
DroidMiner: Automated Mining and Characterization of Fine-grained Malicious
Behaviors in Android Applications

Chao Yang, Zhaoyan Xu, Guofei Gu
Texas A&M University

{yangchao, z0x0427, guofei}@cse.tamu.edu

Vinod Yegneswaran, Phillip Porras
SRI International

{vinod, porras}@csl.sri.com

Abstract—DroidMiner is a new malicious Android app de-
tection system that uses static analysis to automatically mine
malicious program logic from known Android malware. Droid-
Miner uses a behavioral graph to abstract malware program
logic into a sequence of threat modalities, and then applies
machine-learning techniques to identify and label elements of
the graph that match harvested threat modalities. Once trained
on a mobile malware corpus, DroidMiner can automatically scan
a new Android app to (i) determine whether it contains malicious
modalities, (ii) diagnose the malware family to which it is most
closely associated, and (iii) precisely characterize behaviors found
within the analyzed app. While DroidMiner is not the first to
attempt automated classification of Android applications based
on Framework API calls, it is distinguished by its development
of modalities that are resistant to noise insertions and its use
of associative rule mining that enables automated association
of malicious behaviors with modalities. We evaluate DroidMiner
using 2,466 malicious apps, identified from a corpus of over 67,000
third-party market Android apps, plus an additional set of over
10,000 official market Android apps. Using this set of real-world
apps, DroidMiner achieves a 95.3% detection rate, with a 0.4%
false positive rate. We further evaluate DroidMiner’s ability to
classify malicious apps under their proper family labels, and
measure its label accuracy at 92%.

I. INTRODUCTION

Analysis of Android applications (apps) is complicated
by the nature of the interaction between the various entities
in its component-based framework. Existing static analysis
approaches for detecting Android malware rely on either
matching against manually-selected heuristics and program-
ming patterns [56, 23] or designing detection models that use
coarse-grained features such as permissions registered in the
apps [45]. In this work, we introduce DroidMiner, a new
approach to scalably detect and characterize Android malware
through robust and automated learning of fine-grained pro-
gramming logic and patterns in known malware. Specifically,
DroidMiner extends traditional static analysis techniques to
map the functionalities of an Android app into a two-tiered
behavior graph. This two-tiered behavior graph is special-
ized for modeling the complex, multi-entity interactions that
are typical for Android applications. Within this behavior
graph, DroidMiner automatically identifies modalities, i.e.,
programming logic segments in the graph that correspond to
known suspicious behavior. The set of identified modalities is
then used to define a modality vector. DroidMiner then uses
common modality vectors to offer a more robust classification
scheme, in which variant applications can be grouped together
based on their shared patterns of suspicious logic.

DroidMiner is intended to be a fast first-level filter and
not a complete malware analysis system. We anticipate that
programs identified as sharing common modalities with known

malicious apps would then be subject to more in-depth scru-
tiny through, potentially more expensive, dynamic analysis
tools [29, 46]. Our work formalizes and extends prior research
efforts that have employed simple permission- and heuristic-
based filtering to perform automated malware detection in An-
droid markets [56]. We demonstrate that it is indeed possible
to automatically perform significantly finer characterization
of malicious program patterns without incurring significant
additional performance costs.

We present DroidMiner’s algorithm for discovering and
automatically extracting malware modalities. While our ef-
forts are primarily focused on identifying and then charac-
terizing malware behavior, aspects of our methodology are
also directly applicable to automated characterization of a
broad class of Android application behaviors, including the
detection of shared security vulnerabilities [24]. We evaluate
DroidMiner using 2,466 malicious apps, identified from a
corpus of over 67,000 third-party market Android apps, plus
an additional set of over 10,000 official market Android apps
from GooglePlay [7]. Specifically, we measure the utility of
DroidMiner modalities with respect to three specific use cases:
(i) malware detection, (ii) malware family classification, and
(iii) malware behavioral characterization. Our results validate
that DroidMiner modalities are useful for classification and
capable of isolating a wide range of suspicious behavioral traits
embedded within parasitic Android applications. Furthermore,
the composite of these traits enables a unique means by which
Android malware can be identified with a high degree of
accuracy.

The contributions of our paper include the following:

• A description of our new two-tiered behavioral graph
model for characterizing Android application behavior,
and labeling its logical paths within known malicious apps
as malicious modalities.

• The design and implementation of DroidMiner, a novel
system for automated extraction of Android app mod-
alities: in particular use of δ-analysis in sensitive node
extraction and use of associative rule mining in automated
mining of associations between malicious behaviors and
modalities.

• An in-depth evaluation of DroidMiner with respect to its
run-time performance and efficacy in malware detection,
family classification, and behavioral characterization.

II. MOTIVATION AND SYSTEM GOALS

Program analysis techniques (e.g., data flow analysis and
control flow analysis) have been widely used to analyze and
detect traditional malware. Kolbitsch et al. proposed to detect
host-based malware by extracting malware’s behavior graph

through analyzing the function-call flow [38]. Fredrikson et al.
proposed to utilize control flow to extract discriminating spe-
cifications to identify a class of malware [34]. Christodorescu
et al. proposed to mine specific malicious behavioral patterns
(such as decryption loops) from tracking the data flow and
control flow of malware [26, 25].

Unlike traditional desktop-based malware, Android mal-
ware is composed of several components and has a complex
and event-driven programming paradigm involving multiple
entry points. Android defines a component-based framework
for developing mobile apps. Android apps comprise four types
of components: Activities, Services, Broadcast Receivers, and
Content Providers. Each component in an app works as a unit
performing certain tasks:

• Activities support basic functionalities such as interacting
with end-users through graphical user interfaces (GUIs);
each GUI (screen) is controlled by one Activity.

• Services are designed to provide interfaces in the back-
ground for communicating with other components and
applications. Thus, unlike activities, services do not rep-
resent any GUI and cannot be activated/stopped by users.
They will run as background processes forever until they
are stopped by some certain application components.

• Broadcast Receivers are designed to achieve the mech-
anism of incident response in Android. A receiver will
continuously listen to system-wide broadcast messages.
When it receives relevant messages, it will automatically
trigger corresponding registered events/operations.

• Content Providers act as database management systems,
from where other components/apps could query or store
an app’s data without the requirement of knowing how
the data is stored.

Android application authors could implement Android
components in an app as Java classes by inheriting corres-
ponding super classes defined in the Android SDK (e.g.,
Activity, Service, BroadcastReceiver or ContentProvider). An-
droid components are identified by other components through
registration in the applications’ manifest file (“AndroidMani-
fest.XML”). This enables these components to interact with
each other by using specific intents and framework API calls
defined in the Android Framework. For example, an activity
could activate a service by invoking the startService()
Framework API call. In addition, unlike traditional software,
the lifetimes of Android components are controlled by a series
of lifecycle API functions defined by the Android platform
(e.g., onStart() and onDestroy() used in a service will
start and stop the service, respectively). Moreover, the (data
and control) sub-flows in an app are typically loosely con-
nected. All these differences make Android program analysis
uniquely challenging and different from traditional malware
analysis.

We motivate our system design by introducing the
inner working of a real-world malicious Android ap-
plication. This malware sample (MD5: c05c25b769919f
d7f1b12b4800e374b5) belongs to the family of ADRD (a.k.a
HongTouTou). It attempts to perform the following malicious
behaviors in the background after the phone is booted: stealing
users’ personal sensitive information (e.g., IMEI and IMSI)
and sending them to remote servers, sending and deleting SMS
messages, downloading unsolicited apps, and issuing HTTP

search requests to increase websites’ search rankings on the
search engine.

As illustrated in Figure 1, HongTouTou registers a
receiver (named “MyBoolService”) to receive the boot intent
BOOT_COMPLETED message. Once the phone is booted, the
receiver will send out an alarm every two minutes and trigger
another receiver (named “MyAlarmReceiver”) by using three
API calls: AlarmManager(), getServiceSystem(),
and getBroadcast(). Then, MyAlarmReceiver starts
a background service (named “MyService”) by calling
startService() in its lifecycle call onReceive().
Once the service is triggered through onCreate() or
onStart()1, it will read the device ID (getDeviceId())
and subscriber ID (getSubscriberId()) in the phone,
and register an object handler to access the short message
database content://sms/)). Before sending out sensitive
information and communicating with the C&C server, the
service obtains network information (e.g., network types
such as “CMWAP”, “UNIWAP” and “wifi”) by invoking
two Framework API calls: ConnectivityManager()
and getActiveNetworkInfo(), and reading the
content provider content://telephony/carriers-
/preferapn. It then encrypts personal information by
using Cipher.getInstance(), Cipher.init()
and Cipher.doFinal(), and exfiltrates encrypted data
through SMS by using SmsManager.getDefault()
and sendTextMessage(), and issuing HTTP
requests by using DefaultHttpClient.execute().
Meanwhile, the service monitors changes to the SMS
Inbox database (content://sms/inbox/) by calling
ContentObserver.onChange() and deleting particular
messages using delete(). Finally, it also attempts to
download unsolicited APK files (e.g., “myupdate.apk”), to
receive C&C commands and data, and to visit search engines
by issuing HTTP requests.

The above description motivates an important design
premise that when malware authors design malicious apps to
achieve specific malicious behaviors, they typically require the
use of sets of framework API calls and specific resources (e.g.,
content providers). More specifically, although attackers may
attempt to launch malicious behaviors in a more surreptitious
way, they would still have to use those framework APIs or
access those important resources.

A. Goals and Assumptions

The goal of DroidMiner is to automatically, effectively
and efficiently mine Android apps and interrogate them for
potentially malicious behaviors. Given an unknown Android
app, DroidMiner should be able to determine whether or not
it is malicious. Going beyond just providing a yes or no
answer, our system should be able to provide further evidence
as to why the app is considered as malicious by including
a concise description of identified malicious behaviors. This
kind of information is typically considered the hallmark of a
good malware detection system. For example, DroidMiner can
inform us that a given app is malicious, and that it contains
behaviors such as sending SMS messages and blocking certain

1If the service is triggered as the first time, it will call onCreate and onStart;
otherwise, it will only call onStart.

