ETSniffer for the detection, lasting for a very tiny time period.

Then, under the immediate-ACK policy, if ETSniffer re-
ceives two consecutive data packets P1 and P2, and sends
corresponding TCP layer ACK packets A1 and A2. Then,
on the client side the packet sequence is in an order of
P1A1P2A2. If we let TP1 and TP2 be the time when the client
receives P1 and P2, respectively, then the IAT of this pair of
inter-packets can be computed as TP2 − TP1 .

For the second question, in a real wireless network envi-
ronment, two main factors will affect IAT: Received Signal
Strength Indication (RSSI) [9] and wireless network sat-
uration. In wireless networks, RSSI fluctuates due to the
multi-path and fading effects of the radio signal propagation.
Since most wireless network cards have a transmission rate
adaptation mechanism to adjust to different RSSI levels, the
fluctuation of RSSI directly influences the actual available
wireless bandwidth, causing the fluctuation of IAT. In addition,
wireless network saturation is another influencing factor. When
multiple devices synchronously attempt to send packets to the
same AP, the medium access collisions emerge and spur the
phenomenon of network saturation. This phenomenon stochas-
tically increases the time for transmitting packets from a client
to the AP. Specifically, according to CSMA/CD mechanism,
the collisions set the exponential back-off time and account
for an additional distributed inter-frame spacing (DIFS) [39]
time and a short inter-frame spacing (SIFS) [39] time. Previous
work such as [40], [41] shows that the throughput decreases
with the increased number of the wireless clients, leading to
larger IAT.

For the third question, we develop two new algorithms:
Trained Mean Matching (TMM) and Hop Differentiating
Technique (HDT). Both algorithms utilize the wireless IAT
network statistic, consider the influencing factors of RSSI
and saturation, and employ Sequential Probability Ratio Test
(SPRT) technique to make the final detection.

For the last question, since we need a remote server to
calculate IATs, it is important to figure out how to select
those servers. Typically, we recommend the following three

1It is different from delayed-ACK policy in wireless networks, in which a
receiver sends a TCP layer ACK packet after receiving two continuous packets
or after the delayed-ACK timer is triggered [37], [38].

types of remote servers. First, the remote servers can be DNS
servers as used in existing work [29]. It can be applied in
many network environments, because we can easily find DNS
servers in most networks due to the performance reasons to
resolve domain names [42]. Also, DNS servers are usually set
by administrators and trustable. Also, the time spent on the
wired network to the local DNS server is usually small, which
will decrease the effect of the wired link to our approach.
Second, the remote servers can be web servers hosting local
portal websites. Since at most public free Wi-Fi hotspots (e.g,
hotels), the trusted AP will have (or connect to a local sever
that has) a portal webpage to show some introductions for
customs, this kind of servers near to the trusted APs will
usually be maintained by administrators to provide HTTP
service and trustable. Third, the remote servers can also be
public trustworthy servers such as “google.com”. These public
servers are relatively stable and usually have long lifespan.
More discussions refer to Section VII.

IV. SERVER IAT ANALYSIS

A. Theoretic Analysis of Server IAT

In this section, we show our theoretic analysis of Server IAT
(IAT computed by the data packets sent from the server) and
further demonstrate that Server IAT can be used to differentiate
one-hop wireless channels and two-hop wireless channels, and
thus it can be used to detect evil twin attacks.

Based on IEEE 802.11 standard [30], we denote the math-
ematic variances in our detection model, as summarized in
TABLE I.

TABLE I
VARIABLES AND SETTINGS IN OUR MODEL

Protocol 802.11b 802.11g

BW 11MBps 54MBps

BE 100MBps 100MBps

W0 32 16

TDIFS 50µs 28µs

TSIFS 10µs 10µs

LACK(MAC) 278Bytes 278Bytes

LACK(TCP) 338Bytes 338Bytes

LP 402Bytes 402Bytes

LP̃ 375Bytes 375Bytes

As we consider both influencing factors (RSSI and network
saturation), to better describe our model, we define the special
wireless network environment with a perfect signal strength
(RSSI = 100%) and no wireless collisions as “an ideal network
environment”. Let ∆AS and ∆̃AS be one Server IAT under the
“real network environment” and the “ideal network environ-
ment”, respectively. BW and BE denote the bandwidth of the
wireless network and Ethernet, respectively. Let ρ denote the
bandwidth occupancy of Ethernet. W0 is the initial contention
window size. TDIFS is one DIFS time and TSIFS is one
SIFS time. TBF denotes the back-off time which follows a
uniform distribution in terms of the contention window size.
LACK(MAC) and LACK(TCP) are the size of an ACK-packet
in the MAC layer and in the TCP layer, respectively. LP

denotes the size of one data packet that the client receives

YANG et al.: ETSNIFFER 5

and LP̃ is the average packet size on the Internet, which is
usually between 300 and 400 bytes [43].

Then, based on IEEE 802.11 standard and our settings, we
can show that the mean of ∆AS is theoretically differentiable
between the normal AP scenario and the evil twin scenario.

Theorem 1. If we denote E(∆̃AS)one−hop as the mean of
Server IAT ∆̃AS in a one-hop wireless channel, then in the
normal AP scenario, we can obtain

E(∆̃AS)one−hop = 2TDIFS + TSIFS + 2E(TBF)

+
LACK(MAC) + LACK(TCP) + LP

BW
+ E(TMAX)

where, TMAX = max(TSIFS +
LACK(MAC)

BW
,
LACK(TCP)+LP

BE
+Tex) and E(Tex) =

ρ
2(1−ρ) ·

LP̃

BE

Proof: In the normal AP scenario, considering the proce-
dure that the client receives two consecutive data packets P1

and P2 from the remote server and it sends ACK packets A1

and A2 correspondingly, we show the analysis in Fig 3.

Fig. 3. Illustration of Server IAT for the normal AP scenario (one-hop
wireless channel) in an ideal network environment.

When A1 arrives at the AP, the AP will wait for one TSIFS

time and then send an ACK-packet in the MAC layer back to
the client. Since in the Ethernet part, packets from other traffic
may occupy the wired link, the AP will have to use some extra
time to finish transmitting A1, compared with that under the
maximal bandwidth. We denote this extra time as Tex. Similar
to [20], we also model the incoming data packets to the server
as M/D/1 queues. Based on the M/D/1 queue theory, we can
obtain E(Tex) =

ρ
2(1−ρ) ∗

LP̃

BE
.

After receiving A1, the server will send P2 to the AP. If the
AP has not finished sending the ACK packet in the MAC
layer to the client, the AP could not begin to send P2 to
the client. Thus, after A1 arrives at the AP from the client,
the AP will have to use TMAX time to begin to prepare
to send P2 to the client, where TMAX = max(TSIFS +
LACK(MAC)

BW
,
LACK(TCP)+LP

BE
+ Tex) .

Thus, from Fig. 3, we can obtain that

∆̃AS = TP2 − TP1

= TSIFS +
LACK(MAC)

BW
+ TDIFS + TBF

+
LACK(TCP)

BW
+ TMAX + TDIFS + TBF +

LP

BW

= 2TDIFS + TSIFS + 2TBF

+
LACK(MAC) + LACK(TCP) + LP

BW
+ TMAX

Thus,

E(∆̃AS)one−hop = 2TDIFS + TSIFS + 2E(TBF)

+
LACK(MAC) + LACK(TCP) + LP

BW
+ E(TMAX)

Theorem 2. If we denote E(∆̃AS)two−hop as the mean of
Server IAT ∆̃AS in a two-hop wireless channel, then in the
evil twin AP scenario, we can obtain

E(∆̃AS)two−hop = 4TDIFS + TSIFS + 4E(TBF)

+
LACK(MAC) + 2LACK(TCP) + 2LP

BW
+ E(TMAX)

where, TMAX = max(TSIFS +
LACK(MAC)

BW
,
LACK(TCP)+LP

BE
+Tex) and E(Tex) =

ρ
2(1−ρ) ·

LP̃

BE

Proof: Similar to the proof of Theorem 1, based on the
Protocol 802.11, we show the analysis of the evil twin AP
scenario in Fig. 4.

