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ABSTRACT
In this paper, we perform an empirical analysis of the cy-
ber criminal ecosystem on Twitter. Essentially, through
analyzing inner social relationships in the criminal ac-
count community, we find that criminal accounts tend to
be socially connected, forming a small-world network. We
also find that criminal hubs, sitting in the center of the so-
cial graph, are more inclined to follow criminal accounts.
Through analyzing outer social relationships between
criminal accounts and their social friends outside the crim-
inal account community, we reveal three categories of ac-
counts that have close friendships with criminal accounts.
Through these analyses, we provide a novel and effective
criminal account inference algorithm by exploiting criminal
accounts’ social relationships and semantic coordinations.

Categories and Subject Descriptors
k.6.5 [Computing Milieux]: Security and Protection; J.4
[Computer Applications]: Social and Behavioral Sciences

General Terms
Security

Keywords
Spammer, Online Social Network, Ecosystem

1. INTRODUCTION
Cyber criminals have utilized Twitter as a new platform

to conduct their malicious behavior including sending spam
and phishing scams [12], spreading malware [9, 5], host-
ing botnet command and control (C&C) channels [10], and
launching other underground illicit activities. In March
2010, cyber criminals exploited Twitter to spread malware
using festive-themed messages [9]. In September 2010, thou-
sands of Twitter users including the wife of former British
Prime Minister and White House Press Secretary were com-
promised by Twitter cyber criminals [12].

While most existing approaches [15, 26, 14, 32, 35] focus
on detecting Twitter criminal accounts individually, we still
understand far less about the properties of those criminal ac-
counts’ social relationships on Twitter. Yet, it is these very
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relationships that may be utilized by criminal accounts to in-
crease their influence or to avoid detection and suspension.
Specifically, since Twitter users can automatically obtain
their following accounts’ updates, criminal accounts’ social
relationships can aid them in increasing the visibility of their
malicious content – thus in obtaining more victims. In ad-
dition, by gaining more followers, Twitter criminal accounts
can evade existing detection approaches such as “Twitter
Rules” and break through Twitter’s “Follow Limit Policy”1,
while maintaining their high visibility. Particularly, accord-
ing to Twitter Rules [8], “a Twitter account can be consid-
ered to be spamming, and thus be suspended by Twitter, if
it has a small number of followers compared to the amount
of accounts that it follows.”

However, we lack basic insights into the characteristics of
criminal accounts’ social relationships. How do criminal ac-
counts socially connect with each other on Twitter? What is
the topological structure of social relationships among those
criminal accounts? Due to the fact that legitimate accounts
normally do not like to follow criminal accounts, what are
the main characteristics of criminal accounts’ followers? Can
we exploit these miscreants’ tactics to build effective defense
strategies against cyber criminals? The desire of addressing
these questions empirically – and thus obtaining insights for
defending against Twitter criminal accounts – forms the core
motivation of this work.

Figure 1: Structure of the cyber criminal ecosystem.

In this paper, we empirically analyze the cyber crim-
inal ecosystem on Twitter, containing criminal account
community composed of criminal accounts, and criminal
supporter community composed of those accounts outside
the criminal account community who have close friendships

1According to this policy, once an account has followed 2,000
users, the number of additional accounts it can follow is
limited to its follower number [13].



(following relationships) with criminal accounts, defined in
our work as criminal supporters (See Figure 1). Specifi-
cally, we analyze inner social relationships in the crimi-
nal account community to reveal insights on how criminal ac-
counts socially connect with each other. Meanwhile, we ana-
lyze outer social relationships between criminal accounts
and their criminal supporters to reveal the characteristics of
those accounts who have close friendships with criminal ac-
counts. We also aim at finding possible reasons why criminal
supporters outside the criminal community become criminal
accounts’ followers. Essentially, these supporters aid crim-
inal accounts in avoiding detection by increasing criminal
accounts’ followers, and in preying on more victims due to
the“social-intercourse”nature of Twitter (Twitter users may
visit their friends’ friends’ profiles). Through these analyses,
we aim at understanding how criminal accounts mix into the
whole Twitters space, and presenting new defense insights
to effectively catch Twitter criminal accounts.

We conduct our empirical analysis based on a sample
dataset containing around half million Twitter accounts
with around 14 million tweets and 6 million URLs. After
building a sample criminal account community composed of
2,060 identified spammer accounts in that dataset, we an-
alyze its inner relationships by building and analyzing the
social relationship graph. To analyze outer relationships,
we propose a Malicious Relevance Score Propagation Algo-
rithm (Mr.SPA) to extract criminal supporters. We then
observe typical characteristics of three categories of support-
ers and provide possible reasons why these supporters have
close friendships with criminal accounts. Finally, we design
a Criminal account Inference Algorithm (CIA), to infer un-
known criminal Twitter accounts by starting from a seed
set of known criminal ones and exploiting the properties of
their social relationships and semantic coordinations with
other criminal accounts.

In summary, the main contributions of our study are:

• We present the first in-depth case study of analyz-
ing inner social relationships of criminal accounts. We
have two main findings: (i) criminal accounts tend to
be socially connected, forming a small-world network;
(ii) compared with criminal leaves, criminal hubs are
more inclined to follow criminal accounts.

• We propose a new algorithm Mr.SPA and have ex-
tracted 5,924 criminal supporters who have close
friendships with criminal accounts. We also investigate
the characteristics of three representative categories of
criminal supporters. For example, we find that a rep-
resentative category of such supporters, which we term
as social butterflies, easily follow back any random ac-
count who initially follows them (in our test, about
48% of them do so within 48 hours), while in real-
ity very few (less than 2%) normal accounts would do
this. This implies that by initializing social relation-
ships with these kind of accounts, criminal accounts
can easily mix into Twitter.