Figure 1. Capabilities embedded in malware from the ADRD family. The sample achieves its malicious functionality by invoking a series of framework APIs
in order and accessing specific content providers.

incoming SMS messages. With such information, an informed
analyst could further infer that this is probably a money-
stealing app that uses SMS to register for a premium service,
spends money, and then suppresses the end-user notification.

The input into our system is an Android application de-
veloped with the Android SDK. Currently, we do not analyze
native Android applications implemented using the Android
Native Develop Kit (Android NDK). According to our observa-
tions, an overwhelming majority of Android applications today
are developed using the Android SDK. Furthermore, the vast
majority of malicious behaviors in Android apps are achieved
by using Android SDK rather than Android NDK. Even for
those malicious apps that use the NDK to achieve some
malicious behaviors, they typically also use certain Android
Framework APIs to obtain some auxiliary information. For
example, “rooting” malware (e.g., samples in the family of
DroidKungFu), which utilizes native code to achieve privilege
escalation, still needs to use specific Framework APIs to
obtain auxiliary information (e.g., the version of the operating
system) to successfully root the phone. Hence, the presence
of such APIs in the Dalvik bytecode could still provide hints
for detecting such malware. Extending our system to include
complete analysis of native code in Android applications is
future work and outside the scope of this paper.

III. SYSTEM DESIGN

DroidMiner contains two phases: Mining and Identifica-
tion. As illustrated in Figure 2, in the mining phase, Droid-
Miner takes both benign and malicious Android apps as input
data and automatically mines malicious behavior patterns or
models, which we call modalities. In the identification phase,
our system takes an unknown app as input, extracts a Modality
Vector (MV) based on our trained modalities, and outputs
whether or not it it is malicious, and which family it belongs
to. In addition to a simple yes/no answer, our system can also
characterize the behaviors of the app given the Modality Vector
representation.

An important component in our system is the Behavior
Graph Generator, which takes an app as input and outputs a
behavior graph representation. As the analysis of a real-world
malicious app shown in Figure 1, although Android malware
authors have significant flexibility in constructing malicious

code, they must obey certain specific rules, pre-defined by the
Android platform, to realize malware functionality (e.g., using
particular Android framework APIs and accessing particular
content providers). These framework APIs and sensitive con-
tent providers capture the interactions of Android apps with
Android framework software or phone hardware, which could
be used to model Android apps’ behaviors. With this intuition,
DroidMiner builds a behavior graph based on the analysis of
Android framework APIs and content providers used in apps’
bytecode.

In the Mining phase, DroidMiner will attempt to auto-
matically learn the malicious behaviors/patterns from a train-
ing set of malicious applications. The basic intuition is that
malicious apps in the same family will typically share sim-
ilar functionalities and behaviors. DroidMiner will examine
the similarities from the behavior graphs of these malicious
apps and automatically extract common subsets of suspicious
behavior specifications, which we call modalities. From an
intrusion detection perspective, these modalities are essentially
micro detection models that characterize various suspicious
behaviors found in malicious apps. We provide more detailed
descriptions in Section III-B.

In the Identification phase, DroidMiner will transform
an unknown malicious application into its behavior graph
representation (using Behavior Graph Extractor) and extract a
Modality Vector (based on all trained modalities), described in
Section III-C. Then, DroidMiner can apply machine-learning
techniques to detect whether or not the app is malicious.
DroidMiner also has a data-mining module that implements
Association Rule Mining to automatically learn the behavior
characterization of a given Modality Vector, described in
Section III-D.

A. Behavior Graph and Modality

Behavior Graph. DroidMiner detects malware by analyz-
ing the program logic of sensitive Android and Java framework
API functions and sensitive Android resources. To represent
such logic, we use a two-tiered graphical model. As shown
in Figure 3, at upper tier, the behaviors (functionalities) of
each Android app could be viewed as the interaction among
four types of components (Activities, Services, Broadcast
Receivers, and Content Observers). We represent this tier using

!"#"#$% &'(#)*+,)-#%

./(%0,/(/%

!,12,3(%4(5(+)-#%

6(7,8"-3%07,3,+5(3"9,)-#%

!,12,3(%:,;"1<%
01,//"*+,)-#%

=(#/")8(%
>-'(/%

:,;%?%
:,;%@%
:,;%A%
B%
:,;%>%

:C#+)-#%
!-',1")(/%

D(/-C3+(%
!-',1")(/%

6(7,8"-3%E3,F7/%

6(7,8"-3%E3,F7/%

!,1"+"-C/%,#'%6(#"$#%
G#'3-"'%,FF/%H-3%;"#"#$%

!-',1"5<%%
E(#(3,)-#%

6(7,8"-3%
E3,F7%
E(#(3,)-#%

=(#/")8(%
>-'(%
IJ53,+)-#%

!-',1"5<%K(+5-3/%

LMN?N?NMN?NMO%
LMN?N?NMN?NMO%
LMN?N?NMN?NMO%
LMN?N?NMN?NMO%

6(7,8"-3%
E3,F7%
E(#(3,)-#%

!-',1"5<%%
K(+5-3%
E(#(3,)-#%

0,#'"',5(%G#'3-"'%,FF%

Figure 2. DroidMiner System Architecture

a Component Dependency Graph (CDG). At the lower
tier, each component has its own semantic functionalities and
a relatively independent behavior logic during its lifetime.
Here, we represent this independent logic using Component
Behavior Graphs (CBG).

Figure 3. Two-tier behavior graph.

The Component Dependency Graph (CDG) (upper tier
of Figure 3) represents the interaction relationships among all
components in an app. In particular, each node in the CDG
is a component (Activity, Service, or Broadcast Receiver).
(Note that multiple nodes could belong to the same type of
component.) There is an edge from one node vi to another node
vj , if the component vi could activate the start of component
vj’s lifecycle. For example, in terms of the malware sample
illustrated in Figure 1, since MyAlarmReceiver could activate
MyService by using startService(), its CDG has an edge
from a broadcast receiver node MyAlarmReceiver to a service
node MyService.

The Component Behavior Graphs (CBG) (lower tier
of Figure 3) represents each component’s lifetime 2 behavior
logic (functionalities), i.e., each CBG represents the control-
flow logic of those permission-related Android and Java API
functions, and actions performed on particular resources of

2Lifetime, as defined by the Android, is time between the moment when
the Android OS considers a component to be constructed and the moment
when the Android OS considers the component to be destroyed.

each component. Specifically, as illustrated in Figure 3, a CBG
contains four types of node:

• A root note (vroot), denoting the component itself (e.g.,
one Activity or one Service).

• Lifecycle functions (Vlcf), used to achieve the runtime
logic of specific type of component (e.g., onCreate()
in an activity, onReceive() in a receiver, and
onStart() in a service).

• Permission-related API functions (Vpf), representing
those permission-related (Android SDK or Java SDK)
API functions (e.g., Java API Runtime.execute()
or Android API sendTextMessage()). For simplicity,
in the rest of paper, we refer both lifecycle functions and
API functions as framework API functions.

• Sensitive resource (Vres), i.e., sensitive data (files or
databases) that are accessed by the component. In this
work, we consider resources as content providers (e.g.,
content: //sms/inbox/), which could be exten-
ded to any other type of sensitive data. The usage of
framework API functions and sensitive resources in an
app essentially captures the interactions of an app with
the Android platform hardware and sensitive data. Hence,
the control-flow logic of framework API functions and the
actions performed on those sensitive resources reflect an
application’s range of capabilities.

The edges in CBG represent the control-flow logic of
framework API functions and sensitive resources. In terms
of framework API functions, we consider that there is a
direct edge from function node vi to vj in the CBG, if
(1) when vi and vj are in the same control-flow block, vj
is executed just after vi with no other functions executed
between them; or (2) when vi and vj are in two continuous
control-flow blocks Bi and Bj respectively (i.e., Bj follows
Bi), vi is the last function node in Bi and vj is the first
node in Bj . Then, we call vj “is a successor of” vi. For
example, in terms of the malware sample illustrated in Figure
1, there is an edge from smsManager.getDefault() to
sendTextMessage(). In terms of sensitive resources, since

our work mainly focuses on analyzing the control-flow of
sensitive functions rather than the data flow of sensitive data,
we simply consider that there is an edge from the root to the
resource vr, if the component uses that sensitive resource3.

Modality. We use the term, modalities to refer to mali-
cious behavior patterns that are mined from behavior graphs
of Android malware. More specifically, each modality is
an ordered sequence of framework API functions (function
modality) or a set of sensitive resources (resource modality)
in commonly shared in malicious apps’ behavior graphs4,
which could be used to implement suspicious activities (e.g.,
sending SMS messages to premium-rate numbers or stealing
sensitive information). As an example, the malware sample
illustrated in Figure 1 relies on a function modality with an
ordered sequence of two framework functions (onChange()
→ ContentResolver.delete()), and a resource mod-
ality (content://sms/inbox/) to partially achieve the
malicious behavior of deleting messages in the SMS inbox.

B. Mining Modalities

Our desire to conduct efficient mining of modalities from
large malware corpora calls for an automated approach to
mining malicious patterns. We now describe the details of our
modality mining process, which involves the following three
steps: Behavior Graph Generation, Sensitive Node Extraction,
and Modality Generation.

1) Behavior Graph Generation: The generation of the
behavior graph of an app contains two phases: generating CDG
and generating CBG. The generation of CDG is relatively
straightforward. The nodes in an app’s CDG are acquired
by analyzing activities, receivers, and services registered in
its manifest file (“AndroidManifest.xml”). As a special case,
DroidMiner extracts runtime the Broadcast Receiver by ana-
lyzing instances of Context .registerReceiver() in-
stead of parsing the manifest file. Much like [54], DroidMiner
acquires the edges of an app’s CDG by analyzing the usage
of intents in each component. For example, an intent used
in startActivity(Intent) can activate an activity; an
intent used in startService(Intent) can start a back-
ground service.

