Using an Ensemble of One-Class SVM Classifiers
to Harden Payload-based Anomaly Detection Systems

Roberto Perdisci’#, Guofei Gut, Wenke Leet

tCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
'DIEE, University of Cagliari, 09031 Cagliari, ITALY
{rperdisc,guofei,wenke } @cc.gatech.edu

Abstract

Unsupervised or unlabeled learning approaches for net-
work anomaly detection have been recently proposed. In
particular, recent work on unlabeled anomaly detection fo-
cused on high speed classification based on simple payload
statistics. For example, PAYL, an anomaly IDS, measures
the occurrence frequency in the payload of n-grams. A sim-
ple model of normal traffic is then constructed according to
this description of the packets’ content.

It has been demonstrated that anomaly detectors based
on payload statistics can be “evaded” by mimicry attacks
using byte substitution and padding techniques. In this pa-
per we propose a new approach to construct high speed
payload-based anomaly IDS intended to be accurate and
hard to evade. We propose a new technique to extract the
features from the payload. We use a feature clustering al-
gorithm originally proposed for text classification problems
to reduce the dimensionality of the feature space. Accuracy
and hardness of evasion are obtained by constructing our
anomaly-based IDS using an ensemble of one-class SVM
classifiers that work on different feature spaces.

1 Introduction

Intrusion Detection Systems (IDS) are valuable tools for
the defense-in-depth of computer networks. Network IDS
look for known or potential malicious activities in network
traffic and raise an alarm whenever a suspicious activity is
detected. Two main approaches to intrusion detection are
used, namely misuse and anomaly detection [19]. Misuse
detectors are based on a description of known malicious
activities. This description is often modeled as a set of
rules referred to as attack signatures. Activities that match
an attack signature are classified as malicious. Anomaly
detectors are based on a description of normal or benign

activities. A distance between the description of normal
events and new network activities is measured. As mali-
cious activities are expected to be different from normal ac-
tivities, a suitable distance measure allows anomaly-based
IDS to detect attack traffic. Anomaly-based detection sys-
tems usually produce a relatively higher number of false
positives, compared to the misuse-based or signature-based
detection systems. However, anomaly detectors are able
to detect zero-day (i.e., never-before-seen) attacks, whereas
signature-based systems are not.

Unsupervised or unlabeled learning approaches for net-
work anomaly detection have been recently proposed [20,
10]. These methods aim to work on datasets of traffic ex-
tracted from real networks without the necessity of a la-
beling process. Unlabeled anomaly detection systems are
based on the reasonable assumption that the percentage of
attack patterns in the extracted traffic traces is usually much
lower than the percentage of normal patterns [20]. Further-
more, it is possible to use signature-based IDS in order to
filter the extracted traffic by removing the known attacks,
thus further reducing the number of attack patterns possibly
present in the dataset. Another assumption is that the attack
patterns are supposed to be distinguishable from the normal
patterns in a suitable feature space. The term “unlabeled
anomaly detection” used in the intrusion detection field ac-
tually refears to what in machine learning is more often
called “novelty detection”, “outlier detection” or “one-class
classification”. One-class classification algorithms pursue
concept learning in absence of counter examples [23]. The
objective of one-class classification is to find a decision sur-
face around the farget objects, (i.e., the normal traffic, in
case of network anomaly detection) so that patterns that lie
inside this decision surface are classified as rargets (i.e.,
normal traffic), whereas patterns that lie outside are clas-
sified as outliers (i.e., anomalous traffic).

Recent work on unlabeled anomaly detection focused on

high speed classification based on simple payload*® statis-
tics [15, 18, 28, 29]. For example, PAYL [28, 29] extracts
256 features from the payload. Each feature represents the
occurrence frequency in the payload of one of the 256 pos-
sible byte values. A simple model of normal traffic is then
constructed by computing the average and standard devia-
tion of each feature. A payload is considered anomalous
if a simplified Mahalanobis distance between the payload
under test and the model of normal traffic exceeds a prede-
termined threshold. Wang et al. [28] also proposed a more
generic n-gram' version of PAYL. In this case the payload
is described by a pattern vector in a 256" -dimensional fea-
ture space. The n-grams extract byte sequence information
from the payload, which helps in constructing a more pre-
cise model of the normal traffic compared to the simple byte
frequency-based model. The extraction of n-gram statis-
tics from the payload can be performed efficiently and the
IDS can be used to monitor high speed links in real time.
However, given the exponentially growing number of ex-
tracted features, the higher n the more difficult it may be to
construct an accurate model because of the curse of dimen-
sionality and possible computational complexity problems.
Other anomaly detection systems based on more complex
features have been proposed [25, 5]. These anomaly detec-
tors involve the extraction of syntax and semantic informa-
tion from the payload, which is usually a computationally
expensive task. Therefore, it may not be possible to use this
approaches in order to analyze network traffic on high speed
links in real time.

It has been demonstrated that many anomaly detection
systems can be “evaded” by mimicry attacks [27, 14, 6, 12].
A mimicry attack is an attack against a network or system
vulnerability that is carefully crafted so that the attack pat-
tern, i.e., the representation of the attack used during the
classification process, lies inside the decision surface that
separates the normal patterns from the anomalous ones (i.e.,
the outliers). A successful mimicry attack is able to ex-
ploit the targeted vulnerability while causing the anomaly
IDS to produce a false negative (i.e., no alarm is raised).
In [12], Fogla et al. showed how to construct a mimicry
attack, called polymorphic blending attack, that can evade
1-gram (i.e., the single-byte frequency version) and 2-gram
PAYL. Using byte substitution and padding techniques, the
polymorphic blending attack encodes the attack payload so
that the obtained transformed attack is classified as normal
by PAYL, while still being able to exploit the targeted vul-
nerability.

In order to make it harder for the attacker to evade the
IDS, a more comprehensive model of the normal traffic is
needed. Furthermore, the modeling technique needs to be
also practical and efficient. We address these challenges

*The payload is the data portion of a network packet.
THere an n-gram represents n consecutive bytes in the payload

using an ensemble of classifiers. Classifier ensembles, of-
ten referred to as Multiple Classifier Systems (MCS), have
been proved to achieve better accuracy in many applica-
tions, compared to the best single classifier in the ensem-
ble. A number of security related applications of MCS have
been proposed in the literature. For example, MCS are used
in multimodal biometrics for hardening person identifica-
tion [3], and in misuse-based IDS [13] to improve the de-
tection accuracy. To the best of our knowledge, no work has
been presented so far that explicitly addresses the problem
of increasing the hardness of evasion of anomaly-based IDS
using multiple classifier systems. In this paper we propose
a new approach to construct a high speed payload-based
anomaly IDS by combining multiple one-class SVM clas-
sifiers. Our approach is intended to improve both the de-
tection accuracy and the hardness of evasion of high speed
anomaly detectors.

