
CollusiveHijack: A New Route Hijacking Attack
and Countermeasures in Opportunistic Networks

Ala Altaweel, Radu Stoleru, Guofei Gu
Department of Computer Science & Engineering

Texas A&M University
{altaweel, stoleru, guofei}@cse.tamu.edu

Arnab Kumar Maity
Department of Statistics
Texas A&M University
amaity@stat.tamu.edu

Abstract—In this paper, we first show that Hybrid Routing and
Prophet protocols in Opportunistic Networks are vulnerable to the
CollusiveHijack attack. In this attack, a malicious attacker, Eve,
compromises a set of nodes and lies about their Inter Contact
Times (ICTs). Eve claims that her nodes meet more frequently
than in reality, with the goal of hijacking the routes of legitimate
nodes. The CollusiveHijack enables Eve to launch more severe
attacks like packet modification attack, traffic analysis attack, and
incentive seeking attack. To identify the CollusiveHijack attack,
we propose the Kolmogorov-Smirnov two-sample test to determine
whether the statistical distribution of the packets’ delays follows
the derived distribution from the ICTs among the nodes. We
propose two techniques to detect the CollusiveHijack attack:
the Path Detection Technique (PDT) and the Hop Detection
Technique (HDT), which trade off compatibility with the Bundle
Security Protocol and the detection rate. We evaluated PDT and
HDT through extensive simulations and a proof-of-concept system
implementation. The results show that PDT and HDT are able to
detect CollusiveHijack attacks with 80.0% and 99.4% detection
rates, respectively (when Eve hijacks more than 60 packets) while
maintaining a low false positive rate of 3.6%.

I. INTRODUCTION

Opportunistic Mobile Networks (OMNs) refer to wireless
networks in which mobile nodes are intermittently connected,
without stable end-to-end paths. These networks have a wide
range of applications, e.g., disaster response [1], battlefield
communications, and social networks applications (Firechat
and 1am [2] [3]). Due to the intermittent connectivity between
the nodes in OMNs, their routing protocols (e.g., Hybrid
Routing (HRP) [4] and Prophet Protocols [5] [6]) adopt the
store-and-forward mechanism to deliver the packets. HRP and
Prophet learn from the nodes’ past contact history in order
to make forwarding decisions. A pair of nodes measures
the past contact frequencies to find the probability of future
contacts. The Inter Contact Time (ICT) (i.e., the time duration
between two contacts between a pair of nodes) is used to
measure the contact frequency and the delivery capability of
the nodes [7] [8].

One major security concern and research challenge for
HRP and Prophet protocols is their vulnerability to a Route
Hijacking attack. In this attack, a malicious attacker, Eve,
compromises a set of nodes and lies about their ICTs. Eve
claims that her nodes meet more frequently than in reality, in
order to deceive HRP and Prophet protocols. Eve aims to hijack
the packets of the legitimate nodes in the OMN. The attack,
called CollusiveHijack, can be launched due to the fact that
nodes in OMNs have no way of verifying whether the claimed

ICT between a pair of nodes is true or false, even if the claimed
ICTs are signed (Eve can successfully launch the CollusiveHi-
jack attack since her nodes share their private keys and sign
their claimed ICTs). The CollusiveHijack enables Eve to launch
more severe attacks like: a) packet modification attack [9],
which enables Eve to corrupt the contents of the packets, thus
enforcing packet retransmissions and a decrease in the packet
delivery ratio [10] (i.e., waste of network resources, power,
bandwidth); b) eavesdropping and traffic analysis attack, which
enables Eve to identify the types of network traffic and apps
of the legitimate nodes [11] [12]; c) incentives seeking attack
(i.e., if an incentive based mechanism [13] is employed in the
OMN, Eve’s nodes can deliver the hijacked packets to get more
credit and higher reputation).

To the best of our knowledge, a route hijacking attack
has neither been identified nor addressed in OMNs as most
of the previous research in these networks addressed flood,
wormhole, and packet dropping attacks [14]–[18]. However,
many approaches have been proposed to detect route hijack-
ing in Internet. Approaches [19]–[23] collect BGP updates
and routing tables from a public BGP monitoring infrastruc-
ture [24]–[26] and raise alarms when a change in the origin
Autonomous System (AS) of a prefix or a suspicious route
is observed. Approaches [19]–[23] require network adminis-
trators (not available in OMNs) and need to create a list of
owned/reached IPs a priori (the OMNs’ nodes do not know
their future contacts). Other approaches [27] [28] continuously
probe Internet to detect whether any data path changes. They
use pings/traceroutes to monitor the connectivity of a prefix
and raise an alarm when significant changes in the reachability
of a prefix or the paths leading to it are detected. Due
to the intermittent connectivity among the nodes in OMNs,
pings/traceroutes fail to work. As a result, the CollusiveHijack
attack is still an open research problem for OMNs.

To address the aforementioned research challenge, we
propose to detect the CollusiveHijack attack by employing
the Kolmogorov-Smirnov two-sample test (KS2ST). The K-
S2ST [29] is a well known test for comparing two statistical
distributions. That is, it measures the distance between the
empirical distribution functions of two samples to determine
whether they have been drawn from the same distribution or
not. The KS2ST has been used by previous works for detecting
covert channels, detecting selfish wireless nodes, and in intru-
sion detection systems [30]–[33]. We design two techniques to

detect the CollusiveHijack attack: the Path Detection Technique
(PDT) and the Hop Detection Technique (HDT). PDT and HDT
offer a trade-off between the compatibility with the Bundle
Security Protocol (BSP) [34] (if additional steps are required
at the intermediate nodes) and the detection rate against the
CollusiveHijack attack. In PDT, the destination performs a
path-wise detection by collecting the packets’ delays along
the path. The intermediate nodes in the path are authenticated
by leveraging the sequential authenticators capability of BSP.
The destination uses the KS2ST to test whether the statistical
distribution of the packets’ delays follows the statistical distri-
bution that is derived from the ICTs of the intermediate nodes.
In HDT, the destination performs a hop-wise detection by
requiring additional information from the intermediate nodes
(the packets’ receiving times). The destination leverages the
KS2ST to detect whether each hop in the path is compromised
by Eve or not. HDT can achieve a higher detection rate against
the CollusiveHijack attack than PDT.

The contributions of this paper are as follows: a) it demon-
strates, via implementation and extensive simulations, a suc-
cessful CollusiveHijack attack against HRP and Prophet pro-
tocols; b) it presents two new techniques, the Path Detection
Technique (PDT) and the Hop Detection Technique (HDT),
to detect the CollusiveHijack attack; c) it demonstrates the
feasibility of PDT and HDT through extensive simulations
and a proof-of-concept system implementation on Asus Eee
notebooks; d) it demonstrates the effectiveness of PDT and
HDT by showing that they identify CollusiveHijack attacks
with a high detection rate while maintaining a low false positive
rate.