Since Android is component driven, and each compon-
ent has its own lifetime execution logic, the extraction of
control-flow logic of framework API functions (rather than
the control-flow logic of methods in traditional program ana-
lysis) described in the model of our CBG is more complex,
which involves the following three steps: Generate Method
Call Graph, Generate Control-Flow Graph, and Replace User-
Defined Methods.

Step 1: Generate Method Call Graph. For each component,
our system generates a method call graph (MCG) containing
two types of nodes: Android lifecycle functions and user-
defined methods. Since each type of component has fixed
lifecycle functions (e.g., onCreate() in an Activity), Droid-
Miner extracts lifecycle functions by analyzing method names

3We could also choose to build an edge from a framework API function
(that uses that resource) to the resource, which relies on the data flow analysis.
More discussion of our strategy could be found in Section VI.

4Although modalities described in this paper are localized within a CBG,
our work could be extended to include cross CBG modalities with the usage
of CDG.

in the component according to the type. Those user-defined
methods could be identified by using a static analysis tool. As
illustrated in Figure 4(a), there is a directed edge from method
M0 to M1, which implies M0 calls M1.

Step 2: Generate Control-Flow Graph. To extract the pro-
gramming logical usage of framework API calls, DroidMiner
first extract each method’s control-flow graph (CFG) via
identifying branch-jump instructions in the method’s bytecode
(e.g., if-nez or packed-switch). Each node is a block
of Dalvik bytecode without any jump-branch instructions. For
example, M0 with five blocks is illustrated in Figure 4(b).
There is a directed edge from block B0 to B1, if B1 is
a successor block of B0. Then, each block is represented
as ordered sequence of framework API functions and user-
defined methods, which are extracted from the Dalvik bytecode
with function call instructions (e.g., invoke-direct). We
label a block as “null”, if it does not contain any function
call instructions . For example, in the method M0, if (1) B0

contains two API functions and user-defined method M1, with
the execution order of f01, M1 and f02; (2) B1 and B3 do not
contain any function calls; (3)B2 contains method M2 and one
API function f21; (4) B3 contains one API function f41, then
the control-flow graph of M0 could be formed as Figure 4(c).

Step 3: Replace User-Defined Methods. As illustrated in
Figure 4(c), since each leaf in the method-call graph does not
call any other user-defined method, the leaf either contains
a subgraph of framework API functions or is “null”. Then,
our approach replaces its position in its parents’ control-
flow graphs with that subgraph. This process is recursively
performed, until all user-defined methods are replaced with
framework API functions. For example, if (1) M1 contains
three framework API functions (fm1, fm3, and fm4) and one
“null” node after replacing its children methods M3 and M4

as illustrated in the middle of Figure 4(d), and M2 does not
contain any function nodes, then after replacing its children
methods M5 and M6, the graph will be transformed to Figure
4(d). Finally, the CBG will be generated by removing those
leaves that are “null”. After the above three steps, each app’s
CBG could be generated that represents the control flow of its
framework API calls.

2) Sensitive Node Extraction: A modality is essentially an
ordered sequence of framework API functions and a set of
sensitive resources that are commonly observed in malicious
apps behavioral graphs. We denote those framework API
functions and sensitive resources as sensitive nodes (the former
are called sensitive function nodes, while the latter are called
sensitive resource nodes).

We use two strategies to automatically extract sensitive
nodes. The first strategy is based on the observation that
malware samples belonging to the same family tend to share
similar malicious logic. Such an observation has been validated
by a recent study, which reports that Android malware in
the same family tends to hide in multiple categories of fake
versions of popular apps [1]. Based on this intuition, we
group known malware samples according to their families.
(Note that the process of deriving the family label for known
malware is only used in the mining phase and depends on the
way of collecting malware. DroidMiner automatically acquires
the malware’s family label by parsing antivirus reports. More
details are provided in Section IV-B).

(a) MCG (b) CFG

(c) Transformed CFG (d) CBG with API functions

Figure 4. Illustration of generating a CBG with framework API functions.

Then, for each malware family, we extract function nodes
and resource nodes that are commonly shared by at least θ%
members in this family 5.

Our second strategy is based on the observation that
malware samples hosted on third-party market websites tend
to be parasitic, i.e., they masquerade as popular benign apps
by injecting malicious payloads into original benign apps.
Based on this intuition, we automatically extract sensitive
nodes by calculating the (δ), i.e., additional bytecode between
the known malicious app and official Android apps sharing
similar application names. The official apps are acquired by
automatically searching for known malicious app names in
GooglePlay. (We skip this process for known malware whose
names are not registered in GooglePlay.)

In practice, our two strategies can be complementary. To
detect malicious apps, our approach relies on the control-flow
logic of these sensitive nodes. Also, the effect of those false
positive sensitive nodes could be further decreased when we
add benign apps in training the detection model to decrease
the weight of those benign patterns. In terms of the false
negatives induced by the second strategy, although not all apps
from the GooglePlay are benign, this market is still the only
official one with the best reputation for Android apps. Also,
if the known malware family set contains sufficient malware
samples, those missed patterns through the comparison with
official apps could still be found by using the first strategy.

3) Modality Generation: As defined in Section III-A, we
now detail how we automatically generate function modalities
and resource modalities.

Intuitively, our system generates function modalities by
mining an ordered sequence (path) of sensitive function nodes
from known malware samples’ behavior graphs, as illustrated
in Figure 2. In particular, for each path of each known
malware’s CBG, we denote a subpath of it as a sensitive path,

5In our preliminary experiments, we set the threshold as 30%. Empirically,
we found that the number of modalities does not change significantly between
30% and 90%.

if it starts from one sensitive function node and ends with
another sensitive function node. Then, after removing those
non-sensitive nodes sitting in the middle of the sensitive path,
we generate function modalities from the transformed sensitive
path by extracting all of its subsequences. Generating function
modalities involves the following two steps: Extract Sensitive
Path and Extract All Subsequences.

Step 1: Extract Sensitive Path. For each pair of sensitive
nodes Si and Sj , we extract sensitive paths Pij of framework
API functions from all known malware samples’ CBGs, if
Pij starts from Si and ends with Sj . In particular, for each
path in the malware’s CBG, we generate modalities from the
longest sensitive path, which will cover the results extracted
from those shorter sensitive paths. As an illustrative example in
Figure 4(d), if f01, fm4 and f02 are sensitive nodes, the longest
sensitive path could be illustrated as Figure 5(a). Then, we
could generate a transformed path of function nodes, through
removing non-sensitive nodes in the middle. In the previous
example, a transformed sensitive path f01 → fm4 → f02 can
be extracted by removing two non-sensitive nodes fm1 and
“null” in the middle.

Step 2: Extract All Subsequences. We generate function
modalities by extracting all order-preserving6 subsequences of
the transformed path of sensitive function nodes. Accordingly,
we could mine four function modalities from the previous
example (see Figure 5(b)). Since DroidMiner utilizes all
subsequences to generate the modalities instead of using the
original single long sequence/path, DroidMiner is resilient to
many evasion attempts by malware, e.g., insertion of loop
framework API calls in the middle that serve no purpose other
than adding noise. Hence, our modalities are a more robust
representation of specific malware programming logic than
using simple call sequences or frequencies.

f01 fm1 null fm4 f02

(a) Extract Sensitive Path
f01 fm4 f01 f02

(1) Modality 1 (2) Modality 2
fm4 f02 fm4 f02 f01

(3) Modality 3 (4) Modality 4
(b) Extract All Subsequences

Figure 5. An illustration of function modality generation.

The detailed algorithm for generating function modalities
can be seen in Algorithm 1. We take a sensitive node set V
and a behavior graph set G as inputs. For each graph g ∈ G,
we extract the set P containing all of its paths. Then, for each
path p ∈ P , we generate an order-preserving array S of all of
its sensitive nodes. Next, we add all unique subsequences of
S to the function modality set. Finally, we output Mf , which
is the composite modality set generate by the analysis of all
malware samples. As sensitive resources comprise of content
providers that typically do not have strong control-flow logic
(unlike framework API functions), we consider each content
provider as a resource modality in isolation.

6This implies that the order of two function nodes in the subsequece remains
the same as in the original path.

Algorithm 1 Generating Function Modalities
pi: ith (0 ≤ i ≤ n) API function node in path p
S: An ordered sequence of API functions
Input: Sensitive Node Set V and Behavior Graph Set G

Output: Function Modality Set Mf

1: Mf ← {}
2: for g ∈ G do
3: P ← getPathSet(g)
4: for p ∈ P do
5: if p0 ∈ V and pn ∈ V then
6: S ← {p0}
7: for 1 ≤ i ≤ n− 1 do
8: if pi ∈ V then
9: S ← {pi}

10: end if
11: end for
12: S ← {pn}
13: for m ∈ getsubSequenceSet(S) do
14: if m /∈ Mf then
15: Mf ← Mf ∪ m
16: end if
17: end for
18: end if
19: end for
20: end for
21: Return Mf

C. Identification of Modalities

After mining modalities, the second phase of DroidMiner
involves the identification of modalities in unknown apps (i.e.,
determine which modalities are contained in unknown apps).
As illustrated in Figure 2, for each unknown app, DroidMiner
identifies its modalities by extracting its behavior graph and
generating a Modality Vector, specifying the presence of mined
modalities.

More specifically, for each unknown app, DroidMiner
generates its behavior graph and extracts sensitive paths from
the graph. Then, DroidMiner obtains all potential sub-paths by
generalizing those sensitive paths. For each sub-path, if it is a
modality (belonging to the mined modality set), we consider
this app to contain this modality. This process of modality
extraction is highly efficient due to the limited number of
sensitive nodes present in each app.