MCS attain accuracy improvements when the combined
classifiers are “diverse”, i.e., they make different errors on
new patterns [8]. A way to induce diversity is to combine
classifiers that are based on descriptions of the patterns in
different feature spaces [16]. We propose a new technique
to extract the features from the payload that is similar to the
2-gram technique. Instead of measuring the frequency of
the pairs of consecutive bytes, we propose to measure the
features by using a sliding window that “covers” two bytes
which are v positions apart from each other in the payload.
We refere to this pairs of bytes as 2, -grams. The proposed
featrue extraction process do not add any complexity with
respect to the traditional 2-gram technique and can be per-
formed efficiently. We also show that the proposed tech-
nique allows us to “summarize” the occurrence frequency
of n-grams, with n > 2, thus capturing byte sequence in-
formation while limiting the dimensionality of the feature
space. By varying the parameter v, we construct a repre-
sentation of the payload in different feature spaces. Then
we use a feature clustering algorithm originally proposed
in [7] for text classification problems to reduce the dimen-
sionality of the different feature spaces where the payload
is represented. Detection accuracy and hardness of evasion
are obtained by constructing our anomaly-based IDS using
a combination of multiple one-class SVM classifiers that
work on these different feature spaces. Using multiple clas-
sifiers forces the attacker to devise a mimicry attack that
evades multiple models of normal traffic at the same time,
which is intuitively harder than evading just one model. We
compare our payload-based anomaly IDS to the original im-
plementation of 1-gram PAYL [28] by Columbia University,
to an implementation of 2-gram PAYL, and to an IDS con-
structed by combining multiple one-class classifiers based
on the simplified Mahalanobis distance used by PAYL.

Our work is organized as follows. Section 2 presents
one-class classification and the learning algorithms we used

to perform our experiments. We discuss how the features
are extracted from the payload and the algorithm we used to
perform feature reduction in Section 3. Section 4 presents
the experimental results and then we briefly conclude in
Section 5.

2 One-Class Classifiers

One-class classification techniques are particularly use-
ful in case of two-class learning problems whereby one
of the classes, referred to as target class, is well-sampled,
whereas the other one, referred to as outlier class, is
severely undersampled. The low number of examples from
the outlier class may be motivated by the fact that it is too
difficult or expensive to obtain a significant number of train-
ing patterns of this class [23]. The goal of one-class clas-
sification is to construct a decision surface around the ex-
amples from the target class in order to distinguish between
target objects and all the other possible objects, i.e., the out-
liers [23]. A rejection rate is usually chosen during train-
ing so that a certain percentage of training patterns lies out-
side the constructed decision surface in order to take into
account the possible presence of noise (i.e., unlabeled out-
liers) in the training set and to obtain a more precise descrip-
tion of the target class [23]. In the case when the training
set contains only “pure” target patterns, this rejection rate
can be interpreted as a folerable false positive rate.

In the following, we present two different one-class clas-
sification algorithms that we used to perform our experi-
ments, namely a classifier inspired by the Support Vector
Machine (SVM) [26], and a classifier based on the Maha-
lanobis distance [9]. As we discuss in Section 3, there is an
analogy between anomaly detection based on n-gram statis-
tics and text classification problems. We chose the one-class
SVM classifier because SVM have been shown to achieve
good performances in text classification problems [22, 17].
We also describe the Mahalanobis distance based classifi-
cation algorithm because it is the same classification algo-
rithm used by PAYL [28], a recently proposed anomaly de-
tector based on n-gram statistics.

2.1 Omne-Class SVM

A one-class classifier inspired by the SVM classifier [26]
was proposed by Scholkopf et al. in [21]. The one-class
classification problem is formulated to find a hyperplane
that separates a desired fraction of the training patterns from
the origin of the feature space [F. This hyperplane cannot be
always found in the original feature space, thus a mapping
function ® : F — FF’, from F to a kernel space I/, is used.
In particular, it can be proven that when the gaussian kernel

K(x,y) = ®(x) - ®(y) = exp (=[x —y|*) (D)

is used it is always possible to find a hyperplane that solves
the separation problem. The problem is formulated as fol-
lows:

. 2
win e (§IWIE = p+ o S
! (2)

W'¢(Xi)2p_§ia fiZOa vz:lvam

where w is a vector orthogonal to the hyperplane, C' rep-
resents the fraction of training patterns that are allowed to
be rejected (i.e., that are not separated from the origin by
the hyperplain), x; is the ¢-th training pattern, m is the to-
tal number of training patterns, £ = [£1, .., &y] IS a vector
of slack variables used to “penalize” the rejected patterns,
p represents the margin, i.e., the distance of the hyperplane
from the origin.

The solution of (2) brings to the decision function, for a
generic test pattern z, formulated as

e =1 (St (xs2) 2 p) . T2y =1
1 3)

where I is the indicator function, whereby I(z) = 1 if z
is true, otherwise I(z) = 0. The coefficients a; and the
threshold p are provided by the solution of (2). According to
(3), a pattern z is either rejected if fs,.(z) = 0, or accepted
as target object if fs,.(z) = 1. It is worth noting that most
of the coefficients «; are usually equal to zero, therefore
fsve(z) can be efficiently computed. The training patterns
x; for which «; # 0 are referred to as support vectors.

2.2 Mahalanobis Distance-based Classi-
fier

Given a training dataset D = {x1,X2,..,X;,}, the
average ¢; and standard deviation o; are computed for
each feature z,, ¢« = 1,..,[, of a pattern x,€D. We
call M(¢,0) the model of normal traffic, where ¢ =
(01,02, ..,¢1] and 0 = [o1,09,..,0;]. Assuming the fea-
tures to be uncorrelated, a simplified Mahalanobis dis-
tance* [28] A(z, M (¢, 0)) between a generic pattern z =
[21, 22, .., 2] and the model M (¢, o) can be computed as

1
Az, M(,0)) = 3 =2 @
=1

i
o, +«

where « is a constant smoothing factor introduced in order
to avoid division by zero. Given a threshold 6, the decision
rule for the classifier can be written as

A(z,M(¢p,0)) >0 = =zis an outlier)

¥The simplified Mahalanobis distance do not involve square operations,
which would slow down the computation of the distance.

The threshold 6 can be computed during training so that a
chosen rejection rate r of patterns in D is left outside the
decision surface, i.e., the classifier produces a false positive
rate r on the training dataset D, if we assume D contains
only examples extracted from the target class.