• We design a new algorithm CIA to infer more criminal
accounts based on a small known seed set, by simply
analyzing the social relationships and semantic coordi-
nations among accounts. Using CIA, we can infer over
20 times more criminal accounts than that of using a
random selection strategy.

2. RESEARCH GOAL AND DATASET

2.1 Research Goal
Our research goal is to provide the first empirical analysis

on how criminal accounts mix into and survive in the whole
Twitter space. Specifically, we target on those criminal ac-
counts as defined by Twitter Rules [8], who mainly post
malicious URLs linking to malicious content with an inten-
tion to compromise users’ computers or privacy. Through
analyzing inner social relationships in the criminal commu-
nity composed of criminal accounts (in Section 3), we aim at
answering the following questions. What is the structure of
criminal accounts’ network? What are possible factors and
inherent reasons leading to that structure? Are there any
different social roles for different types of criminal accounts?
Through analyzing outer social relationships (in Section 4),
we aim at answering the following questions. What are typi-
cal characteristics of the accounts outside the criminal com-
munity that tend to follow criminal accounts? What are
possible reasons that these accounts have close friendships
with criminal accounts? Then, through exploiting criminal
accounts’ social relationships, we design an inference algo-
rithm to catch more criminal accounts (in Section 5).

2.2 Dataset
To achieve our research goals, we analyze the dataset

from our previous Twitter spam account detection study
[35], which is crawled by tapping into Twitter’s Streaming
API [11] from April 2010 to July 2010. The dataset con-
tains 485,721 Twitter accounts with 14,401,157 tweets and
5,805,351 URLs. Due to the large amount of shortening
URLs on Twitter, for each URL in every tweet, the dataset
records its final destination URL through following the URL
redirection chain.

To analyze criminal accounts, we also use the results from
that previous study [35], which outputs 10,004 malicious
affected accounts posting malicious URLs. Of those mali-
cious affected accounts, 2,060 accounts are finally identified
as spammer accounts. The URLs are labeled as malicious
by using the widely-used URL blacklist Google Safe Brows-
ing (GSB) [4] and a high-interaction client honeypot, imple-
mented using Capture-HPC [3]. We clearly acknowledge and
discuss the limitations of our analyzed dataset in Section 7.

Based on this dataset, we build and analyze a sample crim-
inal account community, which is composed of those 2,060
identified spam accounts.

3. INNER SOCIAL RELATIONSHIPS
In this section, we empirically analyze inner social rela-

tionships in our sample criminal account community by vi-
sualizing its relationship graph and revealing its relationship
characteristics.

3.1 Visualizing Relationship Graph
If we view each criminal account as a node v and each fol-

low relationship as a directed edge e, we can view inner social
relationships in the criminal account community on Twit-
ter as a directed graph, named as the criminal relationship
graph G = (V,E). In our dataset, the criminal relationship
graph consists of 2,060 nodes and 9,868 directed edges (see
Figure 2(a)). By further breaking down the graph, we can
obtain 8 weakly connected components containing at least
three nodes and 521 isolated nodes. (Since we can partially
crawl the whole Twitters space and utilize a relatively strict
way of identifying criminal accounts, the number of isolated
accounts may be somewhat overestimated.) The giant con-
nected component contains 954 nodes (see Figure 2(b)).



(a) Relationship graph (b) Connected component

Figure 2: Criminal relationship graph. Each “dot”
represents a criminal account and each “line” con-
nects a pair of following and follower criminal ac-
count. The more relationships an account has, the
more central it is positioned in the graph.

3.2 Revealing Relationship Characteristics
After visualizing our sample criminal relationship graph,

we analyze this graph through utilizing graph theoretical
knowledge, and observe the following two main findings.

Finding 1: Criminal accounts tend to be socially
connected, forming a small-world network. From Fig-
ure 2(a), we can observe that criminal accounts tend to so-
cially connect with each other. To quantitatively validate
this finding, we measure three graph metrics: graph density,
reciprocity, and average shortest path length.

Graph density is the proportion of the number of edges
in a graph to the maximal number of edges, which can be

computed as |E|
|V |·(|V |−1)

. This metric measures how closely

a graph is to be a complete graph. A higher value implies
that the graph is denser. After calculating the graph density
for both our sample criminal relationship and a public entire
Twitter snapshot[25] containing 41.7 million users and 1.47
billion edges, we find that the graph density of our sample
criminal relationship graph, which is 2.33 × 10−3, is much
higher than that of the Twitter snapshot, which is 8.45 ×
10−7. This shows that the criminals have closer relationship
than regular Twitter users.

Reciprocity is represented by the number of bi-directional
links2 to the number of outlinks. We find that criminal
accounts have stronger reciprocal social relationships than
legitimate accounts. For example, around 95% criminals
accounts have the reciprocity higher than 0.2 in the crimi-
nal graph, while only around 55% normal accounts in our
crawled graph (containing around 500K nodes) [35] have
such values (See Figure 3(a)). Furthermore, around 20% of
criminal accounts’ values of reciprocity in the criminal graph
are nearly 1.0, i.e., all criminal accounts followed by these
20% of criminal accounts also follow them back. This obser-
vation clearly implies that criminal accounts have stronger
social relationships in the criminal account community.

Average Shortest Path Length is defined as the average
number of steps along the shortest paths for all possible
pairs of graph nodes. It can be used to measure the ef-
ficiency of information flow on a graph. Compared with
the average path length of a sample data set with 3,000 le-
gitimate Twitter accounts [25], which is 4.12, the average
shortest path length of the criminal relationship graph is
even smaller, which is 2.60. This implies that the criminal
account community is also a small-world network. As an

2There is a bi-directional link between two nodes, if they
reciprocally link to each other.

important property, a small-world network contains a giant
connected component, which can be verified in Figure 2(b).

