
1

CloudRand: Building Heterogeneous and
Moving-target Port Interfaces for Networked

Systems
Seungwon Shin, Zhaoyan Xu, and Guofei Gu

SUCCESS Lab, Texas A&M University
seungwon.shin@neo.tamu.edu, z0x0427@cse.tamu.edu, guofei@cse.tamu.edu

Abstract—Some fundamental reasons why our networked sys-
tems are still vulnerable to network attacks are: (1) they are
more open than necessary; (2) they are homogeneous, i.e., the
same way to exploit a vulnerability on one machine is easily
applicable to many other machines (which is particularly a
severe concern in cloud computing environments when virtual
machines images are heavily reused/cloned); (3) current net-
worked services are merely static targets, i.e., they are easily
predictable and do not change. While network authentication
and access control mechanisms such as firewall and VPN can
help reduce the openness (mostly at network perimeter level),
they do not help much on the latter two factors. To bridge
the gap and greatly complement existing network authentica-
tion/access control mechanisms, we propose CloudRand, a new
framework to make networked systems/services heterogeneous
(every host has a different networking interface) and moving
targets (such interfaces keep changing and they are unpredictable
to untrusted entities). Inspired by the previous work on host-
level (memory or instruction) Address Space Randomization
(ASR), we build a lightweight solution to randomize network
service port interfaces. Thus, even derived from the same image,
each virtual machine can have very different run-time network
service interfaces and they keep changing to further reduce the
attack surface. CloudRand is an application-agnostic, hypervisor-
level security service, orthogonal to existing application/network
security mechanisms such as authentication, encryption, and
access control. Our extensive evaluation shows that this solution
has low overhead, and it can significantly reduce network attack
surface and successfully defeat malware epidemic attacks.

Index Terms—Cloud network, security, moving-target defense.

I. INTRODUCTION

Our computers and networks on the Internet are still sus-
ceptible to all kinds of cyber attacks. As a result, our society
has significant economic loss due to these attacks. Earlier
in 2011, it is officially estimated by the British government
[17] that cybercrime costs the United Kingdom more than 27
billion pounds (i.e., 43.5 billion dollars) a year. It is clear
that the global loss is significantly much higher than that.
Recently, more severe and persistent worries also come from
the new revolutionary computing platform, cloud computing
environment. According to a recent report from Marketsand-
Markets (M&M)1, the global cloud computing market will
reach 121.1 billion by 2015. Despite its rapid development,

1http://www.marketsandmarkets.com/Market-Reports/
cloud-computing-234.html

security and privacy issues remain the major obstacles to
cloud computing adoption [3], [13]. Moreover, concerning the
usability, current cloud environments [13] may allow close
communication with the bare metal instead of providing only
software services. Thus, users can control nearly the entire
software stack. Meanwhile, due to the wide use of virtual
machine image migration and clone, there may exist a large
number of virtual machines with similar operating systems and
application configurations and as well as similar exploitable
vulnerabilities. They both give fertile soil to the growth of
malware epidemic attacks and once one guest machine inside
of the cloud is comprised, it could bring catastrophic effect to
the whole infrastructure.

Some fundamental reasons why our networked systems are
still vulnerable to cyber attacks are as follows: (i) openness,
which means that hosts are probably too open (in terms of the
network surface) than necessary to such unwanted traffic; (ii)
homogeneity, which means that hosts are too homogeneous
so that the same exploitation successfully installed on one
machine can be easily applied to another hosts (this is partic-
ularly a severe issue in cloud computing as discussed before);
and (iii) static target, which means that the network interfaces
of hosts (e.g., service ports) are static and predictable which
makes the hosts vulnerable to attacks that successfully guess
that right exploitation on the right service.