3 Payload Classification
3.1 Feature Extraction

The detection model used by PAYL [28] is based on the
frequency distribution of the n-grams (i.e., the sequences of
n consecutive bytes) in the payload. The occurrence fre-
quency of the n-grams is measured by using a sliding win-
dow of length n. The window slides over the payload with a
step equal to one byte and counts the occurrence frequency
in the payload of the 256™ possible n-grams. Therefore, in
this case the payload is represented by a pattern vector in
a 256™-dimensional feature space. It is easy to see that the
higher n, the larger the amount of structural infomation ex-
tracted from the payload. However, using n = 2 we already
obtain 65,536 features. Larger values of n are impracti-
cal given the exponentially growing dimensionality of the
feature space and the curse of dimensionality problem [9].
On the other hand, by measuring the occurrence frequency
of pairs of bytes that are v positions (i.e., v bytes) apart
from each other in the payload, it is still possible to extract
some information related to the n-grams, with n > 2. We
call such pairs of bytes 2, -grams. In practice, the occur-
rence frequency of the 2, -grams can be measured by using
a (v+2) long sliding window with a “gap” between the first
and last byte.

Consider a payload B = [by, bo, .., b;], where b; is the
byte value at position ¢. The occurrence frequency in the
payload B of an n-gram 8 = [0y, Ba, .., Bn] , with n < [, is
computed as

of occurrences of 3 in B
l—n+1

f(B|B) = (6)
where the number of occurrences of § in B is measured by
using the sliding window technique, and (I—n+1) is the to-
tal number of times the window can “slide” over B. f(3|B)
can be interpreted as an estimate of the probability p(3|B)
of finding the n-gram 3 (i.e., the sequence of consecutive
bytes 01, B2, .., Bn]) in B. Accordingly, the probability of
finding a 2,,-gram {01, 8,12} can be written as

Z p([617ﬁ2a"7ﬁu+1aﬁV+2]|B)
B2;--,Bv41
(7N

It is worth noting that for v = 0 the 2,-gram technique
reduces to the “standard” 2-gram technique. When v >
0, the occurrence frequency in the payload of a 2,-gram

p({B1, Bu42}IB) =

{1, Bu+2} can be viewed as a marginal probability com-
puted on the distribution of the (v +2)-grams that start with
(1 and end with 3, 5. In practice the frequency of a 2,-
gram somehow “summarizes” the occurrence frequency of
256 n-grams, withn = v + 2.

From the occurrence frequency of the n-grams it is pos-
sible to derive the distribution of the (n—1)-grams, (n—2)-
grams, etc. On the other hand, measuring the occurrence
frequency of the 2, -grams does not allow us to automati-
cally derive the distribution of 2(,,_1)-grams, 2, _g)-grams,
etc. The distributions of 2,-grams with different values of
v give us different structural information about the payload.
The intuition is that, ideally, if we could somehow combine
the structural information extracted using different values
of v = 0,.., N we would be able to reconstruct the struc-
tural information given by the distribution of n-grams, with
n = (N + 2). This motivates the combination of classifiers
that work on different descriptions of the payload obtained
using the 2,-gram technique with different values of v.

3.2 Feature Reduction

Payload anomaly detection based on the frequency of
n-grams is analogous to a text classification problem for
which the bag-of-words model and a simple unweighted
raw frequency vector representation [17] is used. The
different possible n-grams can be viewed as the words,
whereas a payload can be viewed as a document to be classi-
fied. In general for text classification only the words that are
present in the documents of the training set are considered.
This approach is not suitable in case of a one-class classifi-
cation problem. Given that the training set contains (almost)
only target examples (i.e., “normal” documents), we cannot
conclude that a word that have a probability equal to zero to
appear in the training dataset will not be discriminant. As a
matter of fact, if we knew of a word w that has probability
p(w|dy) = 0, VdieCy, of appearing in the class of target
documents Cy, and p(w|d,) = 1, Vd,€C,, of appearing
in documents of the outlier class C,, it would be sufficient
to measure just one binary feature, namely the presence or
not of w; in the document, to construct a perfect classifier.
This is the reason why we choose to take into account all
the 256™ n-grams, even though their occurrence frequency
measured on the training set is equal to zero. Using the
2,,-gram technique we still extract 256 features. This high
number of features could make it difficult to construct an ac-
curate classifier, because of the curse of dimensionality [9]
and possible computational complexity problems related to
learning algorithms.

In order to reduce the dimensionality of the feature space
for payload anomaly detection, we apply a feature cluster-
ing algorithm originally proposed by Dhillon et al. in [7]
for text classification. Given the number of desired clus-

ters, the algorithm iteratively aggregates the features until
the information loss due to the clustering process is less
than a certain threshold. This clustering algorithm has the
property to reduce the within cluster and among clusters
Jensen-Shannon divergence [7] computed on the distribu-
tion of words, and has been shown to help obtain better
classification accuracy results with respect to other feature
reduction techniques for text classification [7]. The inputs
to the algorithm are:

1. The set of distributions {p(Cilw,)
1<i<m, 1<j<l}, where C; is the i-th class of
documents, m is the total number of classes, w; is a
word and [is the total number of possible different
words in the documents.

2. The set of all the priors {p(w;), 1<j<I}.
3. The number of desired clusters k.

The output is represented by the set of word clusters W =
{Wy,Ws,..,Wy}. Therefore, after clustering the dimen-
sionality of the feature space is reduced from [to k. In
the original [-dimensional feature space, the j-th feature
of a pattern vector x; represents the occurrence frequency
f(w;|d;) of the word w; in the document d;. The new rep-
resentation x; of d; in the k-dimensional feature space can
be obtained by computing the features according to

FWild) = Y flwilds), h=1,.k (8

IUjEWh

where f(W4|d;) can be interpreted as the occurrence fre-
quency of the cluster of words W}, in the document d;.

In case of a one-class problem, m = 2 and we can call
C the target class and C, the outlier class. The posterior
probabilities {p(C;|w;) : i = t,0, 1<j<I} can be com-
puted as

o p(w,C)p(C)
P(Cilw;) = Srasenp©o) totw,; [C)p(C)

©))
i=t0, 1<j<i
and the priors {p(w;), 1<j<I} can be computed as
p(w;) = p(w;|Cr)p(Cr) + p(w;]Co)p(Co), 1<j<I (10)

The probabilities p(w;|C;) of finding a word w; in docu-
ments of the target class C; can be reliably estimated on the
training dataset, whereas it is difficult to estimate p(w,|C,),
given the low number (or the absence) of examples of doc-
uments in the outlier class C,,. Similarly, it is difficult to re-
liably estimate the prior probabilities p(C;) = % 1=1,o0,
where N; is the number of training patterns of the class C;
and N = N; + N, is the total number of training patterns.
Given that N,<NN; (or even N, = 0), the estimated priors

are p(C,) ~ 0 and p(C}) ~ 1, which may be very different
from the real prior probabilities.