In this way, once M different modalities are mined from
known malware samples, each app could be transformed into
a boolean vector (X1, X2, . . . , XM), denoted as a “Modality
Vector”: Xi = 1, if the app contains the modality Mi;
otherwise, Xi = 0. In this way, an app’s Modality Vector could
represent its spectrum of potentially malicious behaviors.

D. Modality Use Cases

We introduce how to use an Android app’s Modality Vector
to address the following three use-case scenarios: Malware
Detection, Malware Family Classification, and Malicious Be-
havior Characterization.

Malware Detection. The first use case involves simply
determining whether or not an Android app is malicious.
In fact, it is challenging to make a confirmative decision.
For example, although some sensitive behaviors (e.g., sending
network packets or SMS messages to remote identities) are
commonly seen in malware, without a deep analysis about
such behaviors (e.g., the analysis of the reputation of those
remote identities), we cannot blindly declare all apps with

such behaviors to be malware. However, as seen in Table
VI, Android malware typically needs to use multiple sensitive
functions (or modalities) to achieve its objectives: e.g., (i)
sending SMS AND blocking notifications or (ii) rooting the
phone AND installing new apps.

According to this observation, DroidMiner considers an
app to be malicious only if the cumulative malware indication
from all of its modalities exceeds a sufficient threshold. That
is, the single usage of one modality in a benign app will not
cause it to be labeled as malware. We use machine learning
techniques (described in Section IV) to learn the indication of
each modality used in the cumulative scoring process. More
specifically, we consider each of mined modalities as one
detection feature in the machine-learning model. Thus, the
number of detection features is equal to the dimensionality
of the Modality Vector. By feeding modality vectors extrac-
ted from known malware and benign apps into the applied
machine-learning classifier, the indication of those modalities
that are highly correlated with malicious apps are up-weighted
in judging an app to be malicious; those modalities that are
also commonly used in benign apps are down-weighted.

DroidMiner could also be designed to detect malware
using pre-defined (strict) detection rules, like policy-based
detection systems discussed in Section V, which may lead to a
lower false positive rate. However, such a policy-based design
requires considerable domain knowledge and comprehensive
manual investigations of malware samples, which can limit
overall scalability and thus is more suitable to be applied to
detect specific attacks. Our goal of designing a fully automated
approach motivated us to use the learning-based approach
instead of policy-based ones.

Malware Family Classification. Another use case is auto-
matically determining which malware family an malicious app
that is determined to belong to. This problem is also important
for understanding and analyzing malware families. In fact,
many antivirus vendors still rely on common code extraction
techniques, which typically manually extract signatures after
gathering a large collection of malware samples belonging to
the same malware family.

Different malware samples in the same family tend to share
similar malicious behaviors, which could essentially be depic-
ted by Modality Vectors. Thus, the degree of similarity between
the Modality Vectors of two malware samples provides an
indication of whether these two samples belong to the same
family. Hence, with the knowledge of Modality Vectors mined
from malware samples belonging to existing malware families,
we could build a malware family classifier for unknown
malicious apps by using machine learning techniques.

Malicious Behavior Characterization The final use case
involves characterizing the specific malicious functionality that
is embedded within a candidate app. To solve this problem, we
essentially need to know which modalities could be used to
achieve specific malicious behaviors. Then, if an app contains
those modalities, we could claim with high confidence that the
app is malicious.

To realize this goal, we use a well-known data min-
ing technique, called “Association Rule Mining”. The prob-
lem of association rule mining is defined as follows: Let
A = {a1, a2, . . . , an} be a set of binary attributes. Let

B = {B1, B2, . . . , Bm} be a set of items, where Bi =
{ai1, ai2, . . . , ain}. A rule is defined as an implication of the
form X ⇒ Y , where X,Y ⊆ A and X ∩ Y = φ. The
attribute sets X and Y are called antecedent and consequent
of the rule, respectively. It represents the scenario that if the
attributes in X are true, then the attributes in Y are also
true. The support supp(X) of an attribute set X is defined
as the proportion of items in the item set whose attributes
in X are all true. The confidence of a rule is defined as
conf(X ⇒ Y) = supp(X

⋃
Y)/supp(X), which could be

interpreted as an estimate of the probability P (Y |X).

We abstract this as an Association Rule Mining problem,
i.e., we need to mine relationships (association rules) from
modalities to malicious behaviors. More specifically, Droid-
Miner derives association rules by analyzing the relationship
between the modality usage in existing known malware famil-
ies and their corresponding malicious behaviors. e.g., Zsone
has two known malicious behaviors: (i) sending SMS and
(ii) blocking SMS. Hence, we attempt to associate modalities
generated from this family to these two behaviors.

Our assumption is that in most cases malware samples
belonging to particular malware families tend to express sim-
ilar malicious behaviors. (While our ground truth may not
be perfect, we believe that this assumption will be valid
for most cases.) More specifically, given a set of modalities
M = {M1,M2, . . . ,Mn} and a set of malware samples
S = {S1, S2, . . . , Sn} with their malware family names,
for each malware sample Si, we extract its Modality Vector
SMi = {Mi1,Mi2, . . . ,Mip}. Given a set of malicious beha-
viors B = {B1, B2, . . . , Bq}, we generate a behavior vector
for Si, Bi = {Bi1, Bi2, . . . , Biq}, where Bik = 1, if Si’s
family contains malicious behavior Bk; otherwise Bik = 0.
Accordingly, as illustrated in Table I, we build a behavior
matrix BMn×(p+q) by setting: (1) BMi,j = (Si,Mj) denotes
whether ith malware sample in the malware set contains jth
modality in the modality set, where 1 ≤ i ≤ n and 1 ≤ j ≤ p;
(2) BMi,p+k = Bik, where 1 ≤ i ≤ n and 1 ≤ k ≤ q.

Table I. EXAMPLE BEHAVIOR MATRIX.

M1 M2 ... Mp B1 ... Bq

S1 0 1 ... 1 0 ... 1
S2 1 0 ... 0 1 ... 0
S3 0 1 ... 0 0 ... 1
...
Sn 0 0 ... 1 1 ... 1

Thus, the problem of identifying which modalities could
be used to achieve the malicious behavior Bk could be
transformed to the following problem:

Finding a set of modalities, Mk = {Mi|Mi ∈M, 1 ≤ i ≤
m},

s.t., C(Mk) = conf(Mk ⇒ Bp+k) = supp(Mk

⋃
Bp+k)/

supp(Mk) ≥ Tconf , where Tconf is a pre-defined threshold.

Then, we consider the set of modalities Mk that could
be used to achieve malicious behavior Bk with a confidence
score of C(Mk). Accordingly, we mine association rules from
modalities to malicious behaviors with high confidence scores
and sufficient support scores, and apply them to candidate
malicious apps to characterize their malicious behaviors.

IV. EVALUATION

We present our evaluation results by implementing a pro-
totype of DroidMiner and applying it to apps collected from
existing third-party Android markets and from the official
Android market (GooglePlay).

A. Prototype Implementation

We implement a prototype of DroidMiner on top of a
popular static analysis tool (Androguard [2]). In our exper-
ience, comparing with other public Android app decompilers
(e.g., Dex2Jar [6] or Smali [10]), Androguard produces more
accurate decompilation results, especially in terms of handling
exceptions. The prototype decompiles an Android app into
Dalvik bytecode, further builds its behavior graph and mines
its modalities based on the bytecode.

The method call graph in an app is built by analyzing
the caller-callee relationships of all methods used in the app.
For each method, DroidMiner extracts its callee methods by
analyzing the invoke-kind instructions (e.g., invoke-virtual and
invoke-direct) used in the method. Since Android is an event-
driven system, the entrance of an app could be UI event
methods (e.g., onClick) instead of lifetime cycle methods.
However, such UI event methods could only be executed
after the corresponding UI event listeners are registered (e,g.,
setOnClickListener). Thus, to make the program logic
more complete, DroidMiner adds an edge from UI events
listeners to corresponding UI event methods, although there
is no such caller-callee relationship in the bytecode. We use a
similar strategy to address registered event handlers by linking
the handle method (e.g., handleMessage) to its correspond-
ing construction method (e.g., Landroid/os/Handler.init). We
also modify Androguard to generate the control-flow graph
in each method by analyzing branch jump instructions (e.g.,
if-eq).

1 invoke-virtual v8, v3, Lcom/xxx/yyy/MyService;->getSystemService(Ljava/lang/String;)
2 move-result-object v2
3 check-cast v2, Landroid/telephony/TelephonyManager;
4 invoke-virtual v2, Landroid/telephony/TelephonyManager;->getDeviceId()
5 move-result-object v3
6 iput-object v3, v8, Lcom/xxx/yyy/MyService;->imei Ljava/lang/String;
7 invoke-virtual v2, Landroid/telephony/TelephonyManager;->getSubscriberId()
8 iget-object v3, v8, Lcom/xxx/yyy/MyService;->smsObserver Lcom/xxx/yyy/SMSObserver;
9 if-nez v3, +1e
10 new-instance v3, Lcom/xxx/yyy/SMSObserver;
11 new-instance v4, Landroid/os/Handler;
12 invoke-direct v4, Landroid/os/Handler;-><init>()V
13 invoke-direct v3, v4, v8, Lcom/xxx/yyy/SMSObserver;-><init>
14 iput-object v3, v8, Lcom/xxx/yyy/MyService;->smsObserver Lcom/xxx/yyy/SMSObserver;
15 invoke-virtual v8, Lcom/xxx/yyy/MyService;->getContentResolver()
16 move-result-object v3
17 const-string v4, ’content://sms/’
18 invoke-static v4, Landroid/net/Uri;->parse(Ljava/lang/String;)Landroid/net/Uri;

Figure 6. The Dalvik bytecode of the method Myservice.onCreat()
used in a real-world malware with capabilities of reading device ID and
accessing SMS.