A lot of research and development has been conducted
on reducing the openness of hosts/networks, e.g., existing
network authentication and access control mechanisms (such
as firewalls or distributed firewalls [8], VPN, router ACL).
While they are quite effective to reduce openness (mostly
at the network perimeter level), they barely help much on
the latter two issues, i.e., homogeneity and static target. As
a result, they are not enough to reduce the cyber attack
surface. For example, while firewalls/VPNs can reduce exter-
nal unauthorized attacks, they can hardly deal with internal
attacks/propagations. Mechanisms such as router ACL that
mostly use IP addresses to allow/block remote access are
not flexible to handle users using DHCP (IP addresses will
change), NAT (many users will share the same IP address), or
even users using multiple machines (at different locations, or
during travel, etc). Most of these techniques still allow access
to common service ports such as 80 (web), 22 (SSH), which
are still static targets exposed to attacks. In addition, Microsoft
Windows will open many default service ports, e.g., 135, 137-



2

139, 445, for NetBIOS (while these ports can be blocked
from external network access, they are typically open to
internal network access). All these open service ports and the
underlining homogeneous applications represent significant
attack surface exposed to potential risks. While they can rely
on application level protection (e.g., application authentication
protocols, application communication encryption), these are
likely application specific and may not easy to apply to other
applications without code modification, which makes them
unsuitable as a generic application-agnostic network level
solution. In addition, application-level protection may not stop
exploitation attacks such as brute force SSH login attacks, not
even mention infamous DoS attacks. We provide more details
on related work and their weakness/differences in Section III.

In this paper, we propose CloudRand, a new lightweight
and incrementally deployable framework, to provide secure
networked systems/services for various network environments
such as clouds and enterprise networks.2 The key insight is to
build heterogeneous and moving-target network port interfaces
thus to decrease (and simultaneously shift) the existing attack
surface to adversaries while still providing dependable service
to system users and owners. More specifically, inspired by the
previous research of system-level instruction set or memory
layout randomization [14], [7], [19], we extend the idea into
a wider network scenario and dynamically randomize the
network interfaces, i.e., network port numbers. In doing so,
we make our network port interface heterogeneous (every host
has a different one). It appears chaotic to attackers (shifting
all the time), and thus it forces the adversaries to significantly
increase their work effort for every desired target.

In short, this paper makes the following contributions:
First, we propose to build heterogeneous and moving-

target network port interfaces to significantly reduce the attack
surface. Compared with existing network authentication and
access control mechanisms that mainly reduce the openness,
our solution is complementary and orthogonal, focusing on
reducing homogeneity and providing moving-target defense.
It is lightweight, incrementally deployable, and a nice add-on
to network defense in depth.

Second, we design and implement a prototype system,
CloudRand, using cloud networks as an application example.
As a cloud security service, it does not need to change or
reconfigure service applications, which makes existing cloud
services easy to adopt this additional layer of protection
(defense in depth), in addition to their existing authentication
or access control mechanisms. We make novel use of hash
chain techniques to provide flexible randomization/translation
and easily control the expiration of the service without the
need of blacklist or revocation lists. Furthermore, we in-
troduce process-binding techniques to reduce the probability
that attackers misuse the provided application transparency to
propagate from trusted nodes in the cloud. Finally, to fit into
different environments such as clouds or enterprise networks,
we provide various implementations at different levels, e.g.,
host level (kernel drivers for both Linux and Windows),

2We focus on cloud environment for the rest paper. However we note the
techniques are generic to any network as discussed in section V.

network router level (based on Click modular router), virtual
machine hypervisor level (based on Xen), and application level
(browser plugin).

Third, we extensively evaluate our prototype system in
terms of effectiveness, efficiency, and flexibility. We show that
CloudRand can significantly reduce network attack surface and
successfully defeat malware penetration/epidemic attacks. In
addition, CloudRand has a very low runtime overhead, e.g.,
it is more than six times faster than using SSL encryption in
network communications in our evaluation.

For the rest of the paper, we first introduce related work
and clarify their difference from our work in Section §III.
We detail our design of CloudRand in Section §IV and the
implementation in Section §V. We provide extensive evalua-
tion in Section §VI and discuss limitations and other issues
in Section §VII. We conclude our work and point out future
directions in Section §VIII.

II. PROBLEM STATEMENT

We start with a real-world network trace analysis to support
our motivation, followed by the assumptions of our solution.

A. Motivating Study

Fig. 1. Popular network ports

To understand the openness of enterprise network systems,
i.e., how many network ports of hosts are open and how each
host easily contacts to neighbor hosts, we randomly selected
219 live hosts in our department network and performed port
scanning using nmap [22]. Our study showed that a typical
host opens 6 ports on average. Surprisingly, some hosts open
27 network service ports and 20 hosts open more than 10
network ports. We also investigated which ports are popular.
As shown in Figure 1, port 80 for web service is the favorite
port; it is opened up by more than 70 % of hosts we examined.
The other network ports, such as 135, 139 and 445, are also
opened by about 15 % ∼ 35 % of hosts. These network
ports are typically targeted by many well-known malware.
This study indicates that about 70 % (at least more than
15 %) of real-world hosts are facing the danger of common
malware infections. When we do this test, we can easily
contact neighbor hosts without problems.