From the above analysis, we can find that criminal ac-
counts have strong social connections with each other. Then,
the next question we try to answer is: what are the main fac-
tors (criminal accounts’ actions) leading to that structure?
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Figure 3: The comparison of the criminal accounts
(CA) and normal accounts (NA).

Possible Factor 1: Criminal accounts tend to follow
many other accounts without considering those accounts’
quality much, making themselves to connect to other crimi-
nal accounts. The observation that criminal accounts tend
to follow many other accounts has been widely analyzed and
utilized to build detection schemes in existing work [26, 14,
33, 32, 35]. Our work focuses on analyzing the quality of
criminal accounts’ followings. Specifically, we use an ac-
count’s follower number to reflect its quality, i.e., intuitively,
an account with more followers has higher quality. (We ac-
knowledge that an account’s follower number may not ac-
curately measure its quality in all cases. However, it is still
a practical and well-accepted metric to laterally reflect an
account’s fame and reputation [2].) Then to measure the
quality of an account’s following accounts, we use a met-
ric, named “following quality”, which is the average follower
number of an account’s all following accounts. In this way,
a higher following quality of an account implies that this
account tends to follow those accounts with more followers.
We can find that compared with normal accounts, crimi-
nal accounts tend to follow accounts with fewer followers
(See Figure 3(b)). Around 85% of criminal accounts have
the following quality lower than 20,000, while only around
45% of normal accounts have such a value. This observation
validates that criminal accounts’ actions of indiscriminately
following others lead them to connect with low quality ac-
counts, and hence connect with other criminal accounts.

Possible Factor 2: Criminal accounts, belong-
ing to the same criminal organizations, may be artifi-
cially/intentionally connected with each other. To validate
this possible factor, similar to [22], we first group criminal
accounts into different criminal campaigns/clusters (possi-
bly denoting different organizations) by clustering them with
their posted malicious URLs. Each criminal campaign con-
tains the criminal accounts that post the same unique ma-
licious URLs. In this way, we obtain 17 criminal campaigns
and each of them has at least 3 nodes. Then, for each cam-
paign, we draw its criminal relationship graph using a similar
method to the one mentioned in Section 3.1 and calculate
its number of edges. The sum of those numbers of edges is
8,667, which is around 87.8% of all edges in the whole crim-
inal community. The observation that many social edges
are built within criminal campaigns (rather than across dif-



ferent campaigns) implies strong social connections within
criminal campaigns.

Although it is difficult to accurately trace how these con-
nections are generated, this observation still reflects the high
probability that criminal accounts in the same criminal or-
ganization are artificially/intentionally connected.

In fact, no matter whether these connections are built
using random selection or intentional construction, criminal
accounts could benefit from such strong social connections in
the criminal community. Essentially, this structure provides
“support” (followers) to criminal accounts, which are very
important for criminal accounts to either break the Follow-
ing Limits Policy or evade detection features that are built
based on the metric of follower number.

As seen in Figure 2(a), some nodes in the middle of the
graph, termed as criminal hub in our work, have a bunch of
social relationships with the nodes in the periphery, termed
as criminal leaf. Are there any differences between these
two types of criminal accounts? This motives us to study
special characteristics of those criminal hubs. Before analyz-
ing those hubs, we extract criminal hubs by calculating hub
scores of criminal accounts in terms of their positions in the
criminal relationship graph by utilizing the HITS algorithm
[23]. Particularly, for each vertex i in the graph, we can use
Eq.(1) and (2) to compute its hub score Ht

i and authority
score At

i in the t-th iteration. When the computation con-
verges within several iterations, we can obtain this vertex’s
final hub score Hi.

H
t
i =

{

1, if t = 0
∑

(i,j)∈E

At−1
j , if t > 0 (1)

A
t
i =

{

1, if t = 0
∑

(j,i)∈E

Ht−1
j , if t > 0 (2)

According to this algorithm, a higher hub score of an ac-
count implies that it follows many accounts with high fol-
lower numbers. Thus, we extract 90 criminal hubs with
higher scores and 1,970 criminal leaves with lower scores by
using k-means algorithm and setting k = 2.

Finding 2: Compared with criminal leaves, crim-
inal hubs are more inclined to follow criminal ac-
counts. To validate this finding, we examine whether crim-
inal hubs’ followings are more likely to be criminal accounts.
For better description, we term a criminal account’s follow-
ing account as a “criminal-following”, if this following ac-
count is also a criminal. Then, we design a metric, named
Criminal Following Ratio (CFR), which is the ratio of the
number of an account’s criminal-followings to its total fol-
lowing number. A higher CFR of an account implies that
this account is more inclined to follow criminal accounts.
From Figure 4(a), we can find that criminal hubs’ CFRs
are much higher than that of criminal leaves. Specifically,
around 80% criminal hubs’ CFRs are higher than 0.1, while
only 20% of criminal leaves have such values. Also, almost
no criminal hubs’ CFRs are lower than 0.05, while around
60% of criminal leaves’ CFRs are lower than 0.05. This ob-
servation validates that criminal hubs tend to follow more
criminal accounts than leaves do. Similar to Finding 1, we
next provide possible explanations to Finding 2.

Possible Explanation: Criminal hubs tend to obtain
followers more effectively by following other criminal ac-
counts (to obtain their followers). Although criminal ac-

counts could obtain followers by randomly following any ac-
count and expecting it to follow back, this method is still
not very effective, due to the low chance of successfully al-
luring legitimate accounts to follow back. However, through
following criminal accounts, hubs can automatically acquire
those criminal accounts’ followers’ information (Username
or Account ID). Then, there is a better chance for criminal
hubs to successfully allure other criminal accounts’ followers
to become their own followers. Particularly, these followers
have been already proved to be more susceptible to follow
criminal accounts, which many legitimate accounts may not
choose to do. (For more details supporting this argument,
refer to Section 4.) In this way, criminal hubs can obtain
followers more effectively.