In our application, the words w; are represented by the
2562 possible different 2,-grams (with a fixed v). In or-
der to apply the feature clustering algorithm, we estimate
p(w,;|Cy) by measuring the occurrence frequency of the 2, -
grams w; on the training dataset and we assume a uniform
distribution p(w;|C,) = } of the 2,-grams for the outlier
class. We also assume p(C,) to be equal to the desired re-
jection rate for the one-class classifiers (see Section 2), and
accordingly p(Cy) =1 — p(C,).

3.3 Combining One-Class Classifiers

Multiple Classifier Systems (MCS) have been proven
to improve classification performaces in many applica-
tions [8]. MCS achieve better performance than the best
single classifier when the classifiers of the ensemble are
accurate and diverse, i.e., make different errors on new
patterns [8]. Diversity can be intuitively induced for ex-
ample by combining classifiers that are based on descrip-
tions of the patterns in different feature spaces [16]. In this
paper we use a simple majority voting rule [16] to com-
bine one-class classifiers that work on different descriptions
of the payload. Suppose we have a dataset of payloads
T = {m,7a,..,mm . Given a payload 7, we extract the
features as discussed in Section 3 obtaining L different de-

scriptions {XS), x,(f), . x,(CL)} of 7. L one-class classifier
are constructed. The h-th classifier is trained on a dataset
D™ = {x{" x{ _ x{}, obtained from T using the

h-th description for the payloads. During the operational
phase, a payload is classified as target (i.e., normal) if it is
labeled as target by the majority of the classifiers, otherwise
it is classified as outlier (i.e., anomalous).

4 Experiments

In this section we compare and discuss the classification
performance of four different anomaly IDS. We compare
the performace obtained using the original implementation
of 1-gram PAYL [28] developed at Columbia University, an
implementation of 2-gram PAYL, and two anomaly IDS we
built by combining multiple one-class classifiers. One of
these two IDS was implemented using an ensemble of one-
class SVM classifiers, whereas the other was implemented
using an ensemble of Mahalanobis Distance-based (MD)
one-class classifiers. We also show and discuss the perfor-
mance of the single classifiers used to construct the ensem-
bles. To the best of our knowledge, no public implemen-
tation of 2-gram PAYL exists. We implemented our own
(simplified) version of 2-gram PAYL in order to compare
its performance to the other considered anomaly IDS.

4.1 Experimental Setup

It is easy to see that the accuracy of the anomaly detec-
tion systems we consider can be considerably influenced by
the values assigned to a number of free parameters. Tuning
all the free parameters in order to find the optimal configura-
tion is a difficult and computationally expensive search task.
We did not perform a complete tuning of the parameters, but
we used a number of reasonable values that should repre-
sent an acceptable suboptimal configuration. For 1-gram
PAYL we used the default configuration provided along
with the software. For all the MD classifiers and our 2-
gram PAYL we set the smoothing factor & = 0.001, be-
cause this is the same default value for o used by 1-gram
PAYL (which also uses the MD classification algorithm).
We used LibSVM [4] to perform the experiments with one-
class SVM. For all the one-class SVM classifiers we used
the gaussian kernel in Equation (1). In order to choose a
suitable value for v we performed a number of pilot exper-
iments. We noted that setting v = 0.5 the one-class SVM
classifiers performed well in all the different feature spaces
obtained by varying the parameters v and the number of
feature clusters k during the feature extraction and reduc-
tion processes, respectively (see Section 3.1). Having fixed
the values for some of the parameters as explained above,
we performed several experiments varying the “gap” v and
the number of feature clusters k. The values we used for this
parameters and the obtained results are discussed in detail
in Section 4.2.

We performed all the experiments using 5 days of HTTP
requests towards our department’s web server collected dur-
ing October 2004. We assumed this unlabeled traffic to
contain mainly normal requests and possibly a low frac-
tion of noise, i.e., anomalous packets. We used the first
day of this traffic to train the IDS and the last 4 days to
measure the false positive rate (i.e., the false alarm rate). In
the following we refer to the first day of traffic as train-
ing dataset, and to the last 4 days as fest dataset. The
training dataset contained 384,389 packets, whereas the test
dataset contained 1,315,433 packets. In order to estimate
the detection rate we used 18 HTTP-based buffer over-
flow attacks. We collected the first 10 attacks from the
Internet (e.g., exploits for IIS 5.0 .printer ISAPI
Extension [1], ActivePerl perlIIS.dll [2],
among others). Each of these attacks is made up of a dif-
ferent number of attack packets. The latter 8 attacks were
represented by some of the attacks used in [12], where Fogla
et al. constructed a number of mimicry attacks against
PAYL. These attacks were derived from an exploit that
targets a vulnerability in Windows Media Services
(MS03-022) [11]. In particular, we used the original
Windows Media Services exploit used in [12] be-
fore transformation, 6 mimicry attacks derived from this

original attack using a polymorphic shellcode engine called
CLET [6], and one polymorphic blending attack obtained
using the single byte encoding scheme for the 2-grams pre-
sented in [12]. The 6 mimicry attacks obtained using CLET
were created setting different combinations of packet length
and total number of attack packets. The polymorphic blend-
ing attack consisted of 3 attack packets and the payload of
each packet was 1460 bytes long. In the following we will
refer to the set of attacks described above as attack dataset.
Overall, the attack dataset contained 126 attack packets.

4.2 Performance Evaluation

In order to compare the performace of PAYL, the con-
structed single classifiers, and the overall anomaly IDS, we
use the Receiver Operating Characteristic (ROC) curve and
the Area Under the Curve (AUC). We trained PAYL and
the single classifiers for different operational points, i.e.,
we constructed different “versions” of the classifiers setting
a different rejection rate on the training dataset each time.
This allowed us to plot an approximate ROC curve for each
classifier. Assuming the training dataset contains only nor-
mal HTTP requests, the rejection rate can be interpreted as a
desired false positive rate. In the following we refere to this
desired false positive rate as DFP. If we also assume the test
dataset contains only normal HTTP requests, we can use it
to estimate the “real” false positive rate, or RFP. Each point
on an ROC curve represents the RFP and the detection rate
(DR) produced by the classifier. The detection rate is mea-
sured on the attack dataset and is defined as the faction of
detected attack packets, i.e., the number of attack packets
that are classified as anomalous divided by the total number
of packets in the attack dataset (regardless of the specific
attack the detected packets come from).