Thus, from Fig. 4, we can obtain that

∆̃AS = TP2 − TP1

= TSIFS +
LACK(MAC)

BW
+ TDIFS + TBF +

LP

BW

+ TDIFS + TBF +
LP

BW
+ TMAX + TDIFS

+ TBF +
LACK(TCP)

BW
+ TDIFS

+ TBF +
LACK(TCP)

BW

= 4TDIFS + TSIFS + 4TBF

+
LACK(MAC) + 2LACK(TCP) + 2LP

BW
+ TMAX

Thus,

E(∆̃AS)two−hop = 4TDIFS + TSIFS + 4E(TBF)

+
LACK(MAC) + 2LACK(TCP) + 2LP

BW
+ E(TMAX)

From Theorem 1 and 2, if we let E(∆̃S) be the difference
of E(∆̃AS)one−hop and E(∆̃AS)two−hop, then

E(∆̃S) = E(∆̃AS)two−hop − E(∆̃AS)one−hop

= 2TDIFS + 2E(TBF) +
LACK(TCP) + LP

BW

Under the real network environment, either the decrease
of RSSI or the increment of wireless collisions can increase
Server IAT, causing the distribution of Server IAT to become
unstable compared to that under the ideal network environ-
ment. However, in the evil twin AP Scenario, there are two
wireless hops leading to a larger probability of increasing
Server IAT than that of the normal AP scenario. Therefore, if
we let E(∆AS)one−hop and E(∆AS)two−hop as two means

6 YANG, SONG AND GU: ACTIVE USER-SIDE EVIL TWIN ACCESS POINT DETECTION USING STATISTICAL TECHNIQUES

Fig. 4. Server IAT illustration in the evil twin AP scenario (two-hop wireless channel) in an ideal network environment.

of ∆AS in one-hop and two-hop wireless channels, under the
real network environment, we can obtain,

E(∆S) = E(∆AS)two−hop − E(∆AS)one−hop ≈ E(∆̃S)

= 2TDIFS + 2E(TBF) +
LACK(TCP) + LP

BW

From the above equation, according to 802.11 protocol, we
can find that even the attacker can maintain the evil twin AP to
have a high bandwidth (e.g., 54MBps) with the victim and with
the legitimate AP to decrease the time spent on transmitting
data packets, as long as the legitimate AP provides relatively
normal bandwidth, the difference of the mean of ∆AS between
the evil twin AP scenario and the normal AP scenario will
be around 2TDIFS + 2E(TBF). That is mainly because such
a difference is generated due to the time spent on waiting
for transmitting the packets for the additional wireless hop
according to the 802.11 protocol, rather than merely due to
the time spent on transmitting the packets for the additional
wireless hop. Thus, this observation can be used to detect evil
twin attacks.

B. Practical Validation of Server IAT
We next show our experimental results to validate whether

Server IAT is indeed a suitable and effective statistic to
differentiate between one-hop and two-hop wireless channels.

0 2000 4000 6000 8000
0

0.05

0.1

0.15

0.2

0.25

Server IAT (ms)

P
ro

ba
bi

lit
y

one−hop; RSSI=100%(1)
one−hop; RSSI=100%(2)
one−hop; RSSI=100%(3)
two−hops; RSSI=100%(1)
two−hops; RSSI=100%(2)
two−hops; RSSI=100%(3)

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

Server IAT (ms)

P
ro

ba
bi

lit
y

one−hop; RSSI=50%(1)
one−hop; RSSI=50%(2)
one−hop; RSSI=50%(3)
two−hops; RSSI=50%(1)
two−hops; RSSI=50%(2)
two−hops; RSSI=50%(3)

(a) RSSI = 100% (b) RSSI=50%
Fig. 5. IAT distribution in one-hop and two-hop wireless channels.

To minimize data bias, for both one-hop and two-hop
wireless situations, we build our datasets under real network
environments at three different times. We compute Server IAT
in one-hop and two-hop wireless channels by collecting the
packets under the conditions of RSSI2 = 100 and 50. The
results are shown in Fig. 5. We can see that the distribution
of Server IAT remains stable when RSSI is 100%. The two
means of IAT in one-hop and two-hop wireless channels are

2Since the users can only obtain the RSSI level for the first hop, the RSSI
here refers to the first hop. In the two-hop scenario, we set the value of the
RSSI in the second hop within the range from 80% to 100%.

about 1,300ms and 3,300ms, respectively. The gap of these two
means is obvious. Even though a weak signal strength (e.g.,
RSSI at 50%) will lead a less stable distribution of Server
IATs, this gap can still be observed.

V. DETECTION ALGORITHM

Based on our theoretical analysis and practical validation
in the previous section, we present two algorithms to de-
tect evil twin attacks: Trained Mean Matching (TMM) and
Hop Differentiating Technique (HDT). Both algorithms utilize
the Sequential Probability Ratio Test (SPRT) technique [27].
TMM algorithm requires knowing the distribution of Server
IAT as a priori (trained) knowledge. However, the HDT
algorithm does not have such a requirement. Instead, it is
directly based on theoretical analysis. Thus, it is more suitable
for scenarios where the distribution of IAT is either unknown,
instable, or unable to be (perfectly) trained.

A. Trained Mean Matching Algorithm

1) TMM Algorithm Description: We have demonstrated
that the distributions of Server IAT in one-hop and two-
hop wireless channels differ significantly. According to this
observation, in this section, we develop a detection algorithm
named Trained Mean Matching (TMM). Specifically, given a
sequence of observed Server IATs, if the mean of these Server
IATs has a higher likelihood of matching the trained mean of
two-hop wireless channels, we conclude that the client uses
two wireless network hops to communicate with the remote
server indicating a likely evil twin attack, and vice versa.

In the training phase, we adopt a quadratic-mean tech-
nique to train a detection threshold. First, we collect
Server IAT in both one-hop and two-hop wireless chan-
nels. Then, we compute the mean and the standard de-
viation of Server IAT collected in the one-hop (normal
AP) scenario, denoted as µ1,NAP and σ1,NAP , respectively.
Then, we filter out the Server IATs beyond the range
[µ1,NAP − σ1,NAP , µ1,NAP + σ1,NAP]. Next, we derive the
second mean using the residual Server IAT, denoted as
µ2,NAP . Similarly, we can obtain the second mean of Server
IAT in the two-hop (evil twin AP) scenario, denoted as
µ2,EAP . We compute the average of µ2,NAP and µ2,EAP , as
Tθ, set as the boundary to differ one-hop and two-hop Server
IAT. In addition, in order to use the SPRT technique, we obtain
two probabilities of one Server IAT in these two scenarios
exceeding the trained threshold, denoted as P1 and P2, by

YANG et al.: ETSNIFFER 7

computing the percentage of collected Server IATs deviating
from Tθ in the normal and evil twin AP scenario, respectively.