To validate this explanation, we examine whether crim-
inal hubs’ followers are highly shared with their criminal-
followings. Specifically, we design a metric, named Shared
Follower Ratio (SFR), which is the percentage of an ac-
count’s followers, who also follows at least one of this ac-
count’s criminal-followings. A high SFR of an account
implies that most of this account’s followers are also its
criminal-followings’ followers, i.e., this account tends to
share common followers with its criminal-followings. We find
that criminal hubs’ SFRs are higher than criminal leaves’.
Around 80% of criminal hubs’ SFRs are higher than 0.4,
while around 5% of criminal leaves have such values (see
Figure 4(b)). This observation reflects that compared with
criminal leaves, criminal hubs’ followers share more follow-
ers with their criminal-followings. This indirectly implies
that criminal hubs could obtain followers by knowing their
criminal-followings’ followers’ information.
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Figure 4: The comparison between criminal hubs
and criminal leaves.

From these two findings, we can roughly draw a picture
on how criminal accounts could obtain followers on Twit-
ter. Similar to the Bee Community, in the criminal account
community, criminal leaves, like bee workers, mainly focus
on collecting pollen (randomly following other accounts to
expect them to follow back); criminal hubs in the interior,
like bee queens, mainly focus on supporting bee workers and
acquiring pollen from them (following leaves and acquiring
their followers’ information).

4. OUTER SOCIAL RELATIONSHIPS
If criminal accounts mainly build inner social relationships

within themselves, according to existing approaches such
as Sybil Guard [37] and Sybil Infer [19] on detecting sybil
nodes, criminal accounts can be easily detected. However,
many Twitter criminal accounts have already utilize sev-
eral tricks to obtain followers outside the criminal account
community and mix well into the whole Twittersphere [7].
Those accounts outside the criminal community, who have



close “follow relationships” with criminal accounts, essen-
tially aid criminal accounts both in avoiding detection and
in spreading malicious content [6]. In our work, we define
them as criminal supporters.

However, currently we have little knowledge about the
characteristics of these criminal supporters. Thus, in this
section, we conduct the first analysis of outer social relation-
ships between criminal accounts and their supporters. By
extracting and characterizing criminal supporters, we reveal
typical characteristics of these supporters and understand
more on how criminal accounts could mix into the Twitter
space.

4.1 Extracting Criminal Supporters
We first design a Malicious Relevance Score Propagation

Algorithm (Mr.SPA) to extract criminal supports. Specif-
ically, Mr.SPA will assign a malicious relevance score (MR
score) to each Twitter account, measuring how closely this
account follows criminal accounts. A higher MR score
implies a closer “follow relationship” to criminal accounts.
Then, we measure the MR score based on three heuristics:
(1) the more criminal accounts that an account has followed,
the higher score this account should inherit; (2) the further
an account is away from a criminal account, the lower score
the account should inherit; (3) the closer the support rela-
tionship between a Twitter account and a criminal account
is, the higher score the account should inherit.

To formalize the above intuitions, we build a malicious
relevance graph G = (V,E) to model the support relation-
ship. In this graph, we consider each Twitter account i in
our dataset outside the criminal community as a node Vi.
There is a directed edge eij from the node Vi to the node
Vj , if the account i follows the account j. The weight Wij

of the edge eij is determined by the closeness of the rela-
tionship between i and j. We next introduce our malicious
relevance score propagation algorithm, which contains two
phases: initializing MR score, and propagating MR score.

MR Score Initialization: Before propagating MR
score, we first assign an initial score M0

i to each node Vi.
If we denote C = {Ci|Ci is a criminal account}, then each
criminal account Ci ∈ C is assigned a non-zero score mi

3.
For other accounts, the score is initialized to zero.

MR Score Propagation: To propagate a MR score
Mi to each node Vi after the initialization phase, we make
the following three score-assigning policies according to the
above three heuristics:

Policy 1: MR Score Aggregation. An account’s score
should sum up all the scores inherited from the accounts
it follows. As Figure 5(a) illustrates, when A follows both
criminal accounts C1 and C2, the score of A is the sum of
the malicious scores of C1 and C2.

Policy 2: MR Score Dampening. The amount of MR score
that an account inherits from other accounts should be mul-
tiplied by a dampening factor of α according to their social
distances, where 0 < α < 1. As Figure 5(b) illustrates, when
A1 is one hop away from a criminal account C, we assign
it a dampening factor of α, where 0 < α < 1. When A2 is
two-hop away, A2 will get a dampening factor of α ·α = α2.

Policy 3: MR Score Splitting. The amount of MR score
that an account inherits from the accounts it follows should
be multiplied by a relationship-closeness factor Wij , which
is the weight of the edge in our malicious relevance graph.

3In our preliminary experiment, we set mi = 1.

Specifically, we use the number of followers of an account to
reflect the closeness of the relationship between this account
and its followers. (The intuition is that if an account has
more followers, the closeness of the relationship between this
account and each of its followers will become weaker.) As
Figure 5(c) illustrates, if A1 and A2 have followed the same
criminal account C, the relationship-closeness factor of each
account to C is 0.5. Thus, according to this policy, the score
of a node Vi can be computed asMi = Wij ·Mj , if (i, j) ∈ E.

Figure 5: The policies of assigning MR scores.
Before presenting our mathematical model of propagat-

ing MR score, we first introduce some notations. Let n be
the number of nodes in the malicious relevance graph. We
use the indication function Iij = {0, 1} to indicate whether
(i, j) ∈ E (i.e., if (i, j) ∈ E, Iij = 1; otherwise, Iij = 0).
If we use numIndegree(j) to denote the number of the in-
degree of the node j, then from MR Score Splitting pol-
icy, we can obtain that Wij = 1

numIndegree(j)
. We use I to

denote the column-vector normalized adjacency matrix of
nodes (i.e., Iij = Iij ·Wij , if numIndegree(j) 6= 0; Iij = 1

n
,

if numIndegree(j) = 0). Let
−→
M0 be initial MR Score vector

for all nodes and let
−→
Mt be malicious score column vector

for all nodes at the step t.
According to those three policies and our notations, at

each step, for each node Vi, its simple MR score Mi can be
computed using Eq.(3).