As an illustrative example, Figure 6 shows part of Dalvik
code for the method Myservice.onCreate() used in the mal-
ware sample described in Section II. From Line 1, Droid-
Miner will build an edge from Myservice.onCreat()
to Myservice.getSystemService() in its method call
graph. Frome Line 9, which contains a branch-jump instruction
(if-nez), DroidMiner will generate a new code block, while
generating the control-flow logic. Two sensitive framework
API functions will be recorded from Line 4 and Line 7, and
one sensitive resource (content provider) will be recorded from

Line 17. Thus each application’s modalities could be mined
through examination of its usage of framework API functions
and content providers.

B. Data Collection

We crawled four representative marketplaces, includ-
ing GooglePlay, and three alternative Android marketplaces
(SlideMe [9], AppDH [5], and Anzhi [4]). The collection
from the alternative Android markets occurred during a 13-day
period, from June 3 through June 15, 2012. The GooglePlay
collection was harvested during a two-months period, from
August 23 through October 23. Our resulting app corpus
is described in Table II. In total, we collected 67,822 free
apps, where 17% of the apps (11,529) were collected from
GooglePlay, and the remaining 83% (56,268) were harvested
from the alternative markets.

Table II. SUMMARY OF ANDROID APP COLLECTION

Official Market SlideMe AppDH Anzhi
Location U.S.A U.S.A China China

Number of Apps 11,529 15,129 2,349 38,790

Total Apps 11,529 (17%) 56,268 (83%)
67,797

Next, we attempt to isolate the set of malicious apps from
our corpus by submitting the set of apps from the alternative
markets to “VirusTotal.com”, which is a free antivirus (AV)
service that scans each uploaded Android app using over
40 different AV products [12]. For each app, if it has
been scanned earlier by an AV tool, we can obtain the full
VirusTotal report, which includes the first and last time the
app was seen, as well as the results from the individual AV
scans. For example, BitDefender has a report for a malicious
application (MD5: 7acb7c624d7a19ad4fa92cacfddd9257) as
Droid.Trojan.KungFu.C. In this way, we obtained 1,247
malicious apps identified by at least one AV product. For each
malicious app, we extract its associated malware family name,
and when AV reports disagree, we derive a consensus label
using the label that dominates the responses from the AV
tools. In addition, we obtain another set of malware samples
from Genome Project [3, 55]. This dataset contains the family
label for each malware sample. After excluding those already
appeared in our crawled malware set, there are 1,219 different
malware apps. Thus, in total, our malware dataset consists of
2,466 (1,247+1,219) unique malicious apps that belong to 68
different malware families.

In addition to the malware dataset, we also construct a
benign dataset using popular apps collected from GooglePlay.
To further clean this dataset, we submit our candidate set of
11,529 free GooglePlay apps to VirusTotal, of which 1,126
apps were labeled as malicious by one AV product. We
discarded those apps and constructed our benign dataset using
the remaining 10,403 free GooglePlay Android apps. Clearly,
the benign app dataset may still contain some malicious apps,
but this set has at least been vetted by the GooglePlay anti-
malware analysis and by more than 40 AV products from
VirusTotal. The problem of producing a perfect benign app
corpus remains a hard challenge, and we note that a similar
approach to construct a benign app dataset has been used in
prior related work [45].

C. Evaluation Result

Below, we summarize our system evaluation results for
malware detection, malware family classification, behavior
characterization, and efficiency.

1) Malware Detection.: As introduced in Section III-D, we
utilize machine learning techniques to conduct malicious app
detection. To better evaluate the effectiveness of DroidMiner,
we utilize four widely used machine learning (ML) classifiers:
NaiveBayes, Support Vector Machine (SVM), DecisionTree and
Random Forest. NaiveBayes is a probabilistic-based classifier.
It is fast, easy to understand, and has been widely used in spam
detection studies. Since this classifier relies on the assumption
that each individual feature is distributed independently of
other features, its main disadvantage is that it could not
learn interactions between features. Accordingly, it is not very
powerful when the feature set is complex and the training
set is big with high variance. SVM is a kernel-function-
based classifier, very popular for text classification problems. It
could achieve a relatively high accuracy regarding over-fitting,
especially when the number of the feature dimensions is very
high. However, its performance is sensitive to the choice of
the kernel functions and parameters.

Decision Tree and Random Forest are two rule-based
classifiers. They are non-parametric and could easily handle
feature interactions. Thus, they could achieve high perform-
ance, even when the data is not linearly separable. Random
Forest considers the problem of over-fitting, which could
perform better than Decision Tree. Specifically, Random Forest
is fast, scalable and often the winner for many problems in
classification. Also, Random Forest does not require developers
to excessively tune parameters as SVM does.

For each classifier, we conduct a series of experiments
using a ten-fold cross validation to compute three performance
metrics: False Positive Rate, Detection Rate, and Accuracy.
Specifically, we divide both malicious and benign datasets
randomly into 10 groups, respectively. In each of the 10
rounds, we choose the combination of one group of benign
apps and malicious apps as the testing dataset, and the re-
maining 9 groups as the training dataset. We further compare
the performance of DroidMiner with another classifier (used
in [45]), which uses registered permissions as major detection
features, based on our collected dataset.7 Although [45] is
mainly designed to rank apps’ risks based on apps’ registered
permissions and categories, it also reports the true positive rate
and false positive rate by choosing a particular risk value as
indicative of malicious apps.

Table III shows the results of using permission versus
DroidMiner based on different classifiers. We see that for all
four classifiers, the usage of modalities as the input feature set
(DroidMiner) produces a higher detection rate and lower false
positive rate than the approach of using permission features
[45]. In particular, using Random Forest DroidMiner achieved
a detection rate of 95.3%, roughly 10% higher than the that of
using permission. Furthermore, DroidMiner produced a lower
false positive rate of (0.4%), or around 1/5th of the compared

7We are unable to provide a direct corpus comparative evaluation with other
detection systems discussed in related work [56, 23], because they are not
publicly available and it is generally difficult to completely reproduce similar
systems and parameter selections.

Table III. EFFECTIVENESS OF MALWARE DETECTION (DR DENOTES
DETECTION RATE, FP DENOTES FALSE POSITIVE).

Classifier NaiveBayes SVM
Method Permission DroidMiner Permission[45] DroidMiner

DR 75.1% 82.2% 78.8% 86.7%
FP Rate 7.2% 4.4% 3.5% 1.1%
Classifier Decision Tree Random Forest
Method Permission[45] DroidMiner Permission[45] DroidMiner

DR 85.7% 92.4% 87.0% 95.3%
FP Rate 2.2% 1.0% 2.0% 0.4%

Table IV. TRAINING TIME (IN SECONDS).

Classifier NaiveBayes SVM Decision Tree Random Forest
Time (s) 0.15 141.21 76.08 8.15

approach. Also, DroidMiner could maintain the detection rate
higher than 86% for all four classifiers. In addition, we can
see that Decision Tree, Random Forest and SVM could achieve
better performance than NaiveBayes by using both permissions
and modalities as inputs, mainly because the features (both
permissions and modalities) are not totally linear separable.
In terms of permission, particular permissions with semantic
coordination are often granted together (e.g., SEND_SMS and
RECEIVE_SMS). In terms of modalities, a shorter (more
general) modality may be a part of a longer (more specific)
modality. Also, since Random Forest could solve over-fitting
without the need of tuning parameters, its performance could
beat Decision Tree and SVM.

Training Time. In this experiment, we compare the aver-
age training time used for each classifier with DroidMiner.
As seen in Table IV, we find that the training time used
for all four classifiers could be maintained lower than 150
seconds. Particularly, although NaiveBayes could not achieve
an accuracy as high as other classifiers, it is the fastest one
(taking only 0.15 seconds) to train the model, which validates
what have we discussed about this classifier. We see that
Random Forest is both fast (taking only 8.15 seconds) and
accurate.

Analysis of False Positives and False Negatives. To
understand false positives/negatives, we randomly choose 20
false negatives and 15 false positives generated in the case of
Random Forest for further investigation that were induced in
the first two rounds of our ten-fold cross validation experiment.
Through manually analyzing these apps, we find four possible
reasons that induce those false negatives: (i) Adware: we
find DroidMiner missed identifying 11 instances of adware
(seven belong to Leadbolt and four belong to Airpush), due
to the diverse implementation of those adware examples. (ii)
Native code: Since DroidMiner relies on the static analysis
on the Dalvik code, it generated four false negatives that
utilize native code to achieve malicious goals (e.g., rooting
the phone). (iii) Dynamic payload: we also find four malware
instances that will dynamically launch malicious payloads by
either downloading from the remote servers (e.g., Plankton)
or modifying local files (AnserverBot). Since such malware
initially does not contain (or activate) malicious payloads,
DroidMiner could not detect them through statically analyzing
Dalvik code. (iv) False label: we also found 1 false negative,
which is labeled as malware belonging to the family of Pjapps
by Sophos in our data collection phase. However, our manual
analysis does not find any malicious payload from the app that
could be seen in other apps belonging to this family. Then,

Table V. MALWARE SAMPLES USED FOR CLASSIFICATION

Ind Family Num Ind Family Num
1 GingerMaster 166 7 KMin 52
2 GoldDream 57 8 BaseBridge 122
3 Airpush 568 9 Geinimi 69
4 AnserverBot 187 10 DroidKungFu3 327
5 DroidKungFu 70 11 DroidKungFu4 104
6 Leadbolt 52 12 Plankton 194

we re-submited this app to VirusTotal again and found that
Sophos has changed its description on this app and identified
it as benign.