In the detection phase, given a sequence of Server IAT
observations, represented by {δ}ni=1, we use a binary random
variable γi to denote whether the ith observed Server IAT
belongs to evil twin AP scenario or not. Specifically, if
δi ≥ Tθ, then γi = 1, indicating an estimated evil twin AP
scenario; otherwise, γi = 0, indicating an estimated normal
AP scenario. Thus, we get a sequence of {γ}ni=1. Let H1 be
the hypothesis that it belongs to an evil twin AP scenario and
H0 be the hypothesis that it belongs to a normal AP scenario.
We denote P (γi = 1|H1) = θ1 and P (γi = 1|H0) = θ0.
According to the training data, we can set θ0 = P1 and
θ1 = P2. We can compute the log-likelihood ratio Λn with
the assumption that the Server IAT observations are i.i.d.
(independent and identically-distributed) using the following
formula:

Λn = ln
Pr(γ1 . . . γn|H1)

Pr(γ1 . . . γn|H0)
= ln

∏n
i=1 Pr(γi|H1)∏n
i=1 Pr(γi|H0)

=
n∑

i=1

ln
Pr(γi|H1)

Pr(γi|H0)

According to SPRT [27], we perform a threshold random
walk to calculate the log-likelihood ratio. The walk starts from
zero. If γi = 1, then it goes up with a length of ln(θ1)−ln(θ0);
if γi = 0, then it goes down with a length of ln(1−θ1)−ln(1−
θ0). We define every random walk as one decision round. Let
us denote fp and fn as the user-chosen false positive rate and
false negative rate, respectively. If the random walk reaches the
upper boundary B = ln(1−fn)−ln fp, we report evil twin AP
scenario; if it reaches the lower boundary A = ln fn − ln(1−
fp), we report normal AP scenario; otherwise, it is pending
and we watch for the next decision round. The details of TMM
algorithm can be seen in Appendix A.

2) Discussions of TMM Algorithm: Based on the training
technique, the TMM algorithm affords an effective approach
to detect evil twin attacks. However, in some cases, it is too
time-consuming or impractical for a normal user to acquire
a priori knowledge, particularly the training data for two-hop
wireless channels. In addition, the trained knowledge in one
wireless network can be hardly directly applicable to another
network. These limitations motivate us to design an effective
and practical non-training-based algorithm to detect evil twin
attacks – Hop Differentiating Technique (HDT).

B. Hop Differentiating Technique

In HDT algorithm, instead of using IAT, we adopt another
metric – the ratio of a Server IAT to an AP IAT. We define
it as SAIR (Server-to-AP IAT Ratio). Next, we theoretically
prove that it can be used to robustly detect evil twin attacks.

1) Theoretic Analysis of SAIR: Before illustrating our the-
oretical analysis of SAIR, we first make three reasonable
assumptions: (1) The wireless network environment does not
change dramatically, which implies a relatively steady RSSI
and collision number at least during the period when we collect
one pair of Server IAT and AP IAT to compute a SAIR; (2) In
the evil twin AP scenario, the RSSI and the level of network

saturation between the victim client and the evil twin AP are
not worse than that between the victim and the normal AP.
(3) The Ethernet network is not severely congested.

For the first assumption, since the time cost during collect-
ing one pair of Server IAT and AP IAT is in seconds, it is
reasonable to assume the wireless network environment does
not change dramatically during such a short time interval. For
the second one, since the attacker wants to successfully allure
victim clients to connect with the evil twin AP, it is more
likely for the attacker to provide a better RSSI and a smaller
wireless collision probability. For the last one, if there is a
severe network congestion in the Ethernet, few people would
choose the normal AP to surf the Internet.

Next, we introduce some variables to better describe our
model. Let ∆AA be the AP IAT and α be the SAIR, under
the real network environment. Let ∆̃AA be the AP IAT and α̃
be the SAIR under the ideal network environment. Then, we
can obtain

α =
∆AS

∆AA
and α̃ =

∆̃AS

∆̃AA

Then, based on the IEEE 802.11 standard and our settings,
we next prove that the mean of α is theoretically differentiable
between the normal AP scenario and the evil twin AP scenario,
and thus can be used to effectively detect the evil twin attacks.
Similar to Theorem 1, we can obtain the mean of AP IAT as
illustrated in Fig. 6.

E(∆̃AA)one−hop = 2TDIFS + 2TSIFS + 2E(TBF)

+
2LACK(MAC) + LACK(TCP) + LP

BW

Fig. 6. AP IAT illustration in an ideal network environment.

We have the following two theorems that give us theoretic
evidence on the effectiveness of this detection statistic.

Theorem 3. If we denote E(αone−hop) and E(α̃one−hop) as
the mean of α and α̃ in one-hop wireless channels, then we can
obtain: for 802.11b, E(αone−hop) ≤ E(α̃one−hop) = 1.00;
for 802.11g, E(αone−hop) ≤ E(α̃one−hop) = 1.11.

Proof: Based on Theorem 1 and the equation for the mean
of AP IAT, we can obtain

E(α̃one−hop) = E(
∆̃AS

∆̃AA

)one−hop

=
2TDIFS + TSIFS + 2E(TBF)

2TDIFS + 2TSIFS

+E(TMAX) +
LACK(MAC)+LACK(TCP)+LP

BW

+2E(TBF) +
2LACK(MAC)+LACK(TCP)+LP

BW

8 YANG, SONG AND GU: ACTIVE USER-SIDE EVIL TWIN ACCESS POINT DETECTION USING STATISTICAL TECHNIQUES

Since E(TMAX) ≥ TSIFS +
LACK(MAC)

BW
with typical

settings, we know E(α̃one−hop) ≥ 1. Based on our settings
about the values of these variances in TABLE I, we can get
E(α̃one−hop) = 1.00 for WLAN 802.11b and E(α̃one−hop) =
1.11 for WLAN 802.11g. Since the period when we collect
one pair of Server IAT and AP IAT to compute one SAIR is
so short, we can reasonably assume that the network situation
during this time will not change dramatically. Thus, we can
assume that E(∆rc) = E(∆AA − ∆̃AA) = E(∆AS −
∆̃AS) ≥ 0 so we can obtain that

E(αone−hop) = E(
∆AS

∆AA
)one−hop =

E(∆̃AS) + E(∆rc)

E(∆̃AA) + E(∆rc)

≤ E(∆̃AS)

E(∆̃AA)
= E(α̃one−hop)

For 802.11b, E(αone−hop) ≤ E(α̃one−hop) = 1.00; for
802.11g, E(αone−hop) ≤ E(α̃one−hop) = 1.11.

Theorem 4. Based on the IEEE 802.11 standard and our
settings, if we denote E(αtwo−hop) and E(α̃two−hop) as the
mean of α and α̃ in two-hop wireless channels, then we can
obtain: for 802.11b, E(αtwo−hop) ≥ E(α̃two−hop) = 1.74;
for 802.11g, E(αtwo−hop) ≥ E(α̃two−hop) = 1.94.