We measured the performance of the classifiers for 7
different operational points to compute an (partial) ROC
curve for each classifier. These points are obtained by train-
ing each classifier using 7 DFP, namely 0%, 0.01%, 0.1%,
1.0%, 2.0%, 5.0% and 10.0%. The AUC is estimated by in-
tegrating the ROC curve in the interval of RFP between 0%
and 10.0%. The obtained result is then normalized so that
the maximum possible value for the AUC is 1. According
to how the AUC is computed, the higher the value of the

DFP(%) | RFP(%) | Detected attacks | DR(%)
0.0 0.00022 1 0.8
0.01 0.01451 4 17.5
0.1 0.15275 17 69.1
1.0 0.92694 17 72.2
2.0 1.86263 17 72.2
5.0 5.69681 18 73.8
10.0 11.05049 18 78.6

Table 1: Performance of 1-gram PAYL.

10 20 40 80 160
0 | 0.9660 (0.4180E-3) 0.9664 (0.3855E-3) 0.9665 (0.4335E-3) 0.9662 (0.2100E-3) 0.9668 (0.4686E-3)
1 | 0.9842 (0.6431E-3) 0.9839 (0.7047E-3) 0.9845 (0.7049E-3) 0.9833 (1.2533E-3) 0.9837 (0.9437E-3)
2 | 0.9866 (0.7615E-3) 0.9867 (0.6465E-3) 0.9875 (0.6665E-3) 0.9887 (2.6859E-3) 0.9862 (0.7753E-3)
3 | 0.9844 (1.2207E-3) 0.9836 (1.1577E-3) 0.9874 (1.0251E-3) 0.9832 (1.0619E-3) 0.9825 (0.6835E-3)
4 | 0.9846 (0.5612E-3) 0.9847 (1.5334E-3) 0.9846 (0.9229E-3) 0.9849 (1.5966E-3) 0.9855 (0.4649E-3)
v 5 | 0.9806 (0.8638E-3) 0.9813 (0.9072E-3) 0.9810 (0.5590E-3) 0.9813 (0.8494E-3) 0.9818 (0.3778E-3)
6 | 0.9809 (0.7836E-3) 0.9806 (1.1608E-3) 0.9812 (1.6199E-3) 0.9794 (0.3323E-3) 0.9796 (0.4240E-3)
7 | 0.9819 (1.6897E-3) 0.9854 (0.8485E-3) 0.9844 (1.2407E-3) 0.9863 (1.9233E-3) 0.9877 (0.7670E-3)
8 | 0.9779 (1.7626E-3) 0.9782 (1.9797E-3) 0.9787 (2.0032E-3) 0.9793 (1.0847E-3) 0.9785 (1.7024E-3)
9 | 0.9733(3.1948E-3) 0.9775 (1.9651E-3) 0.9770 (1.0803E-3) 0.9743 (2.4879E-3) 0.9722 (1.2258E-3)
10 | 0.9549 (2.7850E-3) 0.9587 (3.3831E-3) 0.9597 (3.8900E-3) 0.9608 (1.2084E-3) 0.9681 (7.1185E-3)

Table 2: Performance of single one-class SVM classifiers. The numbers in bold represent the best average AUC for a fixed value of v. The standard

deviation is reported between parentheses.

AUC, the better the performance of the classifier in the con-
sidered interval of false positives. For each DFP, we also
measured the number of detected attacks. We consider an
attack as detected if at least one out of the total number of
packets of the attack is detected as anomalous. It is worth
noting that the number of detected attacks is different from
the detection rate used to computed the ROC curve.

1-gram PAYL. Our baseline is represented by the per-
formance of 1-gram PAYL. As mentioned before, PAYL
measures the occurrence frequency of byte values in the
payload. A separate model is generated for each different
payload length. These models are clustered together at the
end of the training to reduce the total number of models.
Furthermore, the length of a payload is also monitored for
anomalies. Thus, a payload with an unseen or very low fre-
quency length is flagged as an anomaly [28].

We trained PAYL using the entire first day of collected
HTTP requests. We constructed the ROC curve by esti-
mating the RFP on the entire test dataset, i.e., the other 4
days of collected HTTP requests, and the detection rate on
the attack dataset. The obtained AUC was equal to 0.73.
As shown in Table 1, for DFP=0.1% PAYL produced an
RFP=0.15% and was able to detect 17 out of 18 attacks.
In particular it was able to detect all the attacks except
the polymorphic blending attack. Table 1 also shows that
the polymorphic blending attack remained undetected until
RFP is around 5.7%. By performing further experiments,
we found out that the minimum amount of RFP for which
PAYL is able to detect all the attacks, included the polymor-
phic blending attack, is equal to 4.02%, which is usually
considered intolerably high for network intrusion detection.

Single One-Class SVM Classifiers. We constructed sev-
eral one-class SVM classifiers. We extracted the features as
described in Section 3.1 varying the parameter v from 0 to
10, thus obtaining 11 different descriptions of the patterns.
Then, for each fixed v, we applied the feature clustering al-

gorithm described in Section 3.2 fixing the prior probability
P(C,) = 0.01 and setting the number of desired clusters &
equal to 10, 20, 40, 80 and 160. We used a random initial-
ization for the algorithm (i.e., at the first step each feature
is randomly assigned to one of the k clusters). The feature
clustering algorithm stops when the information loss due to
the feature clustering becomes minor than 1074,

For each pair (v, k) of parameter values we repeated the
experiment 5 times. For each round we applied the fea-
ture clustering algorithm (using a new random initializa-
tion), and we trained a classifier on a sample of the training
dataset obtained from the original training dataset by apply-
ing the bootstrap technique without replacement and with
a sampling ratio equal to 10%. We estimated the AUC by
measuring the false positives on a sample of the test dataset
obtained using again the bootstrap technique with sampling
ratio equal to 10%, and measuring the detection rate on the
entire attack dataset. Table 2 reports the estimated average
AUC. The numbers between parentheses represent the stan-
dard deviation computed over the 5 rounds. We discuss the
obtained results later in this section comparing them to the
results obtained using the MD classification algorithm.