Mi = α ·
n
∑

j=1

Iij ·Wij ·Mj (3)

In addition, with the consideration of each node’s histori-
cal score record, at each step t(t > 0), we add an initial score
bias (1−α)·M0

i to its simple MR Score. (In our experiment,
we set α = 0.85, since it is widely used in the random-walk
model.) Thus, we can compute the MR Score column-vector
−→
Mt for all nodes at the step t(t > 0) by Eq.(4).

−→
Mt = α ·

−−−−−→
I ·Mt−1 + (1− α) ·

−→
M0 (t > 0) (4)

When the score vector converges after several propagation
steps, we can obtain final MR scores for all nodes. Once
all MR scores have been calculated, a threshold is needed
to determine which accounts have sufficiently close friend
relationships to their criminal counterparts. To find an ac-
ceptable threshold, we first use x-means algorithm [29] to
cluster accounts based on their MR scores. In this way,
accounts with similar scores will be grouped together indi-
cating they have similar follow relationships with criminal
accounts. Then, we observe that most accounts have rela-
tively small scores and are grouped into one single cluster.
That is mainly because most accounts do not have very close
follow relationships with criminal accounts. With this ob-
servation, we choose the highest score of the account in that
cluster as the threshold. Then, we output 5,924 criminal
supporters, whose MR scores are higher than the threshold.



4.2 Characterizing Criminal Supporters
After extracting criminal supporters, according to our em-

pirical studies, we observe three representative categories of
supporters (social butterflies, social promoters, and dum-
mies) according to our defined thresholds. (Since we aim at
showing preliminary and basic insights of criminal support-
ers’ characteristics, the thresholds that are used to char-
acterize them can be tunable according to how strictly to
reflect their behavioral characteristics.)

Social Butterflies are those accounts that have extraor-
dinarily large numbers of followers and followings. Like so-
cial butterflies in our real life, these accounts build a lot of
social relationships with other accounts without discriminat-
ing those accounts’ qualities. To qualitatively define social
butterflies, we use 2,000 following as a threshold in terms of
Twitter’s Follow Limit Policy [13]. This number could be
efficiently used to distinguish whether an account is social-
ized. In this way, we find 3,818 social butterflies.

We present our hypothesis that the reason why social
butterflies tend to have close friendships with criminals is
mainly because most of them usually follow back the users
who follow them without careful examinations. Especially,
some public software and services can help users automati-
cally follow back other users, who have followed them [1]. In
this way, these social butterflies might unintentionally follow
back criminal accounts upon requests.

To validate this hypothesis, we first sign up 30 Twitter
accounts without any tweets and any personal information.
Then we use 10 accounts to follow 500 accounts (each ac-
count follows 50 accounts) that are randomly selected from
those 3,818 butterflies. Meanwhile, we use another 10 ac-
counts to follow another randomly selected 500 normal ac-
counts without posting any malicious tweets, and the other
10 accounts to follow another randomly selected 500 identi-
fied criminal accounts. To minimize the influence generated
by our experiment, we close our signed-up accounts after 48
hours. During this timespan, we find 47.8% of those but-
terflies follow back to our signed-up accounts, while only
1.8% of those normal accounts and 0.6% of those criminal
accounts follow back. The fast speed in which these so-
cial butterfly accounts followed our accounts back validates
our hypothesis that these accounts may automatically follow
back any accounts that follow them. Such a low value for
those criminal accounts validates that our identified crimi-
nal accounts are not social butterflies. And they usually will
not follow back other accounts, since this behavior will not
increase their follower numbers and influence. This exper-
iment also shows that even though those Twitter accounts
with many followers are usually popular and trustable, we
cannot always trust their friends’ quality.

Social Promoters are those Twitter accounts that have
large following-follower ratios (the ratio of an account’s fol-
lowing number to its follower number), larger following num-
bers and relatively high URL ratios. The owners of these
accounts usually use Twitter to promote themselves or their
business. We extract those social promoters whose URL
ratios (the ratio of the number of URLs to the number
of tweets) are higher than 0.1, and following numbers and
following-follower ratios are both at the top 10-percentile of
all accounts in our dataset. In this way, we can obtain 508
social promoters.

We make our hypothesis that the reason why social pro-
moters tend to have close friendships with criminal accounts

is probably because most of them usually promote themselves
or their business by actively following other accounts without
considerations of those accounts’ quality. Thus, promoters
may become criminal supporters by unintentionally follow-
ing criminal accounts.

For this type of supporters, we use a heuristic method to
validate our hypothesis. Since the goals of these promot-
ers are promoting themselves or their business, they usually
repeat posting URLs with the same domain names, which
link to the webpages containing their promotion informa-
tion. Thus, the purity of domain names in promoters’ posted
URLs are higher, leading a lower domain name entropy.
With this intuition, to calculate domain name entropy for
each social promoter, we extract each promoter’s posted do-
main names in the final URLs, which are obtained through
following URL redirection chains, due to the wide usage of
shortening URLs on Twitter. Then, we compute its domain

name entropy by using −
N
∑

i=1

pi ln pi, where N denotes the

number of distinct domain names and pi denotes the ratio
of the occurrences of the i-th distinct domain name to the
total number of domain names.
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Figure 6: The entropy of the domain names.

Figure 7: A Case study for social promoters.