Next, to show the threats from the outside, we further
surveyed the prevalence of unwanted traffic and the openness
of current computer systems. We have gathered network flows
in a campus network domain. In this study, we simply consider
unwanted network flows as those who send packets to the
internal hosts, but do not get any response or get just RST



3

Metric Trace Information
Duration 24 hours
Total flow count 48,694,156
Flows from external to internal 36,494,622
Scan flow count 3,712,416
Scan flow ratio (%) 10.17 %

TABLE I
STATISTIC INFORMATION ON UNWANTED FLOWS IN A 24-HOUR TRACE.

packets. This is a conservative estimation or a lower bound
for unwanted traffic. The result is shown in Table I. Among
all flows from the external networks, we found about 10% of
unwanted scanning attempts. Furthermore, most scanning at-
tempts target some specific hosts. More than 50% of scanning
flows were sent to just one victim, and more than 75% of all
scanning flows were scanning flows to at least five hosts.

B. Assumptions of Our Approach

We assume port scanning attempts are easy to be detected
and thus blocked (from further probing). This assumption is
very reasonable. Actually, there already exist many effective
and efficient scan detection algorithms (e.g., TRW [18]). For
an attacker or a malware instance to identify the service port
in order to penetrate into the network, brute force connection
attempts are required. The probability of correctly guessing the
right port using a single scan is p(1) = 1

216 . After n guesses,
the success probability

p(n) = 1−
n−1∏
k=0

(1− 1

216 − k
)

When n is small,

p(n) ≈ 1− (1− p)n ≈ n

216

According to [18], TRW technique requires only a small
number of connection attempts (4 or 5 in practice) to detect
port scanning. For 5 scans, the success probability for the
attacker to hit right service port is only 0.0000763. In order
for this success probability to be non-trivial, let us say to reach
50%, the attacker has to scan more than 33,000 times. This
huge amount of failed connections is easy to detect and block.
As a matter of fact, aggressive scanning (e.g., sending a large
amount of scans in a relatively short time in order to identify
service ports) is now rarely used in attacks (particularly those
for-profit attacks) because this is too noisy and easy to be
noticed (and blocked). If the attacker decides to go stealthy
by slowing down scanning speed, e.g., sending one scan per
hour, this will cost 1375 days, or 3.8 years. Even in the case
of one scan per minute (which is actually not very stealthy), it
will still cost about 23 days. The attacker may use a botnet to
launch coordinated attacks. However such an effort still can be
detected [15], and this way potentially exposes the members
of the botnet and sometimes is not desired. In addition, even
this works on fingerprinting one service, it is still a lot of
work to scale up on Internet. And since the port number will
be changed from time to time, it makes the port information
collection stale easily.

We assume many network services are not intended to be
open to anyone to access. This is reasonable. For example, a
SQL server in the enterprise does not intend to provide service
to arbitrary machines. Although many services do have appli-
cation level authentication to allow trusted users to access,
they do not prevent network interface contact, e.g., one can
still initiate TCP/UDP connection. Analogous to give a name
card to only known persons in the physical world, a network
service may decide to give detailed contact information to
only those desired clients. The port randomization algorithm of
CloudRand 3 could be considered as a special kind of a “name
card” for correctly contacting the service. The distribution of
such “name card” can be done using any existing approach or
out-of-band, such as email, web, phone, short message. This
distribution issue is out the scope of our paper. Furthermore,
a ”name card” might be stolen or leaked to another user who
may accidentally have the “name card” information. This is
analogous to the situation that a user discloses a cryptographic
key to other ones. We do not intend to solve this problem in
this work.

It is worth noting that CloudRand can be considered as
a special kind of access control mechanism as explained
before. Thus, it has the same assumption as all existing access
control and authorization systems, i.e., one needs to specify
trusted/desired clients/hosts. This is analogous to the use of
any firewall (one needs to specify which hosts/networks/ports
are trusted and which flows are allowed/disallowed).