Proof: Based on Theorem 2 and the equation for the mean
of AP IAT, we can obtain

E(α̃two−hop) = E(
∆̃AS

∆̃AA

)two−hop

=
4TDIFS + TSIFS + 4E(TBF)

2TDIFS + 2TSIFS

+E(TMAX) +
LACK(MAC)+2LACK(TCP)+LP

BW

+2E(TBF) +
2LACK(MAC)+LACK(TCP)+LP

BW

Based on our settings about the values of these variances, for
Protocol 802.11b, we can obtain E(α̃two−hop) = 1.74; for
Protocol 802.11g, we can obtain E(α̃two−hop) = 1.94. Similar
to the Theorem 3, we denote E(∆AA) = E(∆̃AA)+E(∆TC1

)
and E(∆AS) = E(∆̃AS) + E(∆TC1

) + E(∆TC2
) where,

E(∆TC1
) and E(∆TC2

) are the means of the time increment
for the first hop and the second hop due to the decreased
RSSI and increased collision numbers, respectively. So, we
can obtain

∆ = E(α)two−hop − E(α̃)two−hop

=
E(∆̃AS) + E(∆TC1) + E(∆TC2)

E(∆̃AA) + E(∆TC1
)

− E(∆̃AS)

E(∆̃AA)

=
E(∆̃TC2

)− (E(α̃)(two−hop) − 1) · E(∆̃TC1
)

E(∆̃AA) + E(∆TC1
)

Since it is reasonable to assume that the link between
the client and the evil twin AP has higher (or equal) RSSI
level and smaller (or equal) collision probability than that
of the link between the client and the normal AP, we
can obtain that E(∆TC1

) ≤ E(∆TC2
). Then, since under

both protocols, E(α̃)two−hop ≥ 1 (specifically, for Proto-
col 802.11b, E(α̃)two−hop = 1.74; for Protocol 802.11g,
E(α̃)two−hop = 1.94), so under both protocols, we can obtain

∆ = E(α)two−hop − E(α̃)two−hop ≥ 0. Thus, for WLAN
802.11b, E(αtwo−hop) ≥ E(α̃two−hop) = 1.74; for WLAN
802.11g, E(αtwo−hop) ≥ E(α̃two−hop) = 1.94.

From Theorem 3 and 4, we can see that the theoretical mean
of α in evil twin AP scenario is significantly larger than that
in the normal AP scenario, thus it can be used to detect evil
twin attacks.

2) HDT Algorithm Description: In the previous section,
we have proved that SAIRs in one-hop and two-hop wireless
channels differ significantly. Even under the real network
environment, we can still compute a theoretical SAIR bound to
distinguish these two scenarios. According to this observation,
in this section, we develop a non-training-based detection algo-
rithm named Hop Differentiating Technique (HDT) algorithm.

We now describe the HDT algorithm in detail. Different
from the TMM algorithm, in the HDT algorithm, we use a
theoretical value for the threshold rather than a trained thresh-
old to detect evil twin attacks. In the theoretical computation
phase, we compute a threshold αθ as the SAIR boundary to
differentiate one-hop SAIR and two-hop SAIR. In order to use
the SPRT technique, we also compute the upper bound for the
probability of the SAIR exceeding the threshold αθ in the
normal AP scenario, and the lower bound for the probability
of the SAIR exceeding the threshold αθ in the evil twin AP
scenario. The specific explanations of the computation of these
three parameters will be discussed shortly. The details of HDT
algorithm can be seen in Appendix A.

We acknowledge that once an attacker knows about HDT
algorithm, he may attempt to evade it by making the server
IAT similar to AP IAT under the evil twin scenario (e.g,
maintaining different bandwidth for the first wireless hop and
second wireless hop). We will discuss the issue, implication,
and possible solution in Section VII.

3) Threshold Setting: In this section, we develop a dis-
crete numerical algorithm to compute the theoretical SAIR
threshold αθ for HDT algorithm, with a goal of minimizing
the probability of making a wrong decision. According to
Theorem 3 and 4, the threshold αθ should be between 1
and 2. So, if we denote P1 = P (αone−hop ≥ αθ) and
P2 = P (αtwo−hop ≥ αθ), the problem can be transformed
to compute α̂θ, s.t., α̂θ = argmin1≤αθ≤2(P1 + 1− P2).

If we denote P̃1 = P (α̃one−hop ≥ α̃θ) and P̃2 =
P (α̃two−hop ≥ α̃θ), then, similar to the proofs in Theorem
3 and Theorem 4, we can derive that P1 ≤ P̃1 and P2 ≥ P̃2.
This implies that we can compute the threshold α̂θ by using
the variances of P̃1 and P̃2, which are the probabilities under
the ideal network environment. So the problem is transformed
to compute α̂θ, s.t., α̂θ = argmin1≤αθ≤2(P̃1 + 1− P̃2).

In the process of our computation, we let αθ increase from
1 to 2 in fine-grained steps. In every step, we increase αθ by
0.01 and compute P̃1 + 1 − P̃2. Once αθ reaches 2, we can
find the value of α̂θ leading to the minimal P̃1+1−P̃2. In this
way, according to the IEEE 802.11 standard and our settings,
we can derive the following results:

• If we consider the packets without any collisions, then,
- for Protocol 802.11b, α̂θ = 1.31, P1 ≤ P̃1 = 21.8%,
P2 ≥ P̃2 = 76.9%;

YANG et al.: ETSNIFFER 9

- for Protocol 802.11g, α̂θ = 1.48, P1 ≤ P̃1 = 27.3%,
P2 ≥ P̃2 = 71.5%;

• If we consider the packets whose collision numbers are
under three, then,

- for Protocol 802.11b, α̂θ = 1.34, P1 ≤ P̃1 = 21.2%,
P2 ≥ P̃2 = 74.9%;

- for Protocol 802.11g, α̂θ = 1.48, P1 ≤ P̃1 = 27.3%,
P2 ≥ P̃2 = 71.2%;

C. Improvement by Data Preprocessing

In this section, we describe two data preprocessing tech-
niques to improve the results: data filtering and data smooth-
ing. For the first technique, we filter noisy data (according to
the theoretical Server IAT) with a large number of network
collisions. For the second technique, we use the mean of
multiple input data, rather than only one collected data, to
smooth the input.

1) Data Filtering: With the considerations of some un-
expected or unpredictable factors in the dynamic wireless
networks, we also adopt similar data filtering policy as used
in [22], [29] to filter out those packets that may contain
some errors. Specifically, in order to filter noisy data, we only
consider the packets whose collision numbers may be at most
three. (According to [39], when the number of users is under
20, the probability that a packet has at most 3 collisions is over
85%). In this way, we can both filter the noisy data and keep
sufficient data to implement the detection. Thus, according to
the IEEE 802.11 standard and our filter policy, we filter out
the packets whose AP IATs exceed 21,000µs or Server IAT
exceed 39,800µs.

2) Data Smoothing: To further improve the result, we also
use the mean of multiple input data rather than only one input
data in one decision round. Specifically, we use the mean of
multiple Server IATs or the mean of multiple SAIRs instead
of only one Server IAT or one SAIR in one decision round to
perform the threshold random walk. We name TMM algorithm
and HDT algorithm using multiple Server IATs and multi
SAIRs as multi-TMM algorithm and multi-HDT algorithm.

VI. EVALUATION
We evaluate the results and the performance of our evil

twin attack detection algorithms by implementing a detection
prototype system named ETSniffer (Evil Twin Sniffer). In this
section, we describe our evaluation methodology, including the
experimental setup, datasets, effectiveness, efficiency, cross-
validation and comparison with ICMP.

A. Implementation and Experimental Setup

We implement ETSniffer using Windows raw socket, since
we need packet level control (including TCP parameters).
Specifically, to guarantee the efficiency and accuracy of the
computation of IAT, we use an immediate-ACK policy, in
which a TCP server should wait to receive the ACK packet
for the previous data packet before sending out the next
data packet. This policy is achieved by setting the TCP
Maximum Segment Size (MSS) in the TCP header equal to
the TCP Window Size without the need of changing default
TCP protocol. Note, since our immediate-ACK policy is only

applicable to the specific probing connections initialized and
controlled by ETSniffer, this policy will not devour network
bandwidth. In addition, we use a fixed and small number for
MSS setting in every connection to guarantee sufficient data
packets received to detect evil twin attacks. By initiating a
TCP connection with customized TCP options and settings to
make the server respond in the way we desire (e.g., sending
packets with small size), ETSniffer can collect enough packets
needed for detection even from a small-sized web page (which
may only result in one or two packets in the normal setting).