Similarly, we find that our false positives could be classified
into four categories: (i) Eight apps from GooglePlay are
identified as malicious because they could send out sensitive
information. In particular, four apps (three Game apps and
one Shopping app) sent out phone information (e.g., IMSI)
or account information8; three apps sent out Geo-location
information; the other app could send out the contact inform-
ation. (ii) Three apps could achieve sensitive functionalities
as malware. Two of them could automatically monitor and
send out the phone state, and even unlock the phone without
using the password. The other one, named as “Task Manger”,
could kill the background process, start/restart an app, clean
web browsing history, and so on. (iii) One app is essentially
adware, which belongs to both Leadbolt and Airpush. (iv)
Three other benign apps are falsely identified as malware.

2) Family Classification: The purpose of this experiment is
to measure the accuracy of using Modality Vectors to correctly
assign apps that are classified as malicious to their correct
corresponding malware family. To conduct the malware family
classification, we use samples from 12 families, each of which
has more than 50 samples. The number of samples of each
family is shown in Table V.

For each family, we use half of the samples as training
dataset, and the other half as the testing dataset. In this case,
the classification accuracy represents the ratio of the number
of correctly classified samples to the total number of samples
in the test dataset. Here, we use Random Forest for classifying
both the training and testing datasets. The classifier produces
a relatively high classification accuracy of 92.07%.

Figure 7. The confusion matrix of malware classification for multiple
malware families.

8That could be because some Game or Shopping apps tend to use such
information as the unique identifier to distinguish registered accounts.

Figure 7 shows the confusion matrix produced from our
classification of the dataset into the malware family label set.
The value of the cell (i, j) in the matrix shows the number
of samples in family i, which are classified as being family j.
Thus, the central diagonal in the matrix shows the number of
correctly predicted samples per malware family. The darker the
cell color is, the higher the classification accuracy is. With the
exception of Leadbolt (index is 6), most of the other families
achieve an accuracy higher than 90%. Leadbolt is an adware
family, and thus its implementation may be influenced by the
campaign it is serving, and thus producing a behavior that has
a wide variability, leading its samples to appear to match a
wider range of potential families.

This experiment suggests that Modality Vectors also have a
potential applicability to assist in the classification of malware
family labels.

3) Behavior Characterization: As described in Section
III-D, to characterize malicious apps’ behaviors, we first con-
struct a behavior matrix based on malicious behaviors observed
within an existing training set of known malware applications.
To decrease sampling bias, we produce our training dataset
using malware samples from 29 different malware families,
each contributing a minimum of 5 members. Next, for each
selected family, we manually extract a malicious behavior
description for this family using documentation describing
the malware family from sites that contain malware analysis
reports, such as threat reports from various AV companies
(e.g., Symantec.com). There are many detailed public sources
of information regarding malicious behavior description for
many existing Android malware families [11]. For this ex-
periment, we focus on the following six malicious behaviors
commonly observed within many malware families: stealing
phone information (GetPho), Sending SMS (SdSMS), blocking
SMS (BkSMS), communicating with a C&C (C&C), escalating
root privilege (Root) and accessing geographical information
(GetGeo). Table VI summarizes malicious behaviors observed
within those 29 malware families.

Using an Association Rule Mining system, DroidMiner
automatically learned 439 behavior association rules. In Table
VII, we summarize the number of association rules mined for
each malicious behavior. Applying these learned rules to test
new malware samples (not in the training set) with ground
truth information, we find that DroidMiner could generate
correct behavior characterizations. Due to page limit, we skip
details of those learned rules (some representative rules could
be found in Table VIII). Table IX shows the characterization
results on 10 sample malware apps by applying those mined
rules.

4) Efficiency: We now consider the performance overhead
of DroidMiner in identifing modalities. As described in Section
III-C, modality identification involves three steps: 1) decom-
pilation, 2) behavior graph generation and 3) modality vector
generation. Table X shows the mean and median value of time
spent on each step and the overall time required to identify
modalities for all collected apps.

Table X illustrates that DroidMiner expended an average
of 19.8 seconds and a median of 5.4 seconds to identify
modalities in an app. We further find that the vast majority
of this time is spent on behavior graph generation.

Table VI. MALICIOUS BEHAVIORS IN DIFFERENT FAMILIES.

Family GetPho SdSMS BkSMS C&C Root GetGeo
ADRD

√ √ √ √

AnserverBot
√ √

Asroot
√

BaseBridge
√ √ √

BeanBot
√ √ √ √

Bgserv
√ √ √ √

DroidDream
√ √

DDLight
√

DroidKungFu1
√ √ √

DroidKungFu2
√ √ √

DroidKungFu3
√ √ √

DroidKungFu4
√

DroidKungFu5
√ √ √

FakePlayer
√

Geinimi
√ √ √

GingerMaster
√ √

GoldDream
√

Gone60
√ √

GPSSMSSpy
√

jSMSHider
√ √ √

KMin
√ √

Pjapps
√ √

Plankton
√

RogueSPPush
√

SmsSend
√

SndApps
√ √

YZHC
√ √ √

zHash
√

Zsone
√ √

Table VII. NUMBER OF ASSOCIATION RULES MINED FOR COMMON
MALICIOUS BEHAVIORS

GetPho SdSMS BkSMS C&C Root GetGeo
157 144 11 71 37 19

Table IX. BEHAVIORS CHARACTERIZATIONS ON 10 SAMPLE MALWARE
APPS.

MD5 Family Behavior
917a1aa8fafb97cdb91475709ca15cdb MobileTX SdSMS, C&C
49ea90de2336dccee188c3078ea64656 Gappusin SdSMS, BKSMS,

C&C, GetGeo
d6aea5963681cf6415cc3f221e4e403b Cosha SdSMS, C&C, Get-

Geo
8ef081ff9fb2dd866bfc6af6749abdcf Fakeflash C&C

a835b82de9e15330893ddf2da67a6a49 HippoSMS SdSMS, BkSMS
bbb6f9a1aad8cc8c38d4441bac4852c0 DroidDeluxe Root
9b0d331aa9019bfb550f4753aba45d27 RogueLemon SdSMS, BKSMS,

C&C
cfa9edb8c9648ae2757a85e6066f6515 Spitmo GetPho, SdSMS,

BKSMS, C&C
ee0f74897785eb3f7af84a293263c6c5 Gamex Root
c00e43c563ecadf1e22097124538c24a Tapsnake C&C, GetGeo

Table X. PROCESSING TIME FOR IDENTIFYING MODALITIES.

Step Decompile Behavior Graph Modality Vector Overall
Mean 3.87 15.19 1.10 19.83

Median 1.65 3.08 0.56 5.35

For a more fine-grained performance analysis of this
step, Figure 8(a) shows the cumulative distribution of time
used to generate behavior graphs for our collected apps.
For approximately 80% of the apps, our system generates
their behavior graphs within 10 seconds. As seen in Figure
8(c) and 8(d), the values of time spent generating behavior
graphs typically rise with the increased number of control-
flow blocks and programmer-defined methods found in the app.
This occurs because the behavior graphs of apps are extracted
through analyzing the control-flow logic of API functions
with the consideration of their located control-flow blocks and

Table VIII. REPRESENTATIVE RULES FOR MALICIOUS BEHAVIOR CHARACTERIZATION.

Index Behavior Rule
1 GetPho HttpURLConnection.openConnection()→TelephonyManager.getSimSerialNumber()
2 GetPho URL.openConnection()→TelephonyManager.getDeviceId()→HttpURLConnection.connect()
3 GetPho TelephonyManager.getLine1Number()→Socket()
4 SdSMS SmsManager.getDefault()→SmsManager.sendTextMessage()
5 SdSMS SmsManager.getDefault()→SmsManager.sendTextMessage(); content://sms
6 SdSMS SmsManager.getDefault()→SmsManager.sendTextMessage(); TelephonyManager.getSubscriberId()→DefaultHttpClient()
7 BkSMS ContentObserver.onChange()→ContentResolver.delete(); content://sms/inbox
8 BkSMS BroadCastReceiver.onReceive()→BroadCastReceiver.abortBroadCast()
9 BkSMS Notification.PendingIntent() →NotificationManager.cancel(); content://sms/inbox
10 C&C ConnectivityManager()→ConnectivityManager.getNetworkInfo()
11 C&C ConnectivityManager.getActiveNetworkInfo()→TelephonyManager.getDeviceId()→DefaultHttpClient.execute()
12 C&C WifiManager.getConnectionInfo()→URL.openConnection(); content://telephony/carriers/preferapn
13 Root Runtime.exec()→Process.killProcess()
14 Root Runtime.exe()→WifiManager.setWifiEnabled()→WifiManager.getWifiState()
15 Root DefaultHttpClient.execute()→Runtime.exec()
16 GetGeo LocationManager.isProviderEnabled()→LocationManager.requestLocationUpdates()
17 GetGeo LocationManager.isProviderEnabled()→WifiManager.setWifiEnabled()
18 GetGeo LocationManager.getBestProvider()→LocationManager.getLastKnownLocation()

programmer-defined methods. Thus, the numbers of control-
flow blocks and programmer-defined methods will affect the
time used to generate the graphs. However, as shown in Figure
8(b), the time spent in generating behavior graphs does not
increase due to increase in the app size. That is, a bigger app
size does not necessarily contain more complex control-flow
logic.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (Second)

E
m

p
ir

ic
al

 C
D

F

0 2 4 6 8 10

x 10
6

0

50

100

150

200

250

300

Size of App (Byte)

T
im

e
(S

ec
o

n
d

)

(a) CDF Distribution (b) AppSize vs Time

0 1 2 3 4 5 6

x 10
4

0

50

100

150

200

250

300

Num of Blocks

T
im

e
(S

ec
o

n
d

)

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

300

Num of Methods

T
im

e
(S

ec
o

n
d

)

(c) Block Number vs Time (d) Method Number vs Time

Figure 8. Processing time for generating behavior graphs.

In summary, we find that our system does have the great
potential for daily use in an Android marketplace seeking to
vet newly posted applications.

V. RELATED WORK

We broadly classify related work as belonging to three ma-
jor topic areas: Mobile Malware Detection, Android Platform
Security Defense and Android Platform Security Analysis.