III. RELATED WORK

System Randomization Techniques: Our work fits into
the large body of research that applies automated diversity
transformation to software/system to increase the difficulty
for an attacker to exploit a security vulnerability. Several
well-known randomization techniques at host side have been
proposed, including Address Space Randomization (ASR)
[14], [9], [32], system call randomization [10], instruction
set randomization [7], [19]. For example, the basic idea of
ASR is to introduce artificial diversity by randomizing the
memory location of certain system components to defeat code
injection attacks such as buffer overflow. The effectiveness and
weaknesses of these techniques are well studied [24], [26],
[12]. Recently, n-variant systems [12] are proposed. This n-
variant framework executes a set of automatically diversified
variants on the same inputs, and monitors their behavior
to detect divergences. By constructing variants with disjoint
exploitation sets, it is very hard to carry out large classes of im-
portant attacks. Different from all these work, our CloudRand
technique is a network-level solution. Unlike those host-level
techniques that might cause systems/applications crash on an
unsuccessful attack attempt when an actual exploit is input into
the system, CloudRand can prevent an unsuccessful attack to
send the actual exploit. Compared to the above techniques, our
CloudRand solution is more lightweight and preventive.

Similar to ASR, Network Address Space Randomization
(NASR) is also proposed [6] with the goal to limit or slow
down (but not prevent) hitlist worm propagation. The idea

3This algorithm will be explained in Section §IV-B.



4

is basically to change Internet-wide IP address frequently
so that the hitlist information used by worms will be stale
shortly. This technique is only targeting to slow down (but
not prevent) hitlist worm and has several practical limitations
(e.g., it requires Internet-wide coordination of IP addresses)
that make it hard to be actually deployed on Internet. Our
CloudRand technique has a broader applicable scope (not just
for defeating hitlist worm) and is much more practical for
deployment on local networks or Internet than NASR.

Enterprise Network Protection Techniques (for inside
threats): Firewalls and Network Intrusion Detection System
(NIDS) are good approaches to protect internal hosts from
outside attacks, but they have a limitation of not being able to
detect attacks from the inside. To overcome this limitation,
distributed firewalls were proposed to protect hosts from
attacks both of inside and outside [8] [30] [33]. Even though
they provide an ability to block some suspicious internal
traffic, they still do not block well-known network ports such
as port 80 for Web service. Essentially, they did not make
internal malware propagation much harder. The same way that
successful infiltration can still succeed on other internal hosts
due to the homogeneity and static firewall configuration at each
host. And this makes possible for inside malware, to spread
over the well-known ports. With CloudRand, malware can not
spread itself because CloudRand randomizes every network
ports for service, even if it is not detected.

Network Authorization and Access Control Techniques:
There are several standard techniques used for network autho-
rization and access control, such as VPN (Virtual Private Net-
work) and Router ACL. CloudRand is fundamentally different
from them. First, existing network access control solutions are
mainly designed to prevent unauthorized clients based on their
IP addresses. That is, it is hard for them to prevent threats
from hosts which are dynamically changing their IP addresses.
And it is very common in current network environments (e.g.,
dynamic IP address and relocating VMs in a cloud computing).
As a contrast, the ultimate goal of CloudRand is to reduce
attack surfaces by randomizing network interfaces in server
side. Thus, our CloudRand solution can reduce threats even
if they are from dynamically changing IP addresses. Second,
CloudRand uses lightweight randomization techniques such as
hash functions, which have lower overhead than full crypto-
graphic authentication protocols and packet payload encryp-
tion/decryption mechanisms. Finally it is worth noting that
CloudRand is not intended to replace them but to complement
them because their protection focuses are orthogonal.

Port-knocking [21] and Single Packet Authentication (SPA)
[11] are two proposed techniques for protecting hosts from
network scanning and they use multiple packets (or single
encrypted packet) to identify a client whether it is benign
or not. There are significant differences between them and
CloudRand: (1) In Port-Knocking, the sequence of contacting
network ports is static. Therefore if an attacker knows this
sequence, he can use this information for future attacks. How-
ever, because CloudRand changes network port dynamically, it
is nearly impossible for an attacker to guess future open ports.
(2) Port-knocking suffers from packet out-of-order delivery
and it frequently happens in current networks. But CloudRand

does not have this problem. (3) Fundamentally, the goal and
protection granularity are different. The granularity of Port-
knocking and SPA is at host level and primarily used to
authenticate a specific client/host. However, CloudRand is
primarily used to provide a fast-flux networking interface for
the server and the protection granularity is at per-application
or per-service level.