II. NETWORK AND ADVERSARY MODELS

Fig. 1: Contact frequency for 1 day

We assume an
OMN with nodes
that run HRP or
Prophet protocol. As
shown in Figure 1,
v1 learns from the
contact records (that
are received via v2)
that either (v2, v3,
v4, v5) or (v2, v9, v8,
v7) can deliver v1’s
packets to v6. We assume that it is possible to achieve a time
synchronization between all OMN’s nodes at the scale of one
second (the scale of one second is sufficient since the ICTs in
OMNs are at the scale of seconds/minutes). In the following
paragraphs, we present HRP and Prophet in more detail.
1) Hybrid Routing Protocol (HRP) [4] [35] is a limited
replication-based protocol that relies on the observation that
path delay correlations can impact performance improvements
gained from packet replication. HRP captures the potential cor-
relation between the ICTs for different nodes and decides how
much replication should be used for different network envi-
ronments. HRP introduces two concepts: the replication factor
and the replication gain. The replication factor is the total

number of data copies created at the source for a given packet.
If Dr is the random variable for routing delay when replication
factor is r, then the replication gain is E[D1]/E[Dr]. The
replication gain captures the benefit of replication in terms
of delay improvement. HRP demonstrated mathematically and
experimentally that the delay correlation affects the benefit
of replication and it is important to capture it to estimate
the replication gain and make better routing decision. HRP is
implemented as a user-space daemon service [35].
2) Prophet protocol [5] [6] is an unlimited replication-based
protocol that relies on a probabilistic metric called delivery
predictability, Ψ ∈ [0, 1]. Ψ is established at each node
indicating the probability of delivering a message to all other
nodes. As shown in Figure 1, when v6 encounters v5, they
exchange their Ψ’s and update them accordingly. Ψ(v6,v5),
which is v6 delivery predictability for v5, is updated according
to Ψ(v6,v5) = Ψ(v6,v5)old + (1 - Ψ(v6,v5)old) × Ψinit. Ψinit ∈
[0,1] is a constant to ensure that nodes that frequently meet
have high Ψ’s. If two nodes do not meet for a while, their
Ψ’s must age. The aging equation for v5 and v6 is Ψ(v6,v5)

= Ψ(v6,v5)old × γk. γ ∈ [0, 1) is a constant to decide how
large impact the aging should have on Ψ and k is the number
of time units that has elapsed since the last time Ψ was aged.
Ψ also has a transitive property, as shown in Figure 1, which
is based on the observation that if vi frequently encounters
vj , and vj frequently encounters vk, then vk is a good carrier
to forward the messages to vi. E.g., Ψ(v4,v6) = Ψ(v4,v6)old

+ (1 - Ψ(v4,v6)old) × Ψ(v4,v5) × Ψ(v5,v6) × β. β ∈ [0,
1] is a constant to decide how large impact the transitivity
should have on Ψ. When vi, which has a message for vk,
encounters vj , then, vi replicates its message to vj only if
Ψ(vj ,vk) > Ψ(vi,vk). Prophet protocol is implemented as a user-
space daemon service [36] [37].

Our adversary model assumes that the nodes have access to
a public-key authentication service that is based on identity-
based cryptography. Each node’s private key is only known
by itself to guarantee the authentication and message integrity.
There are two types of nodes: honest nodes and compromised
nodes. We assume that all nodes’ users are benign. However,
a malicious attacker, Eve, has control of some nodes that are
infected by malware. We assume that Eve is not interested
in launching a packet dropping or jamming attacks. However,
Eve’s nodes share each other’s private keys and lie about their
ICTs. For example, as shown in Figure 1, v1 has a packet for v6
and the intermediate nodes (v7, v8, v9), that are compromised,
decrease their ICTs. That is, instead of informing v1 that v8
encountered v9 one time during the last day, which is the truth,
they claim that they encountered each other twice during the
last day. The ICT between v7 and v8 is also decreased, as shown
in Figure 1. In case of HRP, decreasing the ICTs of (v8, v9)
and (v7, v8) improves their Ψ’s to v6 because HRP uses ICTs
to measure nodes’ delivery capabilities (i.e., HRP replicates the
packets to the nodes with lower ICTs). In case of Prophet, Eve
exploits the transitive and aging properties by decreasing the
ICTs of its nodes to increase their Ψ’s. As shown in Figure 1,

decreasing the ICT of v8 and v9 resets k to 0 and increases
Ψ(v9,v8) due to the aging property. As a result of the transitive
property (Ψ(v9,v6) = Ψ(v9,v6)old + (1 - Ψ(v9,v6)old) × Ψ(v9,v8)

× Ψ(v8,v6) × β) increases as well. This makes Ψ(v9,v6) >
Ψ(v2,v6) and results in forwarding v1’s packets to v8 and v9.

III. MOTIVATION: COLLUSIVEHIJACK AGAINST HRP AND
PROPHET

We deploy the HRP and Prophet’s daemon services [35] [36]
on 11 Asus Eee notebooks that run Ubuntu 14.04 LTS. The
wireless cards of the notebooks are set to operate in 2.4 GHz
(channel 3) and in ad-hoc mode. Due to space limitation
and for the ease of testing, we place all notebooks together
and emulate a fully connected multi-hop mesh network by
manipulating firewall configurations. To this end, we connect
all notebooks to a server through Ethernet cable and issue
iptables and ip6tables commands from the server to create
different typologies, as shown in Figure 2(a). In order to create
contact events between the notebooks as it is the case in OMNs,
we conducted a dynamic on-off network experiment. First, we
created the topology shown in Figure 2(b). Second, we turned
each node on and off randomly (according to an exponential
distribution) by issuing iptables and ip6tables commands with
different on-proportion. The expected total duration for one
on-off cycle is set to 60 seconds. We generate a data flow
from v1 to v11 with 1 KB and set its deadline to 300 seconds.
We leveraged HRP’s hrptclient and IBR-DTN’s dtnsend and
dtnrecv for the data flow. We used the default values of β = 0.9
and γ = 0.999 for the Prophet protocol. The duration of each
experiment is 30 minutes including a warm-up period for 5
minutes. The warm-up period is used by HRP and Prophet to
learn about the contact events and the ICTs before starting the
data flow.

For each experiment, we considered a normal scenario and
an attack scenario. During the normal scenario, all nodes are
honest about their ICTs. Differently, in the attack scenario,
we assigned the same ICTs that were used during the normal
scenario among the honest nodes, however, the ICTs of the
compromised nodes are multiplied by 0.5. We intend to show
that the CollusiveHijack can be successfully launched against
HRP and Prophet under diverse network conditions. That is,
by varying the on-proportion ∈ [0.4, 1.0] to emulate the well
connected mesh network and the sparsely connected OMN. We
tracked the routing paths via tcpdump to find the number of
replicated packets to the compromised nodes during each ex-
periment. We repeated each experiment 30 times (with different
ICTs) and we averaged these 30 runs per each experiment.