Fig. 7. Experimental environment setting for the normal AP scenario.

Fig. 8. Experimental environment setting for the evil twin AP scenario.

We set up our ETSniffer under Texas A&M University
campus network environment. To achieve user-side detection,
we install ETSniffer in a laptop with a wireless network
card. The ETSniffer can capture the packets, along with the
current timestamp, to compute IAT and SAIR. To simulate a
normal AP scenario, we use a laptop installed with ETSniffer
as a user/detection client to communicate with a campus
server through TAMULink (an official Texas A&M’s campus
wireless network Access Point). To simulate an evil twin AP
scenario, we deploy another laptop as a wireless access point
with the same SSID as the TAMULink to act as an evil twin
AP near to the detection client. And the evil twin AP connects
to the server through the campus TAMULink AP, with the
RSSI level between 80% and 100%. Thus, in this scenario, the
detection client communicates with the server through a two-
hop wireless channel. The experimental environment setting
can be illustrated in Fig. 7 and 8.

B. Datasets

We build our datasets in real network environments at
different times and with different RSSI levels (The RSSI here
refers to the first hop, which can be obtained in the user side.).
To better evaluate our results, in our experiments, we denote
different RSSI levels into 6 ranges: A, B+, B-, C+, C-, and D,
as illustrated in TABLE II.

10 YANG, SONG AND GU: ACTIVE USER-SIDE EVIL TWIN ACCESS POINT DETECTION USING STATISTICAL TECHNIQUES

TABLE II
RSSI RANGES AND CORRESPONDING LEVELS

Range A B+ B- C+ C- D
Upper 100% 80% 70% 60% 50% 40%
Lower 80% 70% 60% 50% 40% 20%

As described in Section V-C1, we filter the packets whose
collision numbers may exceed three. The percentages of
filtered packets can be seen in TABLE III.

TABLE III
THE PERCENTAGE OF FILTERED PACKETS

Tech Protocol A B+ B- C+ C- D

TMM
802.11g 0.62% 0.68% 2.59% 2.66% 3.30% 6.02%
802.11b 0.99% 1.04% 3.33% 4.82% 7.44% 8.29%

HDT
802.11g 0.80% 0.86% 3.91% 3.72% 4.69% 7.09%
802.11b 1.38% 1.44% 5.61% 6.17% 9.42% 10.36%

C. Effectiveness

We evaluate the effectiveness of our algorithms based on
different RSSI ranges under 802.11b and 802.11g network. In
the normal AP scenario, the RSSI refers to the link between
the user and the normal AP; in the evil twin AP scenario, the
RSSI refers to the link between the user and the evil twin
AP. As shown in TABLE IV under most cases, both HDT and
TMM under two protocols can achieve a high detection rate
(over 90%). Especially, when the RSSI level is high (A and
B+), the detection rates of two algorithms can be maintained
higher than 95%.

TABLE IV
DETECTION RATE FOR HDT AND TMM

Tech Protocol A B+ B- C+ C- D

TMM 802.11g 99.39% 99.97% 99.49% 99.5% 98.32% 94.36%
802.11b 99.81% 95.43% 94.81% 96.09% 91.94% 85.71%

HDT 802.11g 99.08% 98.72% 93.53% 94.31% 87.29% 81.39%
802.11b 99.92% 99.99% 99.96% 99.95% 96.05% 94.64%

As shown in TABLE V, under most of cases, our approach
can achieve a relatively low false positive rate. In addition,
we can also find that the results obtained in the 802.11g are
usually similar to or better than those obtained in 802.11b. This
is caused by the low bandwidth and larger initial window size
in the 802.11b protocol, leading to a larger variance of IAT
distribution.

TABLE V
FALSE POSITIVE RATE FOR HDT AND TMM

Tech Protocol A B+ B- C+ C- D

TMM 802.11g 1.08% 1.76% 1.97% 1.48% 1.75% 1.73%
802.11b 0.78% 1.00% 1.07% 1.27% 6.65% 7.01%

HDT 802.11g 2.19% 1.41% 2.06% 1.93% 2.48% 6.52%
802.11b 8.39% 8.76% 5.39% 6.96% 5.27% 5.15%

As described in Section V-C2, we use multi-TMM and
multi-HDT to improve the results. Fig. 9 shows that detection
rate increases by using more input data in one decision round.
However, once the number attains to some bound (in our
experiment, it is 70), the detection rate becomes relatively
steady, which is nearly to be 100%.

As seen in TABLE VI, when we increase the the number
of input data in one decision round to 50, the detection rates

10 20 30 40 50 60 70 80 90 100
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of input data in one Decision Round

D
et

ec
tio

n
R

at
e

RSSI Range: A

RSSI range: B+

RSSI Range: B−

RSSI Range: C+

RSSI range: C−

RSSI range: D

Fig. 9. Detection rate for multi-HDT using different numbers of input data
in one decision round.

of two algorithms are higher than that of using one input data.
Also, under most of cases, the detection rate can be achieved
around 100%.

TABLE VI
DETECTION RATE FOR MULTI-TMM AND MULTI-HDT, WHEN THE

NUMBER OF INPUT DATA IN ONE DECISION ROUND IS 50
Tech Protocol A B+ B-
Multi-
TMM

802.11g 99.62% 100% 100%
802.11b 100% 100% 100%

Multi-
HDT

802.11g 100% 99.11% 98.73%
802.11b 100% 100% 100%

Tech Protocol C+ C- D
Multi-
TMM

802.11g 99.95% 100% 100%
802.11b 100% 100% 100%

Multi-
HDT

802.11g 99.88% 95.83% 88%
802.11b 100% 100% 100%

As seen in Table VII, compared with using one input data
in one decision round, when we use 50 input data, the false
positive rate can be obviously decreased on both TMM and
HDT algorithm. Under most cases, the false positive rates can
be maintained lower than 1%.

TABLE VII
FALSE POSITIVE RATE FOR MULTI-TMM AND MULTI-HDT, WHEN

THE NUMBER OF INPUT DATA IN ONE DECISION ROUND IS 50
Tech Protocol A B+ B-
Multi-
TMM

802.11g 0% 0.77% 0%
802.11b 0% 0.03% 0.02%

Multi-
HDT

802.11g 0% 0.96% 0.16%
802.11b 0% 1.07% 1.16%

Tech Protocol C+ C- D
Multi-
TMM

802.11g 0% 0% 0%
802.11b 0.11% 0.73% 0.1%

Multi-
HDT

802.11g 0.13% 0.55% 0.96%
802.11b 1.02% 1.36% 1.41%

D. Time Efficiency

We also evaluate time efficiency of our algorithms. Specifi-
cally, we use the average number of decision rounds to output
a correct decision as the evaluation metric. The average con-
suming time (data collection and detection) for each decision
round is 4.68ms, 5.93ms, 6.39ms, 7.41ms, 8.80ms, 9.21ms,
when the RSSI range is equal to A, B+, B-, C+, C-, and
D, respectively. We use cumulative probability to express the
process of the log-likelihood ratio to reach the bounds. As seen
in Fig. 10, under most values of RSSI, our HDT algorithm can
output a correct decision within 25 rounds, which takes less
than 0.25s. Even though a low RSSI (e.g. RSSI range is D)
will require more decision rounds, our algorithm can obtain a

YANG et al.: ETSNIFFER 11

correct result within 45 decision rounds, which consumes less
than 0.5s. TMM has a very similar performance.