Single MD Classifiers. Similarly to the experiments with
the one-class SVM classifiers, we constructed several MD
classifiers. For each pair (v, k) of parameter values, we ap-
plied the feature clustering algorithm with random initial-
ization, and we trained a classifier on a 10% sample of the
training set (using again the bootstrap technique without re-
placement). The AUC was estimated by measuring the false
positives on a 10% sample of the test dataset and the de-
tection rate on the entire attack dataset. We repeated each
experiment 5 times. Table 3 reports the average and the
standard deviation for the obtained AUC. The MD classifier
performs extremely well for v = 0 and k£ = 10. In this case
the MD classifier is able to detect all of the 18 attacks for
an RFP around 0.1% and reaches 100% of detection rate for
an RFP around 1%. However, the use of only one classifier

k

10 20 40 80 160
0 | 0.9965 (0.5345E-3) 0.9948 (1.4455E-3) 0.9895 (3.9813E-3) 0.9785 (5.1802E-3) 0.9718 (9.9020E-3)
1 | 0.9752 (0.5301E-3) 0.9729 (0.7921E-3) 0.9706 (1.0940E-3) 0.9664 (2.2059E-3) 0.9653 (0.3681E-3)
2 | 0.9755(0.2276E-3) 0.9743 (0.4591E-3) 0.9741 (0.9121E-3) 0.9676 (0.1084E-3) 0.9661 (0.4246E-3)
3 | 0.9749 (0.7496E-3) 0.9736 (0.8507E-3) 0.9726 (1.8217E-3) 0.9714 (1.2729E-3) 0.9708 (2.6994E-3)
4 | 0.9761 (0.4269E-3) 0.9743 (0.3552E-3) 0.9735 (0.7998E-3) 0.9737 (0.3827E-3) 0.9722 (0.9637E-3)
v 5 | 0.9735 (1.0645E-3) 0.9692 (0.3607E-3) 0.9694 (1.0499E-3) 0.9626 (2.4574E-3) 0.9606 (1.9866E-3)
6 | 0.9737 (0.6733E-3) 0.9709 (1.5523E-3) 0.9687 (2.9730E-3) 0.9699 (4.1122E-3) 0.9717 (0.5427E-3)
7 | 0.9687 (3.3302E-3) 0.9545 (9.6519E-3) 0.9505 (7.3100E-3) 0.9258 (19.923E-3) 0.8672 (50.622E-3)
8 | 0.9731(0.7552E-3) 0.9721 (0.6001E-3) 0.9717 (0.6799E-3) 0.9715 (0.6367E-3) 0.9678 (1.5209E-3)
9 | 0.9719 (1.5743E-3) 0.9695 (1.9905E-3) 0.9700 (2.2792E-3) 0.9662 (2.9066E-3) 0.9611 (1.5542E-3)
10 | 0.9641 (1.6604E-3) 0.9683 (2.5370E-3) 0.9676 (1.2692E-3) 0.9635 (1.1016E-3) 0.9598 (0.6209E-3)

Table 3: Performance of single MD classifiers. The numbers in bold represent the best average AUC for a fixed value of v. The standard deviation is

reported between parentheses.

0 1 2 3 4

14

5

6 7 8 9 10

0.9744 09665 09711 0.9393 09170

0.8745

0.8454 0.8419 0.8381 0.9556 0.9079

Table 4: Performance of single MD classifiers for varying v. No feature clustering is applied. The number in bold represents the best result.

does not improve the hardness of evasion, as discussed in
Section 4.3.

We also estimated the performance of the MD classi-
fiers without applying the feature clustering algorithm. In
this case each pattern is described by 65,536 features. We
trained a classifier for each value of v = 0, .., 10 on the en-
tire training dataset and estimated the AUC measuring the
false positives and the detection rate on the entire test and at-
tack dataset, respectively. The obtained results are reported
in Table 4. As can be seen from Table 3 and Table 4, the best
performance for a fixed value of v is always reached using
k = 10. The only exception is when v = 10. In this case
the best performance is obtained using k¥ = 20. The good
performance obtained for low values of k is probably due
to the fact that the MD classification algorithm suffers from
the curse of dimensionality problem. By reducing the di-
mensionality of the feature space the MD classifier is able to
construct a tighter decision surface around the target class.
For each fixed k the best results in terms of AUC were ob-
tained using v = 0. The only exception is when k& = 160.
In this case the best AUC is obtained for v = 4. Neverthe-
less, the AUC obtained for v = 4 and for v = 0 are really
close, and considering the standard deviation it is not pos-
sible to say which classifier performs better than the other.
As we discuss in Section 4.3, the amount of structural infor-
mation extracted from the payload decreases when v grows.
The MD classifier seems to be sensitive to this effect.

By comparing the best results in Table 2 and Table 3 (the
numbers in bold), it is easy to see that SVM classifiers per-
form better than MD classifiers in all the cases except when
v = 0and v = 10. When v = 10 the best performance
are really close, and considering the standard deviation it is
not possible to say which classifier performs better than the

other. It is also easy to see that, differently from the MD
classification algorithm, the one-class SVM seems not to
suffer from the growing dimensionality of the feature space
obtained by increasing k. This is probably due to the fact
that by using the gaussian kernel the patterns are projected
in an infinite-dimensional feature space, so that the dimen-
sionality of the original feature space becomes less impor-
tant.

2-gram PAYL. The MD classifier constructed without ap-
plying the feature clustering and setting v = 0 represents an
implementation of 2-gram PAYL that uses one model for all
the possible packet lengths. Table 5 reports the results ob-
tained with this classifier. It is easy to see that 2-gram PAYL
performs better that 1-gram PAYL, if we consider the detec-
tion rate DR. This is due to the fact that the simple distri-
bution of 1-grams (i.e., the distribution of the occurrence
frequency of the byte values) does not extract structural in-
formation from the payload, whereas the distribution of 2-
grams conveys byte sequence information. Nevertheless, 2-
gram PAYL is not able to detect the polymorphic blending
attack even if we are willing to tolerate an RFP as high as
11.25%. This is not surprising given that the polymorphic
blending attack we used was specifically tailored to evade
2-gram PAYL.

Classifier Ensembles. We constructed several anomaly
IDS by combining multiple classifiers using the simple ma-
jority voting rule. We first combined one-class SVM classi-
fiers. For a fixed value of the number of feature clusters £,
the output of the 11 classifiers constructed for v = 0, .., 10
were combined. The experiments were repeated 5 times
for each value of k. We also applied the same approach to

DFP(%) | RFP(%) | Detected attacks | DR(%)
0.0 0.00030 14 35.2
0.01 0.01794 17 96.0
0.1 0.12749 17 96.0
1.0 1.22697 17 97.6
2.0 2.89867 17 97.6
5.0 6.46069 17 97.6
10.0 11.25515 17 97.6

Table 5: Performance of an implementation of 2-gram PAYL using
a single MD classifier, v = 0 and k = 65, 536.