Port Randomization/Translation Techniques: A similar
study to our CloudRand technique is presented in [29], in
which a port hiding technique is proposed to defend Web
applications against DoS attacks. The authors suggest hiding
a server port number and allowing a legitimate client to use
the hidden server port number as an authenticator to access
the Web application. Our work is different from this study in
several ways: (1) The goal is different. Their approach can
be only used to protect Web applications from DoS attacks,
while our solution can be used to protect any applications
in hosts/cloud to reduce attack surface with this moving-
target defense. (2) The randomization technique is different.
We apply a novel use of reverse hash chain to design port
randomization for temporal clients with automatic expiration
without even changing the key/seed, however their approach
requires periodically update keys. (3) They use Javascript
redirection technique at client side to translate Web requests
and forward to the right server port. This cannot be applicable
to services other than Web application. Instead, we provide
more general and comprehensive translation techniques that
can be applicable to all applications.

IV. SYSTEM DESIGN

A. System Overview and Illustration

CloudRand is a security service provided at hypervisor
level to hosts (virtual machines, VM) in the cloud. If a VM
wants to use the service to randomize its network interface
(in terms of service ports), it first registers the service with
CloudRand and lets its network (client) users aware of the
use of this protection. From then on, the service ports on the
VM will be dynamically/periodically randomized. To avoid
modification/reconfiguration to the service software in the VM,
CloudRand does not require the server application to change
its actual listening port every time. Instead, CloudRand (in the
hypervisor) will perform on-the-fly port translation/rewriting
and redirect wanted traffic go through. For instance, at day
1,4 one HTTP/Web service is announced at a random port
12345, i.e., any connection to this service should go through
destination port 12345 only. A legitimate client (e.g., a VM
in the same cloud, or a partner cloud, or just a remote user)
is aware of this randomized port number (more precisely the
randomization algorithm). Thus, it will communicate with the
server through 12345. The application on VM does not change
its listening port but allows the hypervisor to rewrite/redirect
all the traffic from port 12345 to port 80 on-the-fly. Other
unwanted traffic to the wrong port (e.g., 80) will be ignored
(and the sender can be blocked after several failed attempts).
In the next period (e.g., day 2), the service port number is

4For convenience, in this scenario, we assume that CloudRand changes
network ports daily.



5

changed from 12345 to another random number, e.g., 48205.
Again, the legitimate client knows about this change and can
still smoothly access the service. To be flexible, CloudRand
allows the service to provide two kind of accesses to users:
long-term or short-term. In the later case, the capability of
learning the right port to access will automatically expire.

An illustrative working scenario is shown in Figure 2,
in which CloudRand is deployed in our cloud. With the
CloudRand protection to significantly reduce the attack sur-
face, attack trials from Internet (i.e., T1-1) and partner cloud
(i.e., T2-1) can not infect VMs in our cloud. However, those
unprotected VMs in partner cloud could be infected by attack
trails from Internet (i.e., T1-2) and/or neighbor VM (i.e., T2-
2).

Fig. 2. Illustrative Scenario of CloudRand.

B. Randomization Algorithm Design
Depending on the actual need, CloudRand allows a server

to provide network port interface randomization protection to
two kinds of client users: those trustworthy ones with long-
term service or those less trusted with short-term service.

To provide a client with long-term randomization service,
the port randomization algorithm works as follows:

• We denote the hash function as H(seed, original port)
(seed is a random number, server IP address is the IP
address of a host running services).

• We denote the starting date as s, and the current date as
n, then we can get d = n− s.

• Current port is calculated as Hd(seed, original port).
For example, suppose we want to randomize network port
80 of a host whose IP address 10.0.0.1. seed = 54321,
starting date s = Aug. 10, today n = Aug.27. Then d = 27
- 10 = 17. Therefore CloudRand calculates current port
number as H17(54321, 80).