5 10 15 20 25 30 35 40 45 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Decision Rounds to output a correct result

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

RSSI Range A

RSSI Range B+

RSSI Range B−

RSSI Range C+

RSSI Range C−

RSSI Range D

Fig. 10. Cumulative probability of the number of decision rounds for HDT
to output a correct result.

E. Cross-Validation

From Section VI-C, we can find that both the TMM
algorithm and the HDT algorithm demonstrate high efficiency
and effectiveness. Especially, the TMM algorithm, based on
the trained knowledge, performs a little bit better than the
HDT algorithm. However, as described in Section V-A2, in
many practical cases, the prior knowledge is difficult to obtain.
In addition, the TMM algorithm does not accommodate well
to the changes of the wireless network environment. Thus,
to evaluate such limitations of the TMM algorithm, in this
section, we design cross-validation experiments under different
levels of RSSI and different locations/networks.

1) Cross-validation under different RSSI: In this section,
we implement the cross-validation experiments under different
RSSI ranges. Specifically, we evaluate TMM by training the
threshold under one specific RSSI level and detecting the evil
twin attacks under all RSSI ranges. From Fig. 11, we can
see that the detection rate drops dramatically, revealing TMM
algorithm’s tight dependency on the (perfect) training data.

2) Cross-validation under different locations/networks:
To validate the performance of both algorithms in different
network environments, we conduct a cross-validation under
different locations. For TMM algorithm, we train the Server
IAT threshold using the data collected in one wireless envi-
ronment, and execute the detection in another location.

From Fig. 12 and 13, we can see that, if we train and
test in different environments, the performance of the TMM
algorithm decreases significantly. However, the performance
of the HDT algorithm remains steady.

3) Comparison With ICMP: In this section, in order to
show the advantages of using TCP packets to compute our
detection statistics – IAT, we make a comparison of the
detection performance of collecting TCP packets and ICMP
packets to detect evil twin attacks. For using ICMP packets,
similar to using TCP packets to compute IATs, we collect
ICMP packets and compute one IAT as the time interval of
each pair of ICMP reply packets that arrive at the client side.

From Fig. 14 and 15, we can find that using TCP packets
to compute IATs can obtain a higher detection rate and
a lower false positive rate. That is probably because TCP
protocol provides reliable transmission service. In this way,

A B+ B− C+ C− D
0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI

D
et

ec
to

n
R

at
e

original

cross

(a) Training RSSI range is A

A B+ B− C+ C− D
0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI

D
et

ec
tio

n
R

at
e

original

cross

(b) Training RSSI range is B+

A B+ B− C+ C− D
0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI

D
et

ec
tio

n
R

at
e

original

cross

(c) Training RSSI range is B-

A B+ B− C+ C− D
0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI

D
et

ec
tio

n
R

at
e

original

cross

(d) Training RSSI range is C+

A B+ B− C+ C− D
0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI

D
et

ec
tio

n
R

at
e

original

cross

(e) Training RSSI range is C-

A B+ B− C+ C− D
0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI

D
et

ec
tio

n
R

at
e

original

cross

(f) Training RSSI range is D

Fig. 11. The detection rate for TMM algorithm under different training RSSI
ranges.

A B+ B− C+ C− D
0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI

D
et

ec
tio

n
R

at
e

original

cross

(a) TMM algorithm

A B+ B− C+ C− D
0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI

D
et

ec
tio

n
R

at
e

original

cross

(b) HDT algorithm

Fig. 12. Detection rate under different 802.11g networks.

A B+ B− C+ C− D
0

0.05

0.1

0.15

0.2

RSSI

F
al

se
 P

os
iti

ve
 R

at
e

original

cross

(a) TMM algorithm

A B+ B− C+ C− D
0

0.05

0.1

0.15

0.2

RSSI

F
al

se
 P

os
iti

ve

original

cross

(b) HDT algorithm

Fig. 13. False positive rate under different networks.

the computation of one IAT and SAIR by using TCP packets
is more stable and yields to better results as demonstrated in
our experiments.

12 YANG, SONG AND GU: ACTIVE USER-SIDE EVIL TWIN ACCESS POINT DETECTION USING STATISTICAL TECHNIQUES

A B+ B− C+ C− D

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

RSSI

D
et

ec
tio

n
R

at
e

TCP

ICMP

(a) TMM algorithm under 802.11g

A B+ B− C+ C− D
0.8

0.85

0.9

0.95

1

RSSI

D
et

ec
tio

n
R

at
e

TCP

ICMP

(b) HDT algorithm under 802.11g

A B+ B− C+ C− D
0.7

0.75

0.8

0.85

0.9

0.95

1

RSSI

D
et

ec
tio

n
R

at
e

TCP

ICMP

(c) TMM algorithm under 802.11b

A B+ B− C+ C− D

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

RSSI

D
et

ec
tio

n
R

at
e

TCP

ICMP

(d) HDT algorithm under 802.11b

Fig. 14. The comparison of detection rate of both algorithms under 802.11g
and 802.11b networks using TCP packets and ICMP packets.

A B+ B− C+ C− D
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

RSSI

F
al

se
 P

os
iti

ve
 R

at
e

TCP

ICMP

(a) TMM algorithm under 802.11g

A B+ B− C+ C− D
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

RSSI

F
al

se
 P

os
iti

ve
 R

at
e

TCP

ICMP

(b) HDT algorithm under 802.11g

A B+ B− C+ C− D
0

0.05

0.1

0.15

0.2

RSSI

F
al

se
 P

os
iti

ve
 R

at
e

TCP

ICMP

(c) TMM algorithm under 802.11b

A B+ B− C+ C− D
0.05

0.1

0.15

0.2

0.25

0.3

RSSI

F
al

se
 P

os
iti

ve
 R

at
e

TCP

ICMP

(d) HDT algorithm under 802.11b

Fig. 15. The comparison of false positive rate of both algorithms under
802.11g and 802.11b networks using TCP packets and ICMP packets.

4) Comparison With Unbalanced RSSI: In this experiment,
we evaluate our algorithm by setting different unbalanced
RSSI levels in the first-hop wireless and second-hop wireless
channel. Specifically, for each RSSI level in the first-hop
wireless channel, we test detection rates of HDT algorithm
under 802.11g network by varying the RSSI levels in the
second-hop channel, as shown in TABLE VIII (B and C denote
RSSI ranging from 60% to 80%, and from 40% to 60%,
respectively.). In addition, while calculating the detection rate
in this experiment, we also evaluate the false positive rate, as
shown in TABLE IX.

From TABLE VIII and IX, we can find that, even under
unbalanced RSSI levels for the first and second hop, our
algorithm can still obtain high detection rate and maintain

TABLE VIII
DETECTION RATE BY SETTING UNBALANCED RSSI LEVELS FOR

HDT ALGORITHM UNDER 802.11G NETWORKShhhhhhhhhhhFirst-hop
Second-hop

A B C

A 99.33% 100% 100%
B+ 98.18% 97.69% 98.33%
B- 94.17% 95.16% 96.67%
C+ 94.02% 96.67% 96%
C- 88.46% 86.67% 89.29%

TABLE IX
FALSE POSITIVE RATE BY SETTING UNBALANCED RSSI LEVELS

IN THE FIRST AND SECOND WIRELESS HOP FOR HDT ALGORITHM
UNDER 802.11G

Range A B+ B- C+ C-
False Positive Rate 2.0% 1.25% 2.5% 2.61% 2.13%

reasonable false positive rate, especially when the RSSI in
the first hop is high. In addition, while keeping the same
RSSI level for the first hop, we can find that the detection
rate of under the RSSI level as “C” in the second hop is even
higher than that of under “A” in the second hop. That is mainly
because a much lower RSSI level in the second hop can lead
to a longer time for the attacker to transmit the packets making
it more obvious to be detected.