combine MD classifiers. The average and standard devia-
tion for the obtained AUC are reported in Table 6. The last
row reports the results obtained by combining single MD
classifiers for which no feature clustering was applied (i.e.,
all the 65,536 features are used). The combination works

k Ensemble of SVM
10 0.9885 (0.3883E-3)
20 0.9875 (2.0206E-3)
40 0.9892 (0.2257E-3)
80 0.9891 (1.6722E-3) | 0.9733 (0.5144E-3)
160 0.9873 (0.4209E-3) | 0.9701 (0.6994E-3)

65,535 | - [0.9245

Ensemble of MD
0.9758 (0.4283E-3)
0.9737 (0.1381E-3)
0.9736 (0.2950E-3)

Table 6: Average AUC of classifier ensembles constructed using
the majority voting rule. The numbers in bold represent the best
result for varying k. The standard deviation is reported between
parentheses.

really well in case of one-class SVM. As shown in Table 6,
the overall IDS constructed using ensembles of one-class
SVM always performs better than the best single classifier.
The only exception is when & = 160, but in this case the re-
sults are so close that considering the standard deviation it is
not possible to say which one is the best. On the other hand,
the combination of MD classifiers is not as effective as for
the ensemble of one-class SVM, and does not improve the
performance of the single best classifier. This is probably
due to the fact that although we constructed MD classifiers
that work on different feature spaces, the obtained classi-
fiers are not sufficiently diverse and make the same errors
for new patterns.

DFP(%) | RFP(%) | Detected attacks | DR(%)
0.0 0.0 0 0
0.01 0.00381 17 68.5
0.1 0.07460 17 79.0
1.0 0.49102 18 99.2
2.0 1.14952 18 99.2
5.0 3.47902 18 99.2
10.0 7.50843 18 100

Table 7: Performance of an overall IDS constructed using an en-
semble of one-class SVM and setting & = 40. The DFP is referred
to the single classifiers of the ensemble.

Table 7 shows the results obtained with an overall IDS
implemented by combining the 11 single one-class SVM

constructed using v = 0, .., 10 and k = 40. The IDS is able
to detect all the attacks except the polymorphic blending
attack for an RFP lower than 0.004%. The IDS is also able
to detect all the attacks, including the polymorphic blending
attack, for an RFP lower than 0.5%.

In conclusion, the experimental results reported above
show that our IDS constructed using an ensemble of one-
class SVM classifiers and using k& = 40 performs better
than any other IDS or single classifiers we considered. The
only exception is the single MD classifier obtained setting
v = 0 and £k = 10. However, as mentioned before and
as discussed in Section 4.3, this single MD classifier may
still be easy to evade, whereas our MCS based IDS is much
harder to evade.

4.3 Discussion and Future Work

2,-grams. We discussed in Section 3.1 how to extract the
features using the 2,,-gram technique. We also argued that
the occurrence frequency of 2,-grams somehow “summa-
rizes” the occurrence frequency of n-grams. This allows
us to capture some byte sequence information. In order to
show that the 2, -grams actually extract structural informa-
tion from the payload, we can consider the bytes in the pay-
load as random variables and then we can compute the rel-
ative mutual information of bytes that are v positions apart
from each other. That is, for a fixed value of v we compute
the quantity

I(Bi; B¢+u+1)

RM1, = == 5

Y
where I(B;; B;+,+1) is the mutual information of the bytes
at position ¢ and (i +v+1), and H(DB;) is the entropy of the
bytes at position ¢. By computing the average for RM1I, ;
overtheindex i = 1,.., (L—v—1), with L equal to the max-
imum payload length, we obtain the average relative mutual
information for the 2,-grams along the payload. We mea-
sured this average relative mutual information on both the
training and the test set varying v from 0 to 20. The results
are shown in Figure 1. It is easy to see that the amount of
information extracted using the 2,-gram technique is max-
imum for v = 0 (i.e., when the 2-gram technique is used)
and decreases for growing v. However the decreasing trend
is slow and the average RMI is always higher than 0.5 un-
til v = 10. This is probably due to the fact that HTTP is
a highly structured protocol. Preliminary results show that
the same property holds for other text based protocols.

Polymorphic Blending Attack. The polymorphic blend-
ing attack we used for our performance evaluation was
presented in [12] as an attack against 2-gram PAYL. The
polymorphic blending attack encodes the attack payload so
that the distribution of 2-grams in the transformed attack

o
©

—+—training set | -

—— test set

I~
N

o
@

]

o
5

Average Relative Mutual Information
© o o o
(=] - N w &

IS
N
IS
o
®
3
Sk
=
>
>
3

Figure 1: Average relative mutual information for varying v.

“looks” like normal, from the point of view of the model of
normal traffic constructed by PAYL. As discussed in [12],
a polymorphic blending attack against 2-gram PAYL is also
able to evade 1-gram PAYL. This is because the distribution
of 1-grams can be derived from the distribution of 2-grams.
Thus, if the distribution of 2-grams in the attack payload
“looks” like normal, so does the distribution of 1-grams.

In order to construct the attack, first of all the attacker
needs to monitor part of the traffic towards the network pro-
tected by the IDS [12]. By monitoring this traffic, a poly-
morphic blending engine constructs an approximate normal
profile for the 2-grams and transforms the attack payload
accordingly. It has been proven that a “perfect” single byte
encoding transformation of the attack payload in order to
reflect the estimated normal profile is NP-complete [12].
Therefore, Fogla et al. [12] proposed an approximate so-
lution to the problem. High frequency 2-grams in the attack
payload are greedily matched via one-to-one byte substi-
tution with 2-grams that have high frequencies in normal
traffic. The proposed approach could also be generalized to
evade an n-gram version of PAYL. However, because of the
way the algorithm greedily matches n-grams in the attack
payload with n-grams in normal traffic [12], the single byte
encoding algorithm proposed is less and less likely to gener-
ate a successful attack payload transformation, as n grows.
This means that although the polymorphic blending attack
may still work well for n = 2, it is likely to fail for n > 2.

Hardness of Evasion. In Section 4.2 we showed that an
MD classifier constructed using v = 0 (i.e., using the 2-
gram technique) and & = 10 achieves very good classifica-
tion performance (see Table 3). However, the use of only
one classifier does not help in hardening the anomaly detec-
tor against evasion attempts. The attacker may easily mod-
ify the polymorphic blending attack against 2-gram PAYL
in order to evade this one particular classifier.