From Figure 6, we can find around 40% social promoters’
domain name entropy are zero, which implies that all their
URLs have the same domain names. Also, social promoters’
domain name entropy are lower than that of other accounts.
Specifically, around 80% social promoters have the domain
name entropy lower than 1.0, whereas around 45% of all
accounts in our dataset have such values. The observation
heuristically validates our hypothesis that supporters tend
to use Twitter to promote themselves by actively following
other accounts, leading to close relationships with criminal
accounts. One case study for a social promoter can be seen
in Figure 7. The owner of this promoter mainly utilizes
Twitter to promote an online book selling website.

Dummies are those Twitter accounts who post few
tweets but have many followers. Since in Twitter, legiti-
mate users tend to follow those accounts that share more
useful information, it is relatively weird that these dummies
has close relationships with criminal accounts while sharing
little information, but they have many followers. In partic-
ular, we extract intriguing dummy accounts, who post fewer



than 5 tweets4 and whose follower numbers are at the top
10-percentile. In this way, we obtain 81 dummies.

We make our hypothesis that the reason why dummies
intend to have close friendship with criminals is mainly be-
cause most of them are controlled or utilized by cyber crim-
inals. To validate this, we analyze these dummy accounts
several months after the data collection. Then, we find that
1 account has been suspended by Twitter, and 6 accounts
do not exist any more (closed), and 36 accounts begin post-
ing malware URLs labeled by Google Safe Browsing, and 8
accounts begin posting (verified) phishing URLs.

The observation that dummies begin posting malicious
URLs shows that these dummies who have close relation-
ships with cyber criminals are highly likely controlled by
cyber criminals. A case study of one dummy account, who
posted no tweets at the time when we crawled its profile but
starts to post malicious tweets later, can be seen in Figure 8.
This dummy account steals victims’ email addresses through
claiming to help people earn money. However, the dummy
account sends email spam.

Figure 8: A case study for dummies.

Also, we find that unlike social butterflies and promot-
ers, dummies are a special type of supporters extracted by
Mr.SPA, since they initially do not post malicious URLs.
However, they may later evolve to be criminal accounts.
This discrepancy is mainly because our work provides a
static view of the ecosystem. We note that criminal accounts
could be dynamically evolved from those dummies extracted
by Mr.SPA, and thus we do not argue whether dummies are
supporters or criminal accounts.

Through analyzing outer social relationships between
criminal accounts and their supporters, we can understand
more on how criminal accounts could mix into the whole
Twitter space by achieving criminal supporters. Also, once
we extract these supporters, we can warn legitimate users
not to make friends with these supporters so as to avoid ex-
posure to criminal accounts.

5. INFERRING CRIMINAL ACCOUNTS
Considering the huge number of Twitter accounts, it is im-

practical to make in-depth checks on every account whether
it is a criminal account at the same time. A lightweight
inference algorithm, to guide to more suspicious accounts
instead of scanning or analyzing all accounts given limited
resources or time, is indeed needed. (In fact, similar existing
work such as [38] mainly utilizes a ranking mechanism to
predict potential threats.) As criminal accounts tend to be
socially connected, a spontaneous and practical strategy is
to first check those accounts that are connected with known
criminal accounts by using Breadth First Search (BFS) al-
gorithm. In this section, we propose a Criminal accounts
Inference Algorithm (CIA) to infer more criminal accounts
by exploiting criminal accounts’ social relationships and se-
mantic coordinations.
4None of these tweets contain URLs that are labeled as ma-
licious by GSB or honey client.

5.1 Design of CIA
In brief, our Criminal account Inference Algorithm (CIA)

propagates malicious scores from a seed set of known crimi-
nal accounts to their followers according to the closeness of
social relationships and the strength of semantic coordina-
tions. If an account accumulates sufficient malicious score,
it is more likely to be a criminal account.

The intuition of CIA is based on the following two
observations: (1) criminal accounts tend to be socially
connected; (2) criminal accounts usually share similar
topic/keywords/URLs to attract victims, thus having strong
semantic coordinations among them. The first observation
has been shown and discussed in Section 3. The second ob-
servation has also been widely analyzed in existing work such
as [22, 21], which validates the existence of shared semantic
topics among different criminal account campaigns.

In general, our CIA integrates the first observation by
referring to Mr.SPA designed in Section 4 to quantify the
closeness of social relationships. To integrate the second ob-
servation, we design a metric, Semantic Similarity score (SS
score), among each pair of accounts to quantify their seman-
tic coordinations. To calculate SS score, we first extract a
Semantic Fingerprint Vector (SFV) for each account, which
essentially contains several representative terms in its tweets
based on the TF-IDF algorithm [31], a widely used metric
in the information retrieval community to measure the rep-
resentativeness of terms. Then, SS score of each pair of
accounts can be computed as the distance of their SFVs.
(Due to the page limitation, we omit the technical details
of extracting SFV and calculating SS score. Here, we just
note that a higher SS score between two accounts implies
that they have stronger semantic coordinations.)

With the above intuitions and notions, we then describe
the design of CIA in details. To infer criminal accounts in a
set of U Twitter accounts, we first start from a known seed
set of M criminal accounts. Then, similar to Mr.SPA, we
build a malicious relevance graph by using these (M+U) ac-
counts, denoted as G = (V,E). In this graph, each account
denotes a vertex in V and each follow relationship denotes
a directed edge in E. Then, unlike Mr.SPA, we assign a
weight for each edge eij ∈ E (by using a semantic weight
assignment function WS(i, j)) to reflect the semantic coor-
dination between each pair of accounts. The basic intuition
of designing this function is that if an account has higher SS
scores (stronger semantic coordination) with its followings,
it should inherit more malicious score from its followings.
With this intuition, for each account j, we calculate every
SS score between itself and each of its follower account i,
denoted as SSij . Then, the weight WS(i, j) of the edge eij

can be calculated as WS(i, j) =
SSij∑

ekj∈E

SSkj
.