Figures 2(c) and 2(d) show the total number of routed
packets when v2 and v3 are compromised for HRP and Prophet,
respectively. During the attack scenario of these experiments,
the ICT between v2 and v3 is claimed to be 0.5 of the ICT
between v2 and v3 during the normal scenario. For example,
if in the normal scenario the average ICT between v2 and
v3 during the warm-up period is 60 seconds, it is claimed
to be 30 seconds during the attack scenario. As shown in
Figure 2(c), HRP replicates more packets towards v2 and

(a)

 v1 v2 v3

 v4 v5 v6

 v7 v8 v9

v10 v11

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.4 0.5 0.6 0.7 0.8 0.9

#
 P

a
c
k
e

ts
 R

o
u

te
d

 b
y

 (
v

2
,

v
3
)

On Off Ratio

Normal
Attack

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.4 0.5 0.6 0.7 0.8 0.9

#
 P

a
c
k
e

ts
 R

o
u

te
d

 b
y

 (
v

2
,

v
3
)

On Off Ratio

Normal
Attack

(d)

 0

 2

 4

 6

 8

 10

 12

0.4 0.5 0.6 0.7 0.8 0.9

#
 P

a
c
k
e

ts
 R

o
u

te
d

 b
y

 (
v

2
,

v
3
,

v
6
)

On Off Ratio

Normal
Attack

(e)

 0

 2

 4

 6

 8

 10

 12

 14

0.4 0.5 0.6 0.7 0.8 0.9

#
 P

a
c
k
e

ts
 R

o
u

te
d

 b
y

 (
v

2
,

v
3
,

v
6
)

On Off Ratio

Normal
Attack

(f)

 0

 5

 10

 15

 20

 25

 30

 35

0.4 0.5 0.6 0.7 0.8 0.9

#
 P

a
c
k
e

ts
 R

o
u

te
d

 b
y

 (
v

2
,

v
3
,

v
6
,

v
9
)

On Off Ratio

Normal
Attack

(g)

 0

 5

 10

 15

 20

 25

 30

0.4 0.5 0.6 0.7 0.8 0.9
#

 P
a

c
k
e

ts
 R

o
u

te
d

 b
y

 (
v

2
,

v
3
,

v
6
,

v
9
)

On Off Ratio

Normal
Attack

(h)

Fig. 2: (a) Attack implementation testbed. (b) Network topology.
Routed packets for HRP (c, e, g) and Prophet (d, f, h).

v3 during the attack scenario. The total number of hijacked
packets by v2 and v3 is decreased while increasing the on-
proportion because HRP decreases the replication factor when
the network becomes more connected [4] [35]. For Prophet, the
total number of routed packets via v2 and v3 increases for the
attack scenario compared to the normal scenario (Figure 2(d)).

We repeated the same experiments above when v2, v3, and v6
are compromised. During the attack scenario, the ICTs among
(v2-v3) and (v3-v6) are claimed to be 0.5 of the corresponding
ICTs during the normal scenario. As shown in Figures 2(e)
and 2(f), the total number of hijacked packets by v2, v3, v6
are higher compared to the experiments when only v2 and v3
are compromised for HRP and Prophet. We also repeated the
experiments when v2, v3, v6, and v9 are compromised (they
fake the ICTs of (v2-v3), (v3-v6), and (v3-v9) to be 0.5 of the
corresponding ICTs during the normal scenario). Similar to the
above conclusion, when Eve compromises more nodes, she can
hijack more packets. The total number of hijacked packets in
Figures 2(g) and 2(h) increases compared to the total number
of hijacked packets in Figures 2(e) and 2(f), respectively.

We also examined the impact of CollusiveHijack through
extensive simulations in the ONE simulator [38]. We conducted
trace-driven simulations using real world mobility trace, Real-
ity [39], that consists of 97 users from MIT students, faculty
and staff members. The mobility trace contains Bluetooth
connection events over a time period of 9 months. We set the
duration of each experiment to 5 weeks including a warm-up
period for 1 week. The 97 nodes run Prophet protocol [6] with
β = 0.9 and γ = 0.999. After the warm-up period (during
the second week), we randomly generated 100 messages, each
with size = 1KB and deadline = 10 days, between the nodes
with id ∈ [1, 50]. For each experiment, we considered two
scenarios, a normal scenario and an attack scenario. During the
normal scenario, the nodes do not fake their ICTs. However,
during the attack scenario, we randomly choose nodes from
the set of nodes with id ∈ [51, 97] and fake their ICTs during
the warm-up period. Then, we compared the total number of
routed packets during the normal and attack scenarios while
varying the number of compromised nodes from 2 to 4 and
varying the lying factor from 2 to 8. The lying factor reflects
the ratio that the compromised nodes fake their ICTs by
(ICTfaked = ICToriginal

lying factor). We repeated each experiment 100
times and we averaged these 100 runs per each experiment.
Figure 4(a) shows the total number of hijacked packets for two
compromised nodes, which increases when the compromised
nodes increase their lying factor. Also, increasing the number of
the compromised nodes increases the total number of hijacked
packets, as shown in Figures 4(b) and 4(c) for three and four
compromised nodes, respectively.

IV. COLLUSIVEHIJACK DETECTION

In this section, we present the KS2ST and the design of PDT
and HDT.

A. The Kolmogorov-Smirnov two-sample test (KS2ST)

 v1 v2 v3

 v4 v5 v6

 v7 v8 v9

1,2

1,4

8,9

6,9

3,6

2,3

4,5 5,6

2,5

5,8

7,8

4,7

Fig. 3: OMN contact
graph

We represent the OMN by an
undirected graph G = (V,E),
where V is a set of nodes and E is
a set of links, as shown in Figure 3.
The link between any two nodes,
vi and vj in V , is denoted by ei,j .
If 1/λi,j is the ICT between vi and
vj , then, the link weight of ei,j
is defined as the contact frequency
(i.e., λi,j), as shown in Figure 3. If
vi never meets vj , then ei,j will not be in E. Accordingly, any
two connected nodes in G should have at least one contact.
Message forwarding from vi to vj can be accomplished during
the contact event. If Di,j , ICTi,j represent the link delay and
the ICT between two uncorrelated nodes vi and vj in V , respec-
tively, then P [Di,j ≤ d] = 1

E[ICTi,j]

� d

0
(1− P [ICTi,j ≤ z])dz

and E[Di,j] = E[ICTi,j]
2 +

σ2(ICTi,j)
2E[ICTi,j]

[7]. Where σ2(ICTi,j) is
the variance of ICTi,j . Previous research [4] [7] [8] show that
the probability density function (pdf) of the ICTi,j between vi
and vj follows the exponential distribution (i.e., λi,je

−λi,jt).
We also validated that, using the Reality trace [39], and found

 1600

 1800

 2000

 2 3 4 5 6 7 8

#
 P

a
c
k
e
ts (c) Four compromised nodes

Normal Attack

 1400

 1600

 1800

 2 3 4 5 6 7 8

#
 P

a
c
k
e
ts (b) Three compromised nodes

 400

 500

 600

 2 3 4 5 6 7 8

#
 P

a
c
k
e
ts

Lying Factor

(a) Two compromised nodes

Fig. 4: Routed packets for Prophet

that the pdfs of all ICTs among the users in this trace follow the
exponential distribution. Accordingly, E[Di,j] = E[ICTi,j]. Let
Pvi,vj

= {vi, v1, v2, .., vη−1, vj} represents a path between vi
and vj in G, where vx is the xth relay node and η is the number
of hops. Then, the path delay consists of links delays, which
are independently and exponentially distributed. The pdf of
Pvi,vj delay = λi,1e