We constructed our anomaly IDS using multiple classi-
fiers that work on different descriptions of the payload. In
this case the polymorphic blending attack that mimics the

normal distribution of 2-grams does not work anymore be-
cause it can already be detected for a percentage of false
positives as low as 0.5%, as shown by the experimental
results reported in Section 4.2. In order for the attacker
to evade our IDS, she needs to devise a substitution algo-
rithm that evades the majority of the classifiers at the same
time. Therefore, the attacker needs to transform the attack
payload in order to mimic the distribution of 2,-grams for
different values of v. Because of the way the features are
extracted using the 2,-gram technique, this result may be
achieved by a polymorphic transformation that encodes the
attack payload to reflect the distribution of the n-grams in
normal traffic, with n greater than % Here max(v)
represents the maximum value of v used during the fea-
ture extraction process. Thus, in order to evade our IDS
the attacker needs to encode the attack payload mimicking
the distribution in normal traffic of 7-grams. This makes it
much harder to evade our IDS, compared to 1-gram and 2-
gram PAYL. In theory, a hypothetical 7-gram PAYL would
be as hard to evade as our IDS. However, this hypotheti-
cal 7-gram PAYL would easily suffer from the curse of di-
mensionality and memory consumption problems due to the
huge number of features (equal to 2567). Our anomaly IDS
is much more practical.

Future Work. We leave a thorough run-time performance
comparison between PAYL and our ensemble of one-class
SVM classifiers to future work. However, it is worth noting
that during the operational phase both the feature extraction,
feature clustering, and the test of a new pattern against the
SVM models can be efficiently performed. For these rea-
sons, we expect the overhead introduced by an optimized
version of our IDS to be sufficiently low. We also plan
to study the application of different classifier combination
rules (e.g., average and product [16, 24]) and to compare
them against the results obtained using the simple majority
voting rule.

5 Conclusion

In this paper we constructed a payload-based anomaly
IDS by using an ensemble of one-class SVM classifiers.
We proposed a new technique to extract the features from
the payload inspired by the n-gram analysis technique. The
proposed technique allowed us to obtain descriptions of the
payload in different feature spaces. We constructed several
one-class SVM classifiers. Each classifier works on a dif-
ferent description of the payload. The experimental results
show that the combination of the obtained classifiers im-
proves both the detection accuracy and the hardness of eva-
sion with respect to other recently proposed payload-based
anomaly IDS.

Acknowledgments

This work is supported in part by NSF grant
CCR-0133629 and Office of Naval Research grant
N000140410735. The contents of this work are solely the
responsibility of the authors and do not necessarily repre-
sent the official views of NSF and the U.S. Navy.

The authors would like to thank Prahlad Fogla for the
help in constructing the polymorphic attacks, and Giorgio
Giacinto, Fabio Roli and the anonymous reviewers for their
insightful comments.

References

[1] Securityfocus (BID 2674). Microsoft IIS 5.0 .printer
ISAPI Extension buffer overflow vulnerability, 2006.

[2] Securityfocus (BID 3526). ActivePerl perllIS.dll
buffer overflow vulnerability, 2006.

[3] R. Brunelli and D. Falavigna. Person identification
using multiple cues. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 17(10):955-966, 1995.

[4] C. Chang and C. Lin. LIBSVM: a library for support
vector machines, 2001.

[5] R. Chinchani and E.V.D. Berg. A fast static analysis
approach to detect exploit code inside network flows.
In Recent Advances in Intrusion Detection (RAID),
2005.

[6] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Un-
derduk. Polymorphic shellcode engine using spectrum
analysis. Phrack Issue Ox3d, 2003.

[7] L. S. Dhillon, S. Mallela, and R. Kumar. A divisive
information-theoretic feature clustering algorithm for
text classification. Journal of Machine Learning Re-
search, 3:1265-1287, 2003.

[8] T. G. Dietterich. Ensemble methods in machine learn-
ing. In Multiple Classifier Systems (MCS), 2000.

[9] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Clas-
sification. Wiley, 2000.

[10] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and
S. Stolfo. A geometric framework for unsupervised
anomaly detection: Detecting intrusions in unlabeled
data. In D. Barbara and S. Jajodia, editors, Applica-
tions of Data Mining in Computer Security. Kluwer,
2002.

[11] FirewOrker. Windows Media Services remote com-
mand execution exploit, 2006.

[12] P. Fogla, M. Sharif, R. Perdisci, O. M. Kolesnikov,
and W. Lee. Polymorphic blending attack. In USENIX
Security Symposium, 2006.

[13] G. Giacinto, F. Roli, and L. Didaci. Fusion of mul-
tiple classifiers for intrusion detection in computer
networks. Pattern Recognition Letters, 24(12):1795—
1803, 2003.

[14] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and
G. Vigna. Automating mimicry attacks using static bi-
nary analysis. In USENIX Security Symposium, 2005.

[15] C. Kruegel, T. Toth, and E. Kirda. Service specific
anomaly detection for network intrusion detection. In
ACM Symposium on Applied Computing (SAC), 2002.

[16] L. Kuncheva. Combining Pattern Classifiers. Wiley,
2004.

[17] E. Leopold and J. Kindermann. Text categorization
with support vector machines. How to represent texts
in input space? Machine Learning, 46:423-444, 2002.

[18] M. Mahoney. Network traffic anomaly detection based
on packet bytes. In ACM Symposium on Applied Com-
puting (SAC), 2003.

[19] J. McHugh, A. Christie, and J. Allen. Defending your-
self: The role of intrusion detection systems. IEEE
Software, pages 42-51, Sept./Oct. 2000.

[20] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detec-
tion with unlabeled data using clustering. In ACM CSS
Workshop on Data Mining Applied to Security, 2001.

[21] B. Scholkopf, J. Platt, J. Shawe-Taylor, A. J. Smola,
and RC Williamson. Estimating the support of a
high-dimensional distribution. Neural Computation,
13:1443-1471, 2001.

[22] F. Sebastiani. Machine learning in automated text cat-
egorization. ACM Computing Surveys, 34(1):1-47,
March 2002.

[23] D. M. J. Tax. One-Class Classification, Concept
Learning in the Absence of Counter Examples. PhD
thesis, Delft University of Technology, Delft, Nether-
land, 2001.

[24] D. M. J. Tax and R. P. W. Duin. Combining one-
class classifiers. In Multiple Classifier Systems (MCS),
2001.

[25] T. Toth and C. Kruegel. Accurate buffer overflow de-
tection via abstract payload execution. In Recent Ad-
vances in Intrusion Detection (RAID), 2002.

[26] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[27] D. Wagner and P. Soto. Mimicry attacks on host-based
intrusion detection systems. In ACM Conference on
Computer and Communication Security (ACM CCS),
2002.

[28] K. Wang and S. Stolfo. Anomalous payload-based net-
work intrusion detection. In Recent Advances in Intru-
sion Detection (RAID), 2004.

[29] K. Wang and S. Stolfo. Anomalous payload-based
worm detection and signature generation. In Recent
Advances in Intrusion Detection (RAID), 2005.