VII. LIMITATION AND FUTURE WORK
We clearly admit that our designed methods can not detect

all kinds of man-in-the-middle attacks in the WLAN. For
example, our ETSniffer is not applicable under the scenario
that attackers use other methods such as wired links, 3G or
WiMax, rather than the legitimate AP to relay the traffic.
In our preliminary work, our targeted problem is evil twin
AP detection, where the evil twin AP utilizes the normal
AP to connect to Internet. In fact, this problem is indeed
a very realistic threat faced by public WLANs provided at
airports, hotels, libraries, or cafes, etc, because it is easy for
an attacker in the public area to get free Internet access from
public free Wi-Fi to launch such kinds of attacks. In our future
work, we plan to extend our evil twin AP detection to more
general malicious AP detection, where a malicious AP may
not require the normal AP to relay traffic, or not need to
impersonate a normal AP. We also plan to study the problem in
wireless infrastructures (e.g., 3G or WiMax) that have multi-
hop wireless channels.

We acknowledge that once the remote servers are not avail-
able or compromised, our approach may not work correctly.
As described in Section III, we clearly describe three types
of servers that can be used as remote servers. Also, we can
enhance our ETsniffer to combine (or selectively use) these
three types of servers, if any type of servers are not available
or trustable. Also, it is true that more wired hops between
the remote server to the legitimate AP may involve likely
more “noise”. Thus, in reality, we recommend to set the
remote server within small hops from the legitimate AP. In
our experiment, the remote server is four wired hops away
from the AP. To decrease possible effect of the wired channel,
we also utilize SPRT technique to tolerate reasonable noise, if
we tradeoff for more decision rounds. In addition, if the user
has to use a server with many hops, we could consider using
techniques similar to “traceroute” to calculate the (wired)

YANG et al.: ETSNIFFER 13

transfer time and then exclude/subtract them to minimize the
effect at wired side.

Note that our adopted immediate-ACK policy may affect
the packets transmitting speed in the specific connections
initialized by ETSniffer software. However, since this policy
is achieved by setting the Window Size as the TCP Maximum
Segment Size, our ETsniffer still strictly follows default TCP
protocol and thus no changes of any network software or
hardware are required on both the client and server side. In
addition, our immediate-ACK policy is not a global policy,
instead it is only applicable to the specific probing connections
initialized by ETSniffer (such connections are typically for
a very tiny period, and controlled by ETSniffer). All other
network communications on users’ machines are not affected.

It is possible that attackers may attempt to evade our detec-
tion scheme, because attackers, between the victims and nor-
mal AP, can manipulate the traffic to affect IAT. For example,
attackers can attempt to evade our HDT algorithm by making
the server IAT similar to AP IAT under the evil twin scenario.
Attackers should intentionally increase AP IATs to make them
less differentiable from Server IATs. They can achieve this
by either maintaining low bandwidth (e.g., 1MBps) between
the evil twin AP and the victim and high bandwidth (e.g,
54MBps) between evil twin AP and the legitimate AP, or
simply delaying transmitting packets to the victims. However,
by doing this, attackers need to exactly know how HDT
work. Also, a low practical bandwidth between the attackers
to victims may decrease attackers’ attractions to victims. In
addition, our designed TMM algorithm can be combined with
HDT and be used to detect such anomaly.

We also acknowledge that if the workload of legitimate AP
is extremely heavy, the time difference between one-hop server
IAT under the normal AP scenario and two-hop server IAT
under the evil twin AP scenario becomes less distinguishable.
Thus, the accuracy of our TMM algorithm may be decreased.
However, in this way, our HDT algorithm can perform better.
Particularly, HDT does not rely on any training data and relies
on the server IAT to AP IAT ratio. Specifically, if it is under
the evil twin AP scenario and the legitimate AP is busy, then
the ratio of two-hop server IAT (between the client and the
server) to one-hop AP IAT (between the client and the evil
twin AP) will become even larger. In addition, as shown in our
evaluation results, as long as the legitimate AP is not so heavy
that most network packets can be successfully sent from the
legitimate AP to the receiver within three wireless collisions,
our TMM algorithms can still achieve a high accuracy. (Those
packets, which have more than three wireless collisions, have
been filtered in our evaluation.)

Finally, we acknowledge that our timing-based detection
techniques may not perform well once attackers pretend to
be the users to get the next data packet and send it back to
the users, which is also a challenge to most of current timing-
based evil twin detection approaches. However, in order to
achieve this, attackers need to make much more efforts on
deeply understanding our detection algorithm and successfully
cheating users that the next data packet is the right one. More
further studies are needed in this area.

VIII. CONCLUSION
In this paper, we propose a novel lightweight user-side evil

twin attack detection technique. We present two algorithms,
TMM and HDT. We implement our prototype system and
evaluate it in several real-world wireless networks, and our
evaluation results proved its effectiveness and efficiency.

REFERENCES

[1] “Evil twin in Wikipedia,” http://en.wikipedia.org/wiki/Evil twin
(wireless networks).

[2] S. Jana and S. Kasera, “On Fast and Accurate Detection of Unauthorized
Wireless Access Points Using Clock Skews,” in IEEE Transactions on
Mobile Computing, g, vol. 9, no. 3, pp. 449-462, Mar. 2010.

[3] H. Han, B. Sheng, C. Tan, Q. Li, and S. Lu, “A Measurement Based
Rogue AP Detection Scheme,” in IEEE International Conference on
Computer Communications (Infocom’09), 2009.

[4] “Smartphones and public wi-fi Evil Twin attacks,” http://blog.netsafe.
org.nz/2011/04/28/smartphones-and-public-wi-fi-evil-twin-attacks/).

[5] “Top Ten Ways to Avoid an Evil Twin Attack,”
http://www.esecurityplanet.com/views/article.php/3908596/
Top-Ten-Ways-to-Avoid-an-Evil-Twin-Attack.htm).

[6] “Evil Twin attacks: scamming wireless network users,” http://scamsinc.
com/2012/02/13/evil-twin-attacks-scamming-wireless-network-users/).

[7] “Wi-Fi security flaw for smartphones,” http://www.guardian.co.uk/
technology/2011/apr/25/wifi-security-flaw-smartphones-risk).

[8] “Soft AP solutions,” White paper, http://www.marvell.com/products/
wireless/softap.jsp.

[9] “Received Signal Strength Indication,” http://en.wikipedia.org/wiki/
Received\ signal\ strength\ indication.

[10] AirDefense, “TIRED OF ROGUES? Solutions for Detecting
and Eliminating Rogue Wireless Networks,” White paper,
http://wirelessnetworkchannel-asia.motorola.com/pdf/.

[11] “The Airmagnet project,” http://www.airmagnet.com/.
[12] “The Netstumbler project,” http://www.netstumbler.com.
[13] “WiSentry - Wireless Access Point Detection System,” http://www.

wimetrics.com/Products/WAPD.htm.
[14] “The Inssider software,” http://www.metageek.net/products/inssider.
[15] “The Airwave project,” http://www.airwave.com.
[16] “Wavelink,” http://www.wavelink.com.
[17] “Cisco Wireless LAN Solution Engine (WLSE),” White paper, http://

www.cisco.com/en/US/products/sw/cscowork/ps3915/.
[18] “Rogue access point detection: Automatically detect and manage wire-

less threats to your network,” White paper, http://www.proxim.com.
[19] P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh, A. Wolman,

and B. Zill, “Enhancing the security of corporate Wi-Fi networks using
DAIR,” in Proc. MobiSys’06, 2006.