−λi,1t + λ1,2e
−λ1,2t + .. + λη−1,je

−λη−1,jt

is hypo-exponentially distributed ∼ Hypo(λi,1,λ1,2, ..,λη−1,j)
with mean = 1/[λi,1 + λ1,2 + .. + λη−1,j] and variance =
1/[λ2

i,1 + λ2
1,2 + ..+ λ2

η−1,j] [40].
The KS2ST is a well known non-parametric goodness-of-fit

test [29]. This test measures the distance between the empirical
cumulative distribution functions (CDFs) of two samples a
= {a}ni=1 and b = {b}mi=1 to determine whether they have
been drawn from the same distribution or not. The KS test,
KS.test(a, b), for {a}ni=1 and {b}mi=1 samples is defined as
Da,b = sup

x∈a∪b
|Fa(x) − Fb(x)|, where sup is the supre-

mum function and Fa, Fb are the empirical CDFs. Fa(x) =
1
n

�n
i=1 I{ai≤x} and Fb(x) =

1
m

�m
i=1 I{bi≤x}, where I{ai≤x}

is the indicator function that has the value 1 if ai ≤ x, and 0
otherwise (same for I{bi≤x}). The null hypothesis of the two
sample KS test (i.e., the samples are drawn from the same
distribution) is rejected at significance level of α ∈ (0, 1] if
Da,b > c(α) ×

�
n+m
nm , where c(α) =

�
− 1

2 ln(
α
2) and n, m

are the sizes of a and b samples, respectively. In our design
we use α = 0.05. Accordingly, we reject the null hypothesis if
the p− value [41] of the KS2ST is < 0.05.

B. Path Detection Technique (PDT)

Before presenting the details of PDT, we present the steps at
each node when it routes a packet, as shown in Algorithm 1.
Note: the steps shown in oval-boxes are for HDT that we
present in Section IV-C. When a packet is available at the
sender’s buffer, the sender inserts the packet’s creation time
(PCT) and Sender Id into the packet header. Moreover, the
sender signs the inserted PCT and Sender Id, as shown in
lines 2-3 of Algorithm 1. Then, the sender waits until the
next hop is available to forward the packet (lines 4 and 7 of
Algorithm 1). In case a node receives a packet to be routed,
it verifies the signed Id of the previous hop using its public
key, as shown in line 10 of Algorithm 1. When the next hop

Algorithm 1 Steps at each node for PDT and HDT
1: if Sender then
2: Packet Creation Time (PCT) = current time()
3: Insert&SignPrivK (PCT , Sender Id)→ Packet Header (PH)
4: Wait until Next hop is available
5:

✞✝ ☎✆Packet Receiving Time (PRT) = current time()

6:
✞✝ ☎✆Insert&SignPrivK (PRT) → Packet Header (PH)

7: Forward the Packet
8: else if Carrier then
9: if Packet received then

10: VerifyPrevHopPubK (PrevHop Id,
✄✂ �✁PRT)

11: Wait until Next hop is available
12: Insert&SignPrivK (Carrier Id) → Packet Header (PH)
13:

✞✝ ☎✆Packet Receiving Time (PRT) = current time()

14:
✞✝ ☎✆Insert&SignPrivK (PRT) → Packet Header (PH)

15: Forward the Packet

Algorithm 2 PDT at the destination
1: for each received Packet via a Path with η hops do
2: Packet delay (Pd) = current time() - PCT
3: Path = get path(PH) = {vi, v1, v2, .., vη−1, vj}
4: for the Sender and each Carrier in Path do
5: VerifySenderPubK (Sender Id)
6: VerifyCarrierPubK (Carrier Id)
7: Save Pd for Path
8: for k received Packets via a Path with η hops do
9: < Pd1, Pd2, .., Pdk > = get packet delays(Path)

10: < λ1, λ2, .., λη > = get λ’s(Path)
11: rejectnull hypoehsis = 0
12: for j = 1 to numtests = 10000 do
13: < ˆPd1, ˆPd2, .., ˆPd10k > = getrand(Hypo(λ1, λ2, .., λη))
14: p-value = KS.test(< Pd1, Pd2, .., Pdk >,< ˆPd1, ˆPd2,

.., ˆPd10k >)
15: if p-value < 0.05 then
16: rejectnull hypoehsis = rejectnull hypoehsis + 1
17: if (rejectnull hypoehsis/numtests) > 0.05 then
18: Path is compromised
19: else
20: Path is honest

is available for the carrier node, it inserts Carrier Id into
the packet header. The carrier node also signs the inserted
Carrier Id before forwarding the packet (lines 12 and 15 of
Algorithm 1). The aforementioned steps can be accomplished
by including the nodes’ payload integrity blocks in the packets
(pages 24-25 of BSP [34]).

PDT is a detection-based protocol that runs by the destina-
tion nodes in OMNs. The pseudo code of PDT is presented
in Algorithm 2. Once the destination receives a packet, it
calculates the packet’s delay and finds its path. Then, the
destination verifies the inserted Ids into the packet header, using
the sender and carriers’ public keys (lines 2-6 of Algorithm 2).
For all received packets via the same path, e.g., Pvi,vj

=
{vi, v1, v2, .., vη−1, vj}, the destination, vj , stores the packets’
delays (line 7 of Algorithm 2) and finds the contact frequencies
of Pvi,vj

(i.e., λi,1,λ1,2, ..,λη−1,j). Notice that these contact
frequencies are used by HRP and Prophet to make replication
decisions. HRP and Prophet require these contact frequencies
to be announced to all nodes in the OMN. Then, vj employs the
KS2ST to determine whether the delays of the received packets

match the summation of the announced links’ delays of Pvi,vj

(i.e., the path delay of Pvi,vj ∼ Hypo(λi,1,λ1,2, ..,λη−1,j). In
the following paragraph, we present the steps of PDT through
an example.

As an example, we assume that v1 in Figure 3 sent k
packets with delays = < Pd1, Pd2, .., Pdk > to v9 via
Pv1,v9

= {v1, v2, v3, v6, v9} path that has the following contact
frequencies: < λ1,2,λ2,3,λ3,6,λ6,9 >. Once v9 collects the
aforementioned packets’ delays and contact frequencies (lines
9-10 in Algorithm 2), it repeats the following process 10,000
times. v9 draws a random sample, with size = 10×k, < ˆPd1,
ˆPd2, .., ˆPd10k > from the hypo-exponential distribution,

Hypo(λ1,2, λ2,3, λ3,6, λ6,9), and performs a KS2ST between
the packets delays and the drawn sample (lines 13-14 of
Algorithm 2). If the resulted p-value of the KS2ST is less
than α = 0.05, v9 increases the rejectnull hypoehsis counter,
which keeps track of the number of times the null hypothesis
is rejected. After repeating the KS2ST 10,000 times (with
different random samples), if the ratio of the number of times
that the null hypothesis is rejected is > 5%, then v9 labels
Pv1,v9

as a compromised path. Otherwise, Pv1,v9
is labeled as

an honest path (lines 17-20 of Algorithm 2).