Then, similar to Mr.SPA, for each criminal account, we
assign a non-zero malicious score and propagate this score by
using the semantic weight assignment function WS(i, j) in
Eq. (3). In this way, we can see that an account’s malicious
score can be proportionally distributed to its followers ac-
cording to the closeness of social relationships and strength
of semantic coordinations. When the score vector converges
after several propagation steps, we infer those accounts with
high malicious scores as criminal accounts.

5.2 Evaluation of CIA
We evaluate our Criminal account Inference Algorithm



(CIA) based on two different datasets – Dataset I and
Dataset II. Dataset I refers to the one with around half mil-
lion accounts from our previous study [35]. Dataset II con-
tains another new crawled 30K accounts by starting from
10 newly identified criminal accounts and using breath-first
search (BFS) strategy.

To evaluate the effectiveness of our CIA, similar to [38]
that uses the number of hits in a top list, we use the num-
ber of correctly inferred criminal accounts and malicious af-
fected accounts (denoted as CA and MA, respectively) in
a top (ranked) list. (Even though these malicious affected
accounts may not be criminal accounts, they still pollute
Twitter with malicious URLs and create a risk for innocent
users.) Thus, a higher number of CA and MA indicates that
the algorithm is more effective to infer criminal accounts.

Note that as a lightweight inference and ranking algorithm
aiming at magnifying suspicious accounts from a small seed
set, we do not position CIA as a full detection algorithm.
Thus, we adopt similar metrics to“Hit Count”used in [38] to
measure CIA’s effectiveness rather than using false positive
and false negative rate. However, CIA could definitely be
incorporated into some actual criminal account detection
system by combining with other detection features.

5.2.1 Evaluation on Dataset I
We first design five experiments to evaluate the effective-

ness of our CIA based on Dataset I.
Different Selection Strategies. In this experiment, we

start from the same seed set of N identified criminal ac-
counts, which are randomly selected from 2,060 identified
criminal accounts. Then, starting from this seed set, we use
the following five strategies to select five different account
sets with the same selection size of k from the dataset5:
random search (RAND), breath-first search (BFS), depth-
first search (DFS), random combination of breadth-first and
depth-first search (RBDFS)6, and CIA. From Figure 9(a),
we can see that CIA can outperform all the other selection
strategies. Specifically, CIA can infer 20.42 times as many
CA and 10.66 times as many MA as that of using random
selection strategy. Also, CIA can infer 2.58 times as many
CA and around 2.00 times as many MA as that of using
BFS, which can infer the second most CA. Also, CIA can
perform much better than the naive algorithm that consid-
ering all accounts are possible criminal accounts. Specifi-
cally, CIA can correctly predict around 0.0625 criminal ac-
counts and over 0.25 malicious affected accounts by selecting
1 account. However, the naive algorithm can only correctly
predict 0.004 criminal accounts and 0.02 malicious affected
accounts by selecting 1 account.

Different Selection Sizes: In this experiment, we start
from 100 identified criminal account seeds and use CIA to
infer criminal accounts by choosing different selection sizes
of accounts, i.e., we evaluate our CIA by changing the values
of k in the previous experiment. From Figure 9(b), we can
see that when we select more accounts, we can infer more
CA and MA, and the increase of CA and MA is sub-linear
with the increase of the selection size.

Different Sizes of Seed Sets. In this experiment, we
evaluate CIA by starting from different sizes of criminal

5In this experiment, we choose N = 100 and k = 4, 000.
6Specifically, when RBDFS traverses to an account, it will
have a probability of 50% to make a breath-first or a depth-
first search in the next step.
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Figure 9: Using different selection strategies and
setting different selection sizes of accounts.

seeds, i.e., we set different values of N . In this experiment,
we also set k = 4, 000. From Figure 10(a), we can see that
when we increase the number of seeds, we can infer more
criminal accounts while selecting the same size of accounts.
This is because when we use more criminal seeds, we have
more knowledge about the relationships among the criminal
account community.
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Figure 10: Striating from different sizes of seed sets
and different types of seeds.

Different Types of Seeds. In this experiment, we eval-
uate CIA by using different types of accounts as the seeds.
Specifically, we start from the same number (100) of ran-
domly selected normal accounts (NOR) (posting no mali-
cious tweets), malicious affected accounts (MA), criminal
accounts (CA), and criminal hubs (CAHUB) and use CIA
to select the same amount of 4,000 accounts. From Figure
10(b), we can find that starting from CAHUB and CA can
predict much more CA and MA. Specifically, starting from
CA, we can infer 245 CA and 1,102 MA, while starting from
MA, we can infer 6 CA and 248 MA, and from NOR, we
can infer 2 CA and 121 MA. This observation also validates
that criminal accounts have stronger social relationships and
semantic coordinations among themselves. Thus, it will be
more effective to use known criminal accounts other than
normal accounts as seeds to infer other criminal ones. In
addition, we can also find that using CAHUB can even in-
fer more CA and MA than using CA. That is also mainly
because these criminal hubs have even more social relation-
ships with other criminal accounts than criminal leaves.

Multiple Round Recursive Inference. In this exper-
iment, we initially start from a small set of randomly se-
lected 50 identified criminal accounts to recursively run CIA
to infer criminal accounts. Specifically, during each round,
we will combine previous round’s seeds and identified crimi-
nal accounts correctly inferred in the previous round as new
seeds to run CIA again. From Figure 11(a), we can find that
even when we start from a small number of criminal accounts
(50, which is around 2.4% of all CA in the dataset) within
running 3 rounds of CIA, we can infer around 9 times more



criminal accounts (500, which is around 22.3% of all CA).
This observation shows that we can use CIA to recursively
infer more criminal accounts by adding newly correctly in-
ferred criminal accounts into the existing seed set.
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Figure 11: Evaluation of multiple round recursive
inference and Dataset II.