[20] W. Wei, K. Suh, B. Wang, Y. Gu, J. Kurose, and D. Towsley, “Passive
online rogue access point detection using sequential hypothesis testing
with TCP ACK-pairs,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement (IMC’07), 2007.

[21] H. Yin, G. Chen, and J. Wang, “Detecting protected layer-3 rogue
APs,” in Proceedings of the Fourth IEEE International Conference on
Broadband Communications, Networks, and Systems (BROADNETS’07),
2007.

[22] W. Wei, B. Wang, C. Zhang, J. Kurose, and D. Towsley, “Classification
of access network types: Ethernet, wireless LAN, ADSL, cable modem
or dialup?” Computer Networks, vol. 52, no. 17, pp. 3205–3217, 2008.

[23] S. Shetty, M. Song, and L. Ma, “Rogue access point detection by analyz-
ing network traffic characteristics,” in IEEE Military Communications
Conference (MILCOM’07), 2007.

[24] W. Wei, S. Jaiswal, J. Kurose, and D. Towsley, “Identifying 802.11 traffic
from passive measurements using iterative Bayesian inference,” in Proc.
IEEE INFOCOM’06, 2006.

[25] V. Baiamonte, K. Papagiannaki, G. Iannaccone, and P. D. Torino,
“Detecting 802.11 wireless hosts from remote passive observations,” in
Proc. IFIP/TC6 Networking, 2007.

[26] L. Watkins, R. Beyah, and C. Corbett, “A passive approach to rogue
access point detection,” in Proc. IEEE Globecom’07, 2007.

[27] A. Wald, Sequential Analysis. Dover Publications, 2004.
[28] R. Beyah, S. Kangude, G. Yu, B. Strickland, and J. Copeland, “Rogue

access point detection using temporal traffic characteristics,” in IEEE
Global Telecommunications Conference (GLOBECOM’04), 2004.

[29] H. Han, B. Sheng, C. Tan, Q. Li, and S. Lu, “A Timing Based
Scheme for Rogue AP Detection,” in IEEE Transactions on Parallel
and Distributed Systems, 2010.

14 YANG, SONG AND GU: ACTIVE USER-SIDE EVIL TWIN ACCESS POINT DETECTION USING STATISTICAL TECHNIQUES

[30] S. Garg and M. Kappes, “An experimental study of throughput for UDP
and VoIP traffic in IEEE 802.11 b networks,” in 2003 IEEE Wireless
Communications and Networking (WCNC’03), 2003.

[31] C. Mano, A. Blaich, Q. Liao, Y. Jiang, D. Cieslak, D. Salyers, and
A. Striegel, “RIPPS: Rogue identifying packet payload slicer detecting
unauthorized wireless hosts through network traffic conditioning,” ACM
Transactions on Information and System Security (TISSEC), vol. 11,
no. 2, pp. 1–23, 2008.

[32] C. Corbett, R. Beyah, and J. Copeland, “A passive approach to wireless
NIC identification,” in IEEE International Conference on Communica-
tions (ICC’06), 2006.

[33] A. Venkataraman and R. Beyah, “Rogue Access Point Detection Using
Innate Characteristics of the 802.11 MAC,” in International Conference
on Security and Privacy in Communication Networks (SecureComm’09),
2009.

[34] L. Ma, A. Teymorian, and X. Cheng, “A hybrid rogue access point
protection framework for commodity Wi-Fi networks,” in Proc. IEEE
Infocom’08, 2008.

[35] S. Srilasak, K. Wongthavarawat, and A. Phonphoem, “Integrated Wire-
less Rogue Access Point Detection and Counterattack System,” in
International Conference on Information Security and Assurance, 2008,
pp. 326–331.

[36] “Evil twin attack - also known as wifi phishing,” http://www.firewalls.
com/blog/post/view/identifier/wifi phishing evil twin attack/.

[37] D. MacDonald and W. Barkley, “Microsoft Windows 2000 TCP/IP Im-
plementation Details,” White paper, http://technet.microsoft.com/en-us/
library/bb726981.aspx.

[38] P. Sarolahti and A. Kuznetsov, “Congestion control in linux tcp,” in
Proceedings of the FREENIX Track: 2002 USENIX Annual Technical
Conference, 2002.

[39] H. Vu and T. Sakurai, “Collision probability in saturated IEEE 802.11
networks,” in Australian Telecommunication Networks and Applications
Conference, 2006.

[40] C. Foh and J. Tantra, “Comments on IEEE 802.11 saturation throughput
analysis with freezing of backoff counters,” IEEE Communications
Letters, vol. 9, no. 2, pp. 130–132, 2005.

[41] G. Bianchi and D. e Inf, “IEEE 802.11-saturation throughput analysis,”
IEEE communications letters, vol. 2, no. 12, pp. 318–320, 1998.

[42] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and
the effectiveness of caching.”

[43] K. Thompson, G. Miller, and R. Wilder, “Wide-area Internet traffic
patterns and characteristics,” IEEE network, vol. 11, no. 6, pp. 10–23,
1997.

APPENDIX
A. TMM and HDT Algorithm
Algorithm 1 Trained Mean Matching

/* Training Phase: */
1. Compute µ1,NAP and σ1,NAP

2. Filter one-hop server IATs beyond the range
3. Compute µ2,NAP

4. Compute µ1,EAP and σ1,EAP

5. Filter two-hop server IATs beyond the range
6. Compute µ2,EAP

7. Tθ = 1
2 (µ2,NAP + µ2,EAP)

8. Compute P1 and P2

/* Detection Phase: */
Λ = 0, θ0 = P1, θ1 = P2

for i = 0 do
Compute δi
if δi ≥ Tθ then

Λ = Λ + ln θ1 − ln θ0
else

Λ = Λ − ln(1 − θ1) − ln(1 − θ0)
end if
if Λ ≥ B then

return evil twin AP scenario
else if Λ ≤ A then

return normal AP scenario
end if

end for

Algorithm 2 Hop Differentiating Technique
Λ = 0, θ0 = P1, θ1 = P2

for i = 0 do
Compute αi

if αi ≥ αθ then
Λ = Λ + ln θ1 − ln θ0

else
Λ = Λ − ln(1 − θ1) − ln(1 − θ0)

end if
if Λ ≥ B then

return evil twin AP scenario
else if Λ ≤ A then

return normal AP scenario
end if

end for

Chao Yang is a Ph.D. candidate in the Depart-
ment of Computer Science and Engineering at Texas
A&M University. He received his B.S. degree in
Mathematics and M.S. degree in Computer Science
from Harbin Institute of Technology in China. His
research interests include network security, web se-
curity (especially social networking website secu-
rity) and smartphone security.

Yimin Song is a M.S. graduate from Department of
Computer Science and Engineering at Texas A&M
University (TAMU). During his Master’s career, he
was working on protecting the AP users from hack-
ing with Dr. Guofei Gu in SUCCESS Lab. Upon his
graduation, he started working for Juniper Networks.

Guofei Gu is an assistant professor in the Depart-
ment of Computer Science & Engineering at Texas
A&M University (TAMU). Before coming to Texas
A&M, he received his Ph.D. degree in Computer
Science from the College of Computing, Georgia
Institute of Technology. His research interests are
in network and system security, such as malware
analysis/detection/defense, intrusion/anomaly detec-
tion, web and social networking security. Dr. Gu is
a recipient of 2010 NSF CAREER award and a co-
recipient of 2010 IEEE Symposium on Security and

Privacy (Oakland’10) best student paper award. He is currently directing the
SUCCESS (Secure Communication and Computer Systems) Lab at TAMU.