C. Hop Detection Technique (HDT)

HDT is based on the idea that collecting the packets’
receiving times (PRTs) at the intermediate nodes enhances
the destination node detection capability against the Collu-
siveHijack attack. That is, instead of labeling the whole path
as compromised, as the case of PDT, HDT aims to pinpoint
the lying hops and accordingly the compromised nodes in the
OMN. However, HDT requires additional steps to be performed
by the intermediate nodes apart from the steps accomplished
by BSP [34], as shown in oval-boxes of Algorithm 1. When
the next hop is available for the sender or the intermediate
nodes, they have to insert the PRT into the packet header and
sign the inserted PRT before delivering the packet to the next
hop, as shown in lines 5-6 and 13-14 of Algorithm 1. Moreover,
when an intermediate node, e.g., vi, receives a packet, it verifies
whether the PRT (that has been signed by the previous hop)
matches its time. Also, vi verifies the signature of the previous
hop using the PrevHopPubK (line 10 of Algorithm 1). Notice
that if we ignore the links’ propagation and transmission delays
(relatively small compared to ICTs in OMNs), then the signed
time by the previous hop should equal the PRT at vi.

The pseudo code of HDT is shown in Algorithm 3. To
illustrate how HDT works, we present its steps using the same
example we used in Section IV-B (node v1, in Figure 3, sent
k packets to node v9 via Pv1,v9

= {v1, v2, v3, v6, v9}). Once
v9 receives a packet from v6, it verifies the PRT and the Id of
v6 using v6’s public key, as shown in line 2 of Algorithm 3.
Afterwards, v9 gets the path of the received packet and verifies
the inserted Ids, PCT, and PRT’s of v1, v2, v3, and v6 using
their public keys, as shown in lines 3-6 of Algorithm 3.

Once v9 collects the packets’ delays for all intermediate
hops, it builds the packet receiving times matrix, PRTnodes, as
shown in line 8 of Algorithm 3 . PRTnodes is a [k × (η + 1)]

Algorithm 3 HDT at the destination
1: for each received Packet via a Path with η hops do
2: VerifyPrevHopPubK (PrevHop Id, PRT)
3: Path = get path(PH) = {vi, v1, v2, .., vη−1, vj}
4: for the Sender and each Carrier in Path do
5: VerifySenderPubK (Sender Id, PCTSender Id)
6: VerifyCarrierPubK (Carrier Id, PRTCarrier Id)
7: for k received Packets via a Path with η hops do

8: PRTnodes ←
PCT1,vi PRT1,v1 .. PRT1,vj

PCT2,vi PRT2,v1 .. PRT1,vj

..
PCTk,vi PRTk,v1 .. PRT1,vj� �� �

η+1





k

9: for each coli in PRTnodes do
10: Dhops[coli] = PRTnodes[coli+1] - PRTnodes[coli]

11: Dhops =

D1,(vi,v1) D1,(v1,v2) .. D1,(vη−1,vj)

D2,(vi,v1) D2,(v1,v2) .. D2,(vη−1,vj)

..
Dk,(vi,v1) Dk,(v1,v2) .. Dk,(vη−1,vj)� �� �

η





k

12: for each coli in Dhops do
13: < D1, D2, .., Dk > = transpose(coli)
14: < λi > = get λ(Linki)
15: rejectnull hypoehsis = 0
16: for j = 1 to numtests = 10000 do
17: < D̂1, D̂2, .., ˆD10k > = getrand(Hypo(λi))
18: p-value = KS.test(< D1, D2, .., Dk >,< D̂1, D̂2, ..,

ˆD10k >)
19: if p-value < 0.05 then
20: rejectnull hypoehsis = rejectnull hypoehsis + 1
21: if (rejectnull hypoehsis/numtests) > 0.05 then
22: Source Node in Hop i is compromised
23: else
24: Hop i is not compromised

Fig. 5: PRTnodes and Dhops built by v9

matrix that contains the creation and receiving times for the
k packets that have been routed via a path with η hops. The
(k × 5) PRTnodes that is built by v9 is shown in Figure 5.
Notice that PCTx,y represents the creation time of the xth

packet at node y and PRTx,y represents the receiving time of
the xth packet at node y. By decrementing each ith column
from the ith + 1 column in PRTnodes, v9 builds the Dhops,
an (k × η) = (k × 4) matrix that contains the hops’ delays
of Pv1,v9

(lines 9-11 of Algorithm 3). Notice that Dx,(y,w)

represents the delay of the xth packet at y�←→w� hop. The
(k × 4) Dhops that is built by v9 is shown in Figure 5. Then,
v9 performs the same detection steps as the PDT algorithm
by leveraging the KS2ST. However, since the hops’ delays are
calculated by v9 (i.e., the columns of Dhops), HDT performs a
hop-wise detection for Pv1,v9

. Consequently, v9 can label each
of the intermediate hops, [(v1, v2), (v2, v3), (v3, v6), (v6, v9)],
as a compromised or honest hop (lines 12-24 of Algorithm 3).

V. IMPLEMENTATION AND EXPERIMENTAL SETUP

We implemented PDT and HDT using R statistical lan-
guage [42] on Asus Eee notebooks, that are shown in Fig-
ure 2(a). The notebooks run Ubuntu 14.04 LTS and have
Intel(R) Atom(TM) CPU operating at 1.6 GHz and 1GB RAM.
Our R code is executed at the destination nodes by the C++
user-space daemon services of HRP and Prophet protocol-
s [35] [36] using Rcpp package [43]. We also enabled BSP [34]
for HRP and Prophet daemon services. For the cryptographic
sign and verify operations, we leveraged the Pairing-Based
Cryptography (PBC) library [44] that implements the Hess
identity-based signatures [45]. The PBC implementation uses a
160-bit elliptic curve group with 512-bit keys. In the following
paragraphs, we describe our experiments.
1) Experiments in the ONE simulator: we extracted the
ICTs and the number of hops from the experiments that
we conducted in Section III in the ONE simulator [38]. We
aim to investigate the performance of PDT and HDT for
various scenarios. Hence, we performed different experiments
by varying the ratio of the compromised links in different
paths (with 4, 5, and 6 hops). The ratio of the compromised
links in our experiments are: (1) 16.6%(16). (2) 20%(15). (3)
25%(14). (4) 33.3%(26). (5) 40%(25). (6) 50%(36). (7) 60%(35).
We also varied the lying factor (illustrated in Section III) of
the compromised links (from 2 to 8) and the number of the
received packets, k, at the destination from 20 to 100.
2) Experiments on Asus notebooks testbed: we repeated two
experiments against HRP on the testbed shown in Figure 2(a)
for 0.4 and 0.9 on-off ratios. We generated 100 data packets
(each with a deadline = 300 seconds) from v1 to v11 and we
varied the number of compromised nodes from 2 to 4. The
lying factor for these experiments is 2. We leveraged the HRP
implementation [35] to collect the ICTs among the nodes. The
HRP implementation leverages Optimized Link State Routing
(OLSR) [46] for topology maintenance by invoking olsrd [47],
an OLSR implementation, and fetches topology information
from it. The hrptclient [35] measures the packet’s delay at the
destination. We evaluated our PDT and HDT in two aspects:
1) Quantifying the overhead of PDT and HDT using the fol-
lowing metrics: a) Packet Size Overhead: additonal data size

packet size ,
which measures the overhead of adding the node’s Id, PCT,
and PRT into the packets; b) Execution Time Overhead of
the sign and verify operations.
2) Evaluating the performance of PDT and HDT using the
following metrics: a) Detection Rate: the ability of PDT and
HDT to detect the attempts of the CollusiveHijack attacker (true
positive rate); b) False Positive Rate: the rate of claiming a
legitimate path/link as a compromised one.