A. Mobile Malware Detection

The growing threat of malicious mobile applications, par-
ticularly on the smartphone platform, has attracted consid-
erable research attention. We group proposed detection ap-
proaches for mobile malware into the following four subcat-
egories, based on the inputs that each algorithm consumes.

Hardware/System Performance Monitoring. Early re-
search on monitoring mobile malware rely on detecting ab-
normal hardware usage patterns (e.g., CPU and Battery) [37,
36, 40]. Shabtai et al. proposed “Andromaly”, monitoring
hardware information (e.g., CPU and network usage) and the
number of incoming/outgoing phone calls [14]. They also
designed another detection approach that analyzed suspicious
temporal patterns in system usage [13]. However, as Android
malware often share system usage with many competing apps,
such approaches tend to suffer in accuracy, and also do not
provide the fine-grained logic-focused characterization that we
seek.

System Call Monitoring. Systems such as Crowdroid[21],
Paranoid Android[46] and [48, 49] detect malware through
monitoring and analysis of system calls. A fundamental short-
coming of such approaches is the semantic gap between the
system calls and specific behaviors (e.g., it is exceedingly
difficult to know whether an app sends an SMS to a premium
number by analyzing a sequence of Android kernel-level
system calls). DroidScope [53] is designed to reconstruct both
OS-level and Java-level semantics. Their dynamic analysis
approach is limited by path exploration challenges, but is a
useful complement to DroidMiner’s static-based approach.

Android Permission Monitoring. Enck et al. studied
the security of Android apps by analyzing the permissions
registered in the top 1,100 free Android apps in the official
Android Market [30]. Stowaway [32] and COPES [18] are
designed to find those apps that request more permissions
than they need. PScout [17] analyzes the usage trend of
permissions in Android apps. Kirin [31] detects malicious
Android apps by finding permissions declared in Android apps
that break “pre-defined” security rules. More recent work also
detected malicious Android apps by designing several Naive
Bayes classifiers, whose features were built primarily on the
application categories and permissions [45]. A concern with
these approaches is false positives stemming from the coarse-
grained nature of permissions and the highly common nature
of benign apps to overclaim their set of required permissions.

Framework API Monitoring. Bose et al. detected mal-
ware on Symbian OS through analyzing the temporal pattern of
the usage of APIs in the DLL files [19]. TaintDroid [29] tracks
the data flow and the usage of framework API calls to detect
those apps that may leak users’ privacy information. However,

Table XI. COMPARISON OF DROIDMINER WITH PROPOSED APPROACHES FOR DETECTING MOBILE MALWARE.

[37, 36, 14, 13, 40] [48, 49, 21, 46] [31, 45] [19] [56] DroidMiner
Inputs Hardware Performance System Call Permission Framework API Framework API Framework API

Platform General Android Android Symbian Android Android
Environment Dynamic Dynamic Static Static Static and Dynamic Static

Efficiency Lower Lower Higher Higher Higher Higher
Accuracy Lower Lower Lower Higher Higher Higher

Detection Rules Automatic Automatic Automatic Manual Manual Automatic
Behavior Prediction NO NO NO YES NO YES

it is not designed to detect other kinds of malicious behaviors
such as stealthily sending SMS. RiskRanker [57] detects mali-
cious apps based on the knowledge of known Android system
vulnerabilities, which could be utilized by malicious apps, and
several heuristics, e.g., malware intends to charge the victims
while blocking notifications to the victims. DroidRanger [56]
detects malicious Android apps by statically matching against
“pre-defined” signatures (permissions and Android Framework
API calls) of well-known malware families. It also includes
a heuristic-based approach to detect malicious applications
from unknown families that requires semi-manual analysis of
suspicious system calls. In [51], the frequencies of API calls
were used as detection features, and more recently in [15],
the names and parameters of APIs and packages were used
as detection features. Both studies differ fundamentally from
DroidMiner in that our modalities capture the connections of
multiple sensitive API functions, not just the frequency or
names of APIs. In addition, DroidMiner introduces the use
of δ-analysis for sensitive node identification and associative
rule mining in identifying malicious modalities. Pegasus [23]
is designed to detect Android malware through abstraction
of Android apps into permission event graphs, and checking
whether such graphs contain pre-defined malicious intents.
However, such manual selection of heuristics (or detection
patterns) is not systematic and not robust to the evolution of
malware.

While DroidMiner also relies on analyzing Framework
API calls, it differs from existing approaches in the following
ways: (1) it uses a learning-based approach to automatically
generate behavior models, which are composed of individual
modalities and could be used to detect malware instance from
unseen families; (2) rather than simply examining whether
or not the target app is malicious, it also reports specific
app behavior traits (modalities); (3) instead of focusing on
analyzing isolated usage of (or even the number of) Framework
APIs, our detection model considers the API usage sequence,
enabling DroidMiner to capture the semantic relationships
across multiple APIs.

We summarize the characteristics and benefits of these
approaches in Table XI. Some approaches, e.g., those using
the hardware/system performance or Linux system call as the
inputs, rely on the dynamic analysis (i.e., running the apps in
a simulated or real environment to extract data). Thus, such
approaches typically consume more time to obtain the results,
leading to a relatively lower efficiency. Other approaches, e.g.,
those using the permission or Framework API as the inputs,
typically rely on the static analysis. Such approaches could
achieve relatively higher performance efficiency, but could be
subject to obfuscation attacks. Curiously, obfuscation is not
yet a severe problem in the Android environment, as most
benign applications do not apply obfuscation for intellectual

property protection. Meanwhile, approaches using Framework
API calls as input could achieve higher detection accuracy than
those that use permission due to the coarse-grained nature of
permissions and poor software engineering practices [32].

B. Android Platform Security Defense

Existing studies have also developed several security ex-
tensions to defend against specific types of attacks [28].
Quire [28] prevents confused deputy attacks through the design
of a provenance system. As a further extension of Quire, Bugiel
et al. [20] proposed a security framework to prevent both
confused deputy attacks and collusion attacks with pre-defined
security policies. Saint [44], Porscha [43], and CRepE [27]
achieve the application isolation and protection with the usage
of a fine-grained access control model and policy-oriented
security policies. AppFence [35] protects sensitive data by
either feeding fake data or blocking the leakage path. Checking
at install time, Apex [42] allows for the selection of granted
permissions, and Kirin [31] performs lightweight certification
of applications. Paranoid Android [46], L4Android [39] and
Cells [16] utilize the virtual environment to secure smartphone
OS. SELinux [8] on Android presents a prototype implement-
ation of SELinux on an Android device[50]. Aurasium [52]
protects the system by repackaging Android apps to hook
system APIs and enforcing practical policies.

C. Android Platform Security Analysis

Our work is informed by existing studies that focus on
analyzing the security mechanisms of the Android platform
and its applications. Stowaway [32] is designed to find those
over-privileged apps. SmartDroid [54] automatically finds UI
triggers that result in sensitive information leakage. Droid-
Chameleon [47] demonstrates the vulnerability of existing
android anti-malware tools to simple malware transform-
ation techniques (e.g., repackaging and changing names).
Other related studies include attempts to detect component-
hijacking vulnerabilities [41], inter-app communication vulner-
abilities [24], and capability leaks [33, 22].

VI. DISCUSSION, LIMITATIONS AND FUTURE WORK

DroidMiner Against Zero-day Attacks. Emerging malware
generally falls into two classes: fundamentally new strain
with entirely novel code bases, and malware that improves
(evolves) from an existing code base. The latter form arguably
represents the dominant case. We believe DroidMiner is well
designed to adapt to evolutionary change in existing code
bases, and thus useful in detecting most emerging variant
strains. As long as new malware launches malicious behaviors
through utilizing modalities observed in known malware fam-
ilies, DroidMiner should detect it. For entirely novel malware
strains, an additional strength of DroidMinder is that unlike

traditional systems that require human expertise, DroidMiner’s
features (modalities) can be automatically learned and updated
by feeding new malware samples.

DroidMiner Against Common Evasion Techniques. As there
is an arms race between attackers and defenders, Android
malware may evolve to be more evasive. As observed by
DroidChameleon [47], common malware transformation tech-
niques (e.g., repackaging, changing field names, and changing
control-flow logics) could evade many existing commercial
anti-malware tools. However, DroidMiner is resilient to these
common malware evasion techniques studied in [47]. Specific-
ally, DroidMiner does not rely on specific signing signatures or
class/method/field names to detect malware. The simple pro-
gram transformation (resigning, repackaging, changing names)
will not affect the detection model used in DroidMiner. An-
other type of evasion technique is to insert noisy code or to
change specific control-flow logic. However, DroidMiner is
designed to extract all subsequences of suspicious control-flow
logic commonly seen in malware. As long as the malware
follows a known programming paradigm to achieve malicious
goals (e.g., intercepting short text messages after receiving
them, and obtaining the phone number before sending it),
DroidMiner could still capture such suspicious logic and ignore
noise API injections.

Limitations and Future Work. Like any learning-based
approach, DroidMiner requires an accurate training dataset to
mine its malicious behaviors into modalities. The effectiveness
of our approach depends on the quality of the given training
data, e.g., labeled malicious Android apps and their families.
Fortunately, it was easy for us to obtain such data (thanks
to prior research efforts from academia and industry). In
fact, one may also recognize DroidMiner’s automatic learning
approach as a feature rather than a strict liability. Whereas
most existing approaches require significant manual labor to
generate signature, specifications, and models for detection,
DroidMiner offers far more automated model generation.

Our current behavior graphs and modalities primarily
model the control flow information corresponding to malware
behavior, i.e., we may miss some important data flow in-
formation that could help build better behavior models. Also,
the obfuscation of the control-flow logic and the constant-
string for content providers in the malicious apps’ bytecode
may decrease the detection rate of our approach. Attackers
could also split the constant-string for content providers (e.g.,
“content://sms/inbox/”) into segments and recombine them
later to avoid the identification of the usage of sensitive content
providers.