In many cases, it is necessary to give some client right to
contact CloudRand protected servers for a limited time. For

example, when it is hard to decide whether specific clients
are fully trusted or not, it is better to give a temporal access
which will expire after a desired times of use. To achieve this
goal, we reverse the use of hash chains stated earlier. And
we maintain another CloudRand translation policy entry for
temporary access purpose. We pre-calculated a long chain of
hash value, H(y) ... Hn(y) (here y is some initial random
number which will not be shared with clients), where n is a
relatively large number (set by the administrator according to
the maximum expiration time for a client). Instead of using
hash chain values from H(y) to Hn(y) as in the Cloud
Passport case, we reversely use the chain from Hn(y) (in day
1) to H(y) (in day n). In order to allow an access that expires
in e days, assume the current hash value is Hm(y), we provide
the client Hm−e+1(y).

Fig. 3. Using reverse hash chain in port randomization.

Figure 3 shows an example with e = 3, and the client
obtains Y = Hm−2(y). For the first day, the client uses
H2(Y ) = Hm(y) to calculate the port number. On day 2, the
client uses H1(Y ) = Hm−1(y). Similarly, on day 3, the port
number is calculated using Y = Hm−2(y). If three days have
been passed, the client will fail to access because it cannot
obtain previous hash value Hm−3(y) (it only knows Hm−2).
Since a hash value is not reversible, our CloudRand granted
access is guaranteed to automatically expire after a desired
time of use.

In principle, one can use any existing hash algorithms such
as MD5. In our current implementation, we use a fast-speed
and specialized-in-integer (because network port number is
integer value) hash function [31]. It is worth noting that the
CloudRand protected server needs to make its client users
aware of the randomization algorithm (either long-term or
short-term). We do not consider this as a practical limitation.
In reality, a server that needs protection from CloudRand
typically has that capability and can coordinate with its users
using any existing approach/protocol (e.g., as part of the
service agreement, establishing a very simple web service for
the purpose), or through their already existing communication
channels, or through out-of-band channels such as email, web,
phone, short message.

C. On-the-fly CloudRand Translation

One technique challenge comes from the requirement of
server application transparency. The binding port for server
side software is usually statically specified. Some notorious
service ports are fixed and not easy to change, e.g., Windows
NetBIOS sharing. Even for those configurable services, many
regular users may not know how to change default ports.

We propose to provide our application-transparent
CloudRand service at the hypervisor level inside the cloud.



6

Specifically, we use Xen[4] as our Hypervisor platform and
control Dom0 to execute port translation and traffic protection
for other DomU. For instance, at the server side, once one
registered service application starts, CloudRand performs
corresponding randomization algorithm to determine current
port number and adds one new rule to its CloudRand service
table for this VM, such as port 12345 → port 80. If a
packet targets at the randomized port 12345 to the destination
VM, CloudRand redirects and rewrite the packet to the port
80 on-the-fly. Any other traffic, including the traffic directs
to port 80, may be simply discarded or further monitored
(because they are suspicious).

D. In-Cloud Process Binding

Previously we have discussed the service application trans-
parency. Similarly, we may also provide client application
transparency. In this section, we first assume the communi-
cating client is also in the cloud, either the same cloud or a
collaborative cloud, and we leave the discussion of a remote
client to next section. Clearly, the in-cloud client side can use
the same translation mechanism as long as CloudRand service
is granted. Thus, client application can work even without
knowing the randomization algorithm.

However, there is a subtle issue we can discuss here. While
providing great convenience, arguably the client application
transparency can be misused if the client is compromised (e.g.,
by malware). Thus, the malware program inside the client can
also access the right port of the server (because CloudRand
at client side does blind translation). To reduce such risk, for
client-side CloudRand, we provide process-binding translation,
e.g., the port translation is binded to the corresponding certain
legitimate program. To realize automatic process-binding, one
can start with providing a list of commonly used legitimate
client-side programs that will be used to contact CloudRand
protected service. It is not surprising that for specific protected
service, the number of legitimate client software is typically
very limited and easily enumerable. For example, if the web
service on port 80 is protected by CloudRand, programs
such as IE,Firefox, Google Chrome, can be considered
as legitimate and automatically binded for port translation.
Meanwhile, users can always customize the list and add new
programs as they want.