VI. PERFORMANCE EVALUATION

In this section, we present the overhead of PDT and HDT
and their performance evaluations.

A. Quantifying the Overhead of PDT and HDT
In PDT and HDT, the sender adds its Id and PCT (each is 4B)

into the packet’s header and each intermediate node adds its Id

(4B). Also, in HDT, each intermediate node adds its PRTs (4B).
The signature field of the Hess identity-based scheme is 64B.
Hence, the PDT and HDT’s packet size overhead in bytes for
Pvi,vj = {vi, v1, v2, .., vη−1, vj} path are [68×η]+4 and 72×η,
respectively. For 10-hop path with an IPv4 packet size (64KB),
the packet size overheads for PDT and HDT are ∼1.04% and
∼1.09%, respectively, which are relatively small. In order to
calculate the execution time of the sign and verify operations
of the Hess identity-based scheme [45], we averaged 10,000
measurements of these operations on one Asus Eee notebooks.
The execution time of the sign and verify operations are 118
msec and 42 msec, respectively.

B. Performance Evaluation of PDT and HDT

Evaluation in the ONE simulator. We conducted the
first experiment on a path with η = 6 hops including one
compromised hop. We performed the following steps. First,
we extracted 1,000 different paths with 6 hops from the trace-
driven 100 experiments that we conducted in Section III.
Second, we extracted the ICTs among the nodes in these paths
and collected the packets’ delays at the destination nodes.
Third, we randomly picked one hop and varied its lying factor
from 2 to 8. Fourth, we counted the number of times the
destination, which runs the PDT algorithm, was able to detect
the CollusiveHijack attack after receiving 20, 40, 60, 80, and
100 packets. Fifth, we averaged the 1,000 runs for each lying
factor and k value.

The PDT’s detection rate for the first experiment is shown
in Figure 6(a). The detection rate increases when the two
compromised nodes increase their lying factor and when the
total number of the received packets at the destination increas-
es. We illustrated in Figure 4(a), that it is attractive for the
compromised nodes to increase their lying factor to hijack more
packets (the total hijacked packets are 10 and 80 for 2 and 8
lying factors, respectively). However, increasing the number
of hijacked packets enhances the PDT’s detection capability.
The PDT’s detection rates for the first experiment when the
destination receives 100 packets are: 85.4%, 96.5%, 98.8%,
99.5%, 99.7%, 99.7%, 99.8% for 2, 3, 4, 5, 6, 7, 8 lying factors,
respectively, as shown in Figure 6(a).

We repeated the five steps mentioned above for a higher ratio
of compromised links in the path. In the second experiment, we
had a path with η = 5 hops including one compromised hop. As
it is clear in Figure 6(b), we can draw the same conclusions as
from Figure 6(a). The PDT’s detection rate increases when the
compromised nodes increase their lying factor and when the
destination receives more packets. The aforementioned conclu-
sions can be also observed for the remaining five experiments
that are shown in Figures 6(c)- 6(g). Moreover, if we compare
the PDT’s detection rate of all figures, we observe that while
Eve increases the ratio of the compromised links, the PDT’s
detection rate increases. Figure 7(a) presents the false positive
rate for PDT when η = 4, 5, and 6 hops. The false positive
rate for all experiments is < 3.6%, which is relatively small.

Since HDT performs a hop-wise detection against the Col-
lusiveHijack attack, we present its detection rate on 1-hop for

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8

D
e
te

c
ti
o
n
 R

a
te

Lying Factor

k=20

k=40

k=60

k=80

k=100

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8

D
e
te

c
ti
o
n
 R

a
te

Lying Factor

k=20

k=40

k=60

k=80

k=100

(b)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8

D
e
te

c
ti
o
n
 R

a
te

Lying Factor

k=20

k=40

k=60

k=80

k=100

(c)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8

D
e
te

c
ti
o
n
 R

a
te

Lying Factor

k=20

k=40

k=60

k=80

k=100

(d)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8

D
e
te

c
ti
o
n
 R

a
te

Lying Factor

k=20

k=40

k=60

k=80

k=100

(e)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8

D
e
te

c
ti
o
n
 R

a
te

Lying Factor

k=20

k=40

k=60

k=80

k=100

(f)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2 3 4 5 6 7 8

D
e
te

c
ti
o
n
 R

a
te

Lying Factor

k=20

k=40

k=60

k=80

k=100

(g)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2 3 4 5 6 7 8

D
e
te

c
ti
o
n
 R

a
te

Lying Factor

k=20

k=40

k=60

k=80

k=100

(h)

Fig. 6: PDT’s Detection Rate when the ratio of the compromised
links: (a) 16.6%(1

6
). (b) 20%(1

5
). (c) 25%(1

4
). (d) 33%(2

6
). (e)

40%(2
5
). (f) 50%(3

6
). (g) 60%(3

5
). (h) HDT’s Detection Rate.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 20 40 60 80 100

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

k

η=1

η=4

η=5

η=6

(a)

 0.7

 0.8

 0.9

 1

 20 40 60 80 100

D
e

te
c
ti
o

n
 R

a
te

k

η=5

η=6

η=7

(b)

Fig. 7: (a) False Positive Rate of PDT (η = 4, 5, 6 hops) and HDT
(η = 1 hop). (b) PDT Detection Rate Against Fake Ids Attack.

different k values in Figure 6(h). As it is clear in Figure 6(h),
HDT’s detection rates are > 98% for all lying factors when
k > 40. Hence, we recommend to leverage HDT to effectively
detect the CollusiveHijack attack despite it’s overhead and
incompatibility with BSP [34]. The false positive rates of HDT
(i.e., on 1-hop) are relatively small, as shown in Figure 7(a).

System evaluation on Asus notebooks testbed. Figures 8(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100

D
e

te
c
ti
o

n
 R

a
te

k

v2, v3 compr.

v2, v3, v6 compr.

v2, v3, v6, v9 compr.

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100

D
e

te
c
ti
o

n
 R

a
te

k

v2, v3 compr.

v2, v3, v6 compr.

v2, v3, v6, v9 compr.

(b)

Fig. 8: PDT’s Detection Rate for on-off ratio = (a) 0.4 (b) 0.9

and 8(b) show the detection rate of PDT for 0.4 and 0.9
on-off ratios. The detection rate increases when the total
number of received packets at v11 increases and when the
number of compromised nodes increases from 2 to 4. When
v11 receives 60 packets, the PDT detection rate is > 88.0%.
We also investigated the HDT detection capability against the
CollusiveHijack attack for these experiments and found that its
detection rate is > 98.0% when k > 40 (omitted here due to
space constraints). The false positive rates of PDT and HDT
for these experiments are < 3.5% (close to the rates shown in
Figure 7(a)).