5.2.2 Evaluation on Dataset II
To decrease the effect of possible sampling bias in our an-

alyzed dataset and to show the fact that the performance
of CIA are reproducible, we also test CIA on another newly
crawled dataset. Also, to guarantee the correctness of iden-
tifying criminal accounts, we first use Google Safe Brows-
ing, a trustable blacklist, to collect malicious affected ac-
counts. Then, we manually identify criminal accounts from
those malicious affected accounts7. Then, we examine the
effectiveness of CIA on newly crawled dataset by comparing
different account selection strategies. Specifically, we start
from only 10 identified criminal accounts and select 4,000
accounts by using each strategy. From Figure 11(b), we can
also find that CIA can generate the best results. CIA can
infer 13 more criminal accounts than that of using RAND.

Through all above experiments, we can find that CIA can
be used to effectively infer unknown criminal accounts. Also,
unlike most current work on detecting Twitter spammers
based on machine learning techniques, which require ex-
tracting many features from all the accounts in the dataset,
CIA mainly focuses on those accounts that have strong so-
cial relationships with existing known criminal accounts. In
addition, CIA can be utilized to work as an early-stage mon-
itoring and ranking algorithm to monitor those highly sus-
picious accounts, which may evolve to be criminal accounts
later.

6. RELATED WORK
We discuss prior related work on Online Social Networks

(OSN) by organizing them into two general categories.

6.1 Analysis of OSN Characteristics
Due to the great popularity of the OSNs, many studies

have analyzed OSN characteristics. Mislove et al. present
a large-scale measurement study on the structure of mul-
tiple OSNs including Flickr, YouTube, LiveJournal, and
Orkut [28]. Kwak et al. have shown a comprehensive and
quantitative study on Twitter accounts’ behavior [25]. Yardi
et al. analyze social behavior and network structural differ-
ences between spam Twitter accounts and legitimate ones
by analyzing a specific spam campaign [36]. However, due
to the limitation of the analyzed dataset, it fails to reveal

7We acknowledge that the numbers of CA and MA are the
low bound of real numbers in the dataset, because we can
not detect all CA and MA by simply using GSB itself.

in-depth structural differences to answer the questions men-
tioned in that work, e.g., ”Do spammers follow one another
to boost their follower count?”. Wang et al. use Twitter to
study the unbiased sampling algorithm for directed social
graphs [34]. Cha et al. utilize different metrics to mea-
sure the user influence on Twitter [18]. Galuba et al. fo-
cus on characterizing and modeling the information cascades
formed by individual URL mentions in the Twitter follower
graph [20]. Castillo et al. design automatic methods for as-
sessing the credibility of a given set of tweets [17]. Metaxas
et al. analyze political community behavior and the spread
of political opinions on Twitter [27], and Ratkiewicz et al.
analyze the spread of Astroturf memes on Twitter [30].

6.2 Mitigation of OSN Criminal Accounts
In addition, since spam and attacks are so rampant in the

OSNs, many researchers have studied detecting OSN crim-
inal accounts. A framework to detect tag spam in tagging
systems is proposed in [24]. This work prevents the attack-
ers who desire to increase the visibility of an object from
fooling the search mechanism. Benevenuto et al. [15, 16]
utilize machine learning techniques to identify video spam-
mers on YouTube. Gao et al. present a study on detecting
and characterizing social spam campaigns in Facebook [21].
Meanwhile, most Twitter criminal account detection work
can be classified into two categories. The first category of
work, such as [26, 14, 33, 32], utilizes machine learning
techniques to classify legitimate accounts and criminal ac-
counts according to their collected training data and their
selections of classification features. The second category of
work (e.g., [22]) detects and analyzes malicious accounts by
examining whether URLs or domains posted in the tweets
are labeled as malicious by public URL blacklists or domain
blacklists.

Compared with previous work, our work focuses more on
the analysis of cyber criminal ecosystem – investigating in-
ner social relationships in the criminal account community
and outer relationships between criminal accounts and crimi-
nal supporters – to deeply understand how criminal accounts
survive and mix into the whole Twitter space. Thus, our
study is a valuable supplement to the previous work.

7. LIMITATIONS AND FUTURE WORK
We acknowledge that our analyzed dataset may contain

some bias. Also, the number of our analyzed criminal ac-
counts is most likely only a lower bound of the actual number
in the dataset, because we only target on one specific type
of criminal accounts due to their severity and prevalence on
Twitter. However, it is extremely challenging to obtain an
ideal, unbiased dataset with perfect ground truth. In addi-
tion, to reduce possible data sampling bias, we crawled two
datasets at very different time to evaluate the performance
of our CIA. We also believe that even though the exact val-
ues of some metrics used in our work may vary a little bit
when using different sample datasets, our major conclusions
and insights will likely still hold.

We also acknowledge that our validations on some possible
explanations proposed in this work may be not absolutely
rigorous, due to the difficulties in thoroughly obtaining crim-
inal accounts’ social actions or motivations. However, we be-
lieve that our first-in-its-kind analysis of those phenomenon
still provides great values and opens a new door to better
understand the cyber criminal ecosystem on Twitter.

In our future work, we will design and test more crawling



strategies and crawl more data. We also plan to further
deeply analyze the differences between criminal accounts’
relationship graph and that of normal accounts. In addition,
we plan to design a full detection system by combining our
CIA algorithm and other detection features.

8. CONCLUSION
In this paper, we present an empirical analysis of the cy-

ber criminal ecosystem on Twitter. We provide in-depth
investigation on inner and outer social relationships. We
observe two findings in the cyber criminal community and
reveal the characteristics of three representative categories
of criminal supporters. Spurred by defense insights origi-
nating from these analyses, we design an effective algorithm
to infer more criminal accounts by starting from a seed set
of known criminal accounts and exploiting the properties of
their social relationships and semantic correlations.
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