DroidMiner currently employs static analysis, which is
a reasonable choice given that current Android apps are
relatively easy to reverse engineer statically, unlike notorious
malware programs commonly seen in PC-based malware. We
acknowledge that dynamic analysis provides an advantage
in accurately studying runtime behaviors, and in the future
we plan to extend DroidMiner to utilize a combination of
static and dynamic analyses. Like other Java static analysis
studies, DroidMiner may fail to identify certain usages of
instances/methods, which are encrypted or made by using Java
Reflection and native code. This serves as another motivation
for us to incorporate dynamic analysis in our future work.

VII. CONCLUSION

DroidMiner is a new static analysis system that automatic-
ally mines malicious parasitic code segments from a corpus of
malicious mobile applications, and then detects the presence of
these code segments within other, previously unlabeled, mobile
apps. This is accomplished through a harvesting phase in which
commonly labeled malware samples are abstracted into two-
tiered behavioral graphs. The behavioral graphs of commonly
labeled malware are then subject to a novel application of
heuristics, graph comparisons, and associative rule mining that
isolates their common malicious code sequences (or malicious
modalities). In its detection phase, DroidMiner then derives the
behavioral graph of an unlabeled mobile app sample (e.g., a
new candidate App store entry), and computes the alignment of
its behavioral graph to the set of known malicious modalities
captured from our previously harvested malware apps. We rep-
resent this alignment computation as a modality vector, which
in addition to its use for malware detection, is also useful for
assigning malware family labels. We present our DroidMiner
prototype and an extensive evaluation of this algorithm on
a corpus of over 2,400 malicious apps. From these 2,400
malware apps DroidMiner achieves a 95% accuracy rate in
processing over 77,000 samples from real-world app stores.
Further, we show that DroidMiner achieves a 92% accuracy
in assigning malicious labels to blind test suites. In practice,
we believe that this approach to static comparative program
analysis offers a viable and efficient vetting scheme for filtering
parasitic malware in App stores.

REFERENCES

[1] 60 percentage of android malware hide in fake versions of
popular apps. http://thenextweb.com/google/2012/10/05/over-
60-percent-of-android-malware-comes-from-one-family-hides-
in-fake-versions-of-popular-apps/.

[2] Androguard. http://code.google.com/p/androguard/.
[3] Android malware genome project. http://www.

malgenomeproject.org/.
[4] Anzhi android market. http://www.anzhi.com/.
[5] App dh android market. http://www.appdh.com/.
[6] Dex2jar. https://code.google.com/p/dex2jar/.
[7] Google play. https://play.google.com/store?hl=en.
[8] National security agency. security-enhanced linux. http://www.

nsa.gov/research/selinux.
[9] Slideme android market. http://slideme.org/.

[10] Smali. https://code.google.com/p/smali/,.
[11] Symantec enterprise. http://www.symantec.com/security

response/landing/azlisting.jsp.
[12] Virustotal. https://www.virustotal.com/.
[13] Intrusion detection for mobile devices using the knowledge-

based, temporal abstraction method, 2010.
[14] Andromaly: a behavioral malware detection framework for

android devices, 2012.
[15] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Min-

ing api-level features for robust malware detection in android.
In Proceedings of the 9th SecureComm, 2013.

[16] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: A
virtual mobile smartphone architecture. In Proceedings of 23rd
SOSP, 2011.

[17] K. Au, Y. Zhou, Z. Huang, D. Lie, X. Gong, X. Han, and
W. Zhou. Pscout: Analyzing the android permission specific-
ation. In Proceedings of the 19th CCS, 2012.

[18] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon. Automatic-
ally securing permission-based software by reducing the attack
surface: An application to android. In Proceedings of the 27th

IEEE/ACM International Conference On Automated Software
Engineering, 2012.

[19] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral detection of
malware on mobile handsets. In Proceeding of the 6th MobiSys,
2008.

[20] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi,
and B. Shastry. Towards taming privilege-escalation attacks on
android. In Proceedings of the 19th NDSS, 2012.

[21] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:
Behavior-based malware detection system for android. In
Proceedings of the 1st Workshop on CCSSPSM, 2011.

[22] P. P. Chan, L. C. Hui, and S. M. Yiu. Droidchecker: analyzing
android applications for capability leak. In Proceedings of the
5th ACM conference on Security and Privacy in Wireless and
Mobile Networks, 2012.

[23] K. Chen, N. Johnson, V. Silva, S. Dai, K. MacNamara, T. Mag-
rino, E. Wu, M. Rinard, and Dawn Song. Contextual policy en-
forcement in android applications with permission event graphs.
In Proceedings of the 20th NDSS, 2013.

[24] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing
inter-application communication in android. In Proceedings of
the 9th MobiSys, 2011.

[25] M. Christodorescu, S. Jha, and C. Kruegel. Mining spe-
cifications of malicious behavior. In Proceedings of the 6th
ESEC/FSE, 2007.

[26] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics-aware malware detection. In Proceedings of
26th IEEE Security and Privacy, 2005.

[27] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe: Context-
related policy enforcement for android. In Proceedings of the
13th ISC, 2010.

[28] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.
Quire: lightweight provenance for smart phone operating sys-
tems. In Proceedings of the 20th USENIX Security, 2011.

[29] W. Enck, P. Gilbert, B.G. Chun, L. P. Cox, J. Jung, P. Mc-Daniel,
and A. N. Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In
Proceedings of the 9th OSDI, 2010.

[30] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. In Proceedings of the 20th
USENIX, 2011.

[31] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile
phone application certification. In Proceedings of the 16th CCS,
2009.

[32] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystied. In Proceedings of the 18th CCS, 2011.

[33] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission re-delegation: Attacks and defenses. In Proceedings
of the 20th USENIX Security, 2011.

[34] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan.
Synthesizing near-optimal malware specifications from suspi-
cious behaviors. In Proceedings 31th of IEEE Security and
Privacy., 2010.

[35] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These arent the droids youre looking for: Retrofitting android
to protect data from imperious applications. In Proceedings of
the 18th CCS, 2011.

[36] G. Jacoby and N. Davis. Battery-based intrusion detection. In
Proceedings of GLOBECOM), 2004.

[37] H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy
anomalies and mobile malware variants. In Proceedings of the
6th MobiSys, 2008.

[38] C. Kolbitsch, P. Milani Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang. Effective and efficient malware detection
at the end host. In Proceedings of Usenix, 2009.

[39] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and
M. Peter. L4android: A generic operating system frame- work
for secure smartphones. In Proceedings of the 1st Workshop

on Security and Privacy in Smartphones and Mobile Devices,
2011.

[40] L. Liu, G. Yan, X. Zhang, and S. Chen. Virusmeter: Preventing
your cellphone from spies. In Proceedings of the 12th RAID,
2009.

[41] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Statically
vetting android apps for component hijacking vulnerablilities.
In Proceedings of the 19th CCS, 2012.

[42] M. Nauman, S. Khan, and X. Zhang. Apex: extending android
permission model and enforcement with user-defined runtime
constraints. In Proceedings of the 5th ACM Symposium on ICCS,
year = 2010,.

[43] M. Ongtang, K. Butler, and P. McDaniel. Porscha: Policy
oriented secure content handling in android. In Proceedings
of the 26th ACSAC, 2010.

[44] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.
Semantically rich application-centric security in android. In
Proceedings of the 25th ACSAC, 2009.

[45] H. Peng, C. Gates, B. Sarm, N. Li, Y. Qi, R. Potharaju, C. Nita-
Rotaru, and I. Molloy. Using probabilistic generative models
for ranking risks of android apps. In Proceedings of the 19th
CCS, 2012.

[46] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos.
Paranoid android: versatile protection for smartphones. In
Proceedings of the 26th ACSAC, 2010.

[47] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating
android anti-malware against transformation attacks. In Pro-
ceedings of the 8th ACM SIGSAC symposium on ICCS, 2013.

[48] A. Schmidt, R. Bye, H. Schmidt, J. Clausen, O. Kiraz, K. Yxk-
sel, S. Camtepe, and A. Sahin. Static analysis of executables for
collaborative malware detection on android. In ICC Communic-
ation and Information Systems Security Symposium, 2009.

[49] A. Schmidt, H. Schmidt, J. Clausen, K. Yuksel, O. Kiraz,
A. Sahin, and S. Camtepe. Enhancing security of linux-based
android devices. In Proceedings of 15th International Linux
Kongress, 2008.

[50] A. Shabtai, Y. Fledel, and Y. Elovici. Securing android- powered
mobile devices using selinux. In Proceedings of 31th IEEE
Security and Privacy., 2010.

[51] D. Wu, C. Mao, T. Wei, H. Lee, and K. Wu. Droidmat: Android
malware detection through manifest and api calls tracing. In
Proceedings of the 7th Asia JCIS, 2012.

[52] R. Xu, H. Saidi, and R. Anderson. Aurasium: practical policy
enforcement for android applications. In Proceedings of the 21st
USENIX Security, 2012.

[53] L. Yan and H. Yin. Droidscope: Seamlessly reconstructing the
os and dalvik semantic views for dynamic android malware
analysis. In Proceedings of the 21st USENIX Security, 2012.

[54] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zhou.
Smartdroid: an automatic system for revealing ui-based trigger
conditions in android applications. In Proceedings of the 2ed
ACM workshop on security and privacy in smartphones and
mobile devices, 2012.

[55] Y. Zhou and X. Jiang. Dissecting android malware: Character-
ization and evolution. In Proceedings of the 33th IEEE Security
and Privacy, 2012.

[56] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of
my market: Detecting malicious apps in official and alternative
android markets. In Proceedings of the 19th NDSS, 2012.

[57] Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable
and accurate zero-day android malware detection. In Proceed-
ings of the 10th MobiSys, 2012.