VII. SECURITY ANALYSIS

Based on the attacker model described in Section II, Eve can
launch the following types of attacks:

1) Fake Ids attack against PDT: Eve might pretend that
two or more of her nodes have the same Id to not be detected by
PDT. Without loss of generality, if v2 and v3 are compromised

in Ps,d = s� λs,v1←−−→v1�
λv1,v2←−−−→v2�

λv2,v3←−−−→v3�
λv3,v4←−−−→v4�

λv4,d←−−→ d�,
then v3 pretends to be v2 (i.e., Eve aims to hide v3 i-
dentity). In this case, the packets’ delays at d follow
Hypo(λs,v1 ,λv1,v2 ,λv2,v3 ,λv3,v4 ,λv4,d). However, when d
runs PDT, the random samples (line 13 of Algorithm 2)
are drawn from Hypo(λs,v1

,λv1,v2
,λv2,v4

,λv4,d). In order to
check whether PDT is able to detect fake Ids attacks, we
repeated the first and second steps of the experiments in the
ONE simulator (in Section VI-B) for η = 5, 6, and 7 hops.
For the third step, we randomly picked two adjacent nodes and
launched a fake Ids attack by pretending they have the same Id.
Then, we averaged the number of times that the destination,
which runs PDT, was able to detect the fake Ids attack for
different number of received packets, k. The PDT detection
rate is > 98.0% when k > 60, as shown in Figure 7(b). Hence,
if Eve launches the fake Ids attack, one of her nodes will be
detected (v2 in Ps,d above). We also calculated the detection
rates against fake Ids attack for 3 compromised nodes (all have
same Id) and found that it is > 99.0% when k > 40 (the results
are omitted here due to space constraints).

2) Fake PRTs attack against HDT: Eve’s nodes might fake
their PRTs to not be detected by HDT. For example, in Ps,d =

s� λs,v1←−−→
τ1

v1�
λv1,v2←−−−→

τ2
v2�

λv2,v3←−−−→
τ3

v3�
λv3,v4←−−−→

τ4
v4�

λv4,d←−−→
τ5

d�, where τ ’s
are the links delays, if s sends a packet at τ0, the PCT and PRT-
s for this packet = [τ0,

�1
i=0 τi,

�2
i=0 τi,

�3
i=0 τi,

�4
i=0 τi,�5

i=0 τi]. These PCT and PRTs are respectively signed by
[(s), (s, v1), (v1, v2), (v2, v3), (v3, v4), (v4, d)].

Without loss of generality, if Eve compromises v2 and v3
and fakes their contact frequencies to 2× λv2,v3

, she also can
fake the PRT at v3 to τ3

2 to not be detected by HDT on the

v2�
2×λv2,v3←−−−−−→

τ3
2

v3� hop. That is, Eve fakes the PRT at v3 to match

her claimed contact frequency, 2×λv2,v3
. However, in this case,

our HDT is able to detect the source node of v3�
λv3,v4←−−−→
τ3
2 +τ4

v4�,

as shown in line 22 of Algorithm 3 (i.e., since the packets’
delays at this hop, τ3

2 +τ4, do not match its announced contact
frequency, λv3,v4

). Accordingly, if Eve compromises n adjacent
nodes, v1, v2, .., vn in a path, she can launch fake PRTs attack
by faking the PRTs among v1, v2, .., vn−1 nodes, however, the
last compromised node, vn, will be detected by HDT.

VIII. STATE OF THE ART

Most of route hijacking attacks that have been addressed
by recent research are in Internet. Each Autonomous System
(AS) in Internet manages a number of networks, which can be
expressed as IP prefixes. ASes use BGP to advertise their IP
prefixes and establish inter-domain routes in Internet. BGP is
a distributed protocol, lacking authentication of routes. Hence,
a malicious AS can claim to own a prefix or sub-prefix that
belongs to another AS causing redirection of routes from that
AS to the attacker. BGP hijacking detection approaches can be
classified into four categories. Control-plane approaches [19]–
[23] collect BGP updates or routing tables from a distributed
set of public BGP monitoring infrastructure and route collectors
such as [24]–[26], and raise alarms when a change in the origin-
AS of a prefix, or a suspicious route is observed. PHAS and
Cyclops [21] [22] are notification systems that alert prefix
owners (i.e., ISPs) when their BGP origin change. The network
administrator in ARTEMIS [23] stores a configuration file that
has an up-to-date list of all owned and announced prefixes.
This list is continuously compared with the collected BGP
updates from the monitoring services (i.e. [24]–[26]). Based
on the result of the comparison, ARTEMIS can detect any
hijacking event and generate alerts accordingly. The aforemen-
tioned control-plane approaches cannot be used against the
CollusiveHijack attack. Apart from the fact that there are no
network administrators in OMNs, the nodes cannot create a list
of “owned” or reached IP’s a priori (i.e., the nodes do not know
the future contacts among each other). Data-plane approach-
es [27] [28] continuously probe Internet to detect whether
any data path changes. That is, by using pings/traceroutes to
monitor the connectivity of a prefix and raise an alarm, when
significant changes in the reachability [27] of a prefix or the
paths leading to it [28] are observed. The Listen protocol [48]
is a data-plane verification technique that detects reachability
problems in the data plane by passively probing network and
checking whether the underlying routes to different destinations
work. Due to the intermittent connectivity between the nodes
in OMNs, data-plane approaches fail and cannot be used to
detect the CollusiveHijack attack. Hybrid approaches [49]–
[51] combine control and data plane information to detect the
hijacking attack, however, they cannot detect the CollusiveHi-
jack attack because they still need network administrators [51]

and use monitor tools like pings and traceroutes [50] [49].
Cryptographic approaches [52]–[54] use PKI to ensure the
authentication of routing announcements to minimize the risk
of a single non-colluding hijacking (cannot defend against
colluding ASes). S-BGP [54] and Whisper protocol [48] fail
to detect colluding ASes that have a direct link to tunnel
packets/advertisements unless the complete topology of the
network is known and enforced. However, the topology of
OMNs is dynamic. The detection of colluding ASes is beyond
the scope of the BGPsec protocol [52].

IX. CONCLUSIONS AND FUTURE WORK

We presented two novel algorithms, PDT and HDT, to detect
the CollusiveHijack attack in OMNs. Both PDT and HDT em-
ploy the KS2ST and offer a trade-off between the compatibility
with BSP and the detection rate against the CollusiveHijack
attack. Our evaluations show that both algorithms are able
to identify the CollusiveHijack attack with ∼80% and 99.4%
detection rates, respectively, and ∼3.6% false positive rate. In
our future work, we plan to implement both PDT and HDT in
smartphones and validate their detection capabilities with real
world OMNs’ users.

ACKNOWLEDGMENT

This material is based upon a work supported by National
Institute of Standards and Technology (NIST) under grant
NO. (#70NANB17H190). We appreciate the helpful sugges-
tions from the reviewers. Also, we thank Suman Bhunia and
Mengyuan Chao for helpful discussions on this paper.

REFERENCES

[1] Distressnet-ng project. http://distressnet.net/.
[2] Firechat: Google play store. https://play.google.com/store.
[3] 1am: Censorship-resistant microblogging. http://1am-networks.org.
[4] C. Yang and R. Stoleru. Hybrid routing in wireless networks with diverse

connectivity. MobiHoc’16.
[5] A. Lindgren, A. Doria, E. Davies, and O. Schelén. Probabilistic routing in

intermittently connected networks. SIGMOBILE Mob. Comput. Commun.
Rev., 7(3), 2003.

[6] A. Lindgren, A. Doria, E. Davies, and S. Grasic. Probabilistic routing
protocol for intermittently connected networks. irtf rfc 6693. 2012.

[7] X. Tie, A. Venkataramani, and A. Balasubramanian. R3: Robust replica-
tion routing in wireless networks with diverse connectivity characteristics.
MobiCom’11.

[8] A. Balasubramanian, B. Levine, and A. Venkataramani. Dtn routing as
a resource allocation problem. SIGCOMM’07.

[9] R. Patil and M. P. Tahiliani. Detecting packet modification attack by
misbehaving router. ICNSC’14.

[10] J. Burgess, G. D. Bissias, M. Corner, and B. N. Levine. Surviving attacks
on disruption-tolerant networks without authentication. MobiHoc’07.

[11] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. Robust smartphone
app identification via encrypted network traffic analysis. IEEE TIFS,
13(1), 2018.

[12] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic. EuroS&P’16.

[13] R. Lu, X. Lin, H. Zhu, X. Shen, and B. Preiss. Pi: A practical incentive
protocol for delay tolerant networks. IEEE TWC, 9(4), 2010.

[14] Q. Li, W. Gao, S. Zhu, and G. Cao. To lie or to comply: Defending
against flood attacks in disruption tolerant networks. IEEE TDSC, 10(3),
2013.

[15] Y. Ren, M. C. Chuah, J. Yang, and Y. Chen. Detecting wormhole attacks
in delay-tolerant networks. IEEE Wireless Comm., 17(5), 2010.

[16] F. Li, J. Wu, and A. Srinivasan. Thwarting blackhole attacks in disruption-
tolerant networks using encounter tickets. INFOCOM’09.

[17] Q. Li and G. Cao. Mitigating routing misbehavior in disruption tolerant
networks. IEEE TIFS, 7(2), 2012.

[18] M. Alajeely, R. Doss, A. Ahmad, and V. Mak-Hau. Defense against
packet collusion attacks in opportunistic networks. Computers and
Security, 65, 2017.

[19] Bgpmon. http://www.bgpmon.net.
[20] Ripe myasn system. http://www.ris.ripe.net/myasn.html.
[21] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang. Phas: A

prefix hijack alert system. USENIX’06.
[22] Y. Chi, R. Oliveira, and L. Zhang. Cyclops: The as-level connectivity

observatory. ACM SIGCOMM Computer Comm. Review, 38(5), 2008.
[23] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,

A. King, and A. Dainotti. Artemis: neutralizing bgp hijacking within
a minute. Technical Report’18.

[24] Bgpmon (colorado state university). https://www.bgpmon.io/.
[25] Routing information service (ris). https://www.ripe.net/.
[26] Route views project(university of oregon). http://www.routeviews.org/.
[27] Z. Zhang, Y. Zhang, Y. Charlie Hu, Z. Morley Mao, and R. Bush. ispy:

Detecting ip prefix hijacking on my own. IEEE/ACM TN, 18(6), 2010.
[28] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis. A light-weight distributed

scheme for detecting ip prefix hijacks in real-time. SIGCOMM’07.
[29] J. Frank and Jr. Massey. The kolmogorov-smirnov test for goodness of

fit. Journal of the American Statistical Association, 46(253), 1951.
[30] S. Gianvecchio and H. Wang. An entropy-based approach to detecting

covert timing channels. IEEE TDSC, 8(6), 2011.
[31] A. L. Toledo and X. Wang. Robust detection of selfish misbehavior in

wireless networks. IEEE JSAC, 25(6), 2007.
[32] J. Tapiador, P. Teodoro, and J. Verdejo. Measuring normality in http traffic

for anomaly-based intrusion detection. Computer Networks, 45(2), 2004.
[33] J. Caberera, B. Ravichandran, and R. Mehra. Statistical traffic modeling

for network intrusion detection. MASCOTS’00.
[34] S. Symington, S. Farrell, H. Weiss, and P. Lovell. Bundle security

protocol specification. https://tools.ietf.org/html/rfc6257. 2011.
[35] C. Yang and R. Stoleru. Hybrid routing in wireless networks with diverse

connectivity. Technical Report, Texas A&M University.
[36] Ibr-dtn - a modular and lightweight implementation of the bundle

protocol. https://github.com/ibrdtn/.
[37] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf. Ibr-dtn: An efficient

implementation for embedded systems. CHANTS’08.
[38] A. Keränen, J. Ott, and T. Kärkkäinen. The one simulator for dtn protocol

evaluation. Simutools’09.
[39] N. Eagle and A. Pentland. Reality mining: Sensing complex social

systems. Personal Ubiquitous Comput., 10(4), 2006.
[40] K. Smaili, T. Kadri, and S. Kadry. Hypoexponential distribution with

different parameters. Applied Mathematics, 4(4), 2013.
[41] J. C. Ferreira and C. M. Patino. What does the p value really mean?

Jornal Brasileiro de Pneumologia, 41(5), 2015.
[42] The r project for statistical computing. https://www.r-project.org/.
[43] Rcpp for seamless r and c++ integration. http://www.rcpp.org/.
[44] B. Lynn. The pairing-based cryptography (pbc) library. http-

s://crypto.stanford.edu/pbc/.
[45] F. Hess. Efficient identity based signature schemes based on pairings.

SAC’02.
[46] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and

L. Viennot. Optimized link state routing protocol for ad hoc networks.
INMIC’01.

[47] A. Tonnesen. Implementing and extending the optimized link state
routing protocol. Masters thesis, University of Oslo’04.

[48] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz. Listen
and whisper: Security mechanisms for bgp. NSDI’04.

[49] X. Hu and Z. M. Mao. Accurate real-time identification of ip prefix
hijacking. S&P’07.

[50] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu. Detecting prefix hijackings
in the internet with argus. IMC’12.

[51] J. Schlamp, R. Holz, Q. Jacquemart, G. Carle, and E. W. Biersack. Heap:
Reliable assessment of bgp hijacking attacks. IEEE JSAC, 34(6), 2016.

[52] M. Lepinski and K. Sriram. Bgpsec protocol specification. http-
s://tools.ietf.org/html/rfc8205. 2017.

[53] M. Lepinski and S. Kent. An infrastructure to support secure internet
routing. https://tools.ietf.org/html/rfc6480. 2012.

[54] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (s-bgp).
IEEE JSAC, 18(4), 2000.