Implementing such function is not straightforward at hyper-
visor level due to the lack of semantic information of the OS
[27], [28]. Even with introspection tools such as XenAccess
[23] so that we can get access to raw memory of each
guest system, the task of extracting the kernel data structure
from the mapped memory to bind packets with its source
program is still challenging. In CloudRand, we implement our
own techniques to extract fine-grained process-to-port binding
information, similar to [27], [28].

Specifically, in Linux, the open socket information is ex-
pressed as files owned by each process. Thus, by examining
the kernel exported symbols stored in the System.map, we
first search and extract virtual address of all the related kernel
symbols, including inet_hashinfo for network service
and linked list of task_struct for each process. For

the structure inet_hashinfo, it maintains all local socket
binding information. We further search the linked list of sub-
structure inet_bind_hashbucket and enumerates all the
nodes inside of inet_bind_bucket. In this way, we obtain
the information of the port and the binded socket. On the
other side, XenAccess provides basic introspection function
to allow us introspect all the process information. From the
base address of structure task_struct, we traverse the its
sub-structure, files_struct, to find all the sock files used
by each process. If any of them matches the previous extracted
socket file, we can correlate the port with the certain process.

For windows, we begin with examining the loaded modules
and find the location of the network driver tcpip.sys.
In the kernel region, we locate the KdVersionBlock (fix
0xffdff034 offset for XP) and derive the address of
PsLoadedModules. After iterating the module lists and
getting the pointer of tcpip.sys, we further find the data
structure AddrObjTable for TCP, TCBTable for UDP, that
maintains the linked list of objects containing network ports
and process IDs for open sockets/connections.

V. EXTENDING CLOUDRAND FROM HYPERVISOR TO
MULTIPLE LAYERS

We have implemented CloudRand at hypervisor level on
top of the open-source cloud computing environment Xen [4].
We take advantage of existing IPTables[2] in Xen Dom0 to
monitor, redirect, and filter out unwanted traffic.

It is worth noting that the idea behind hypervisor-
level CloudRand can be easily extended to other environ-
ments/layers. To maximize the flexibility of real-world deploy-
ment, we extend CloudRand translators onto different levels
such as application level, host (kernel) level, and network
(router/switch) level. Table II summarizes the design space,
pros/cons, and examples of our current CloudRand implemen-
tations.

When applying CloudRand in real world clouds/networks,
we need to install our components at network, hypervisor,
application, and/or OS level. Since each cloud computing
environment may be different from each other, it could be
hard to predict which level is the best selection to minimize the
modification to the systems. Thus, we provide multiple level
solutions of CloudRand for the cloud/network administrator
to flexibly choose the most suitable solution based on their
actual environments and needs.”

A. Network Level Translator

Our current implementation based on Click modular [20]
router is shown in Figure 4. We implemented a new PortRan-
dom element in C++ to the Click modular router. This element
has two stages to perform port randomization and translation.
In the initial stage, it obtains policy data from a Cloud
Manager and registers to a mapping table. In the service stage,
the PortRandom element will (i) accept incoming TCP or UDP
that comes through IPClassifier element which is a built-in
element of Click; (ii) confirm whether destination IP/port of
incoming network packet is registered in the mapping table or
not. If so, it will translate and rewrite this port to the original



7

Approach Layer Pros Cons Our example implemen-
tation

CloudRand-aware pro-
gram

application easy to start using application/user be aware of
the CloudRand algorithm

simple client-
side CloudRand
translator/software

application plug-in application simple support only specialized user
programs

FireFox extension

kernel device driver kernel no change to applications,
cover all applications on host

require installing kernel
driver

Linxu/Windows kernel
CloudRand driver

hypervisor
modifications

hypervisor no change to existing pro-
gram/os, cover all inside VMs

only effective when using vir-
tual machines

Xen-based CloudRand

router/switch upgrade network no change to existing pro-
gram/os

no internal communication
protection

Click modular router

TABLE II
DESIGN SPACE OF CLOUDRAND

port. If not, it checks if this packet is targeting to original
port. If it is, it reports this to CloudRand manager, otherwise
it discards the packet. In other cases (not for the CloudRand
service), it will simply work as a regular network router.

I
P
C
l
a
s
s
i
f
i
e
r

(
t
c
p
,
 u
d
p
,
 -
)


t
c
p
p
r
:
:
P
o
r
t
R
a
n
d
o
m

(
W
E
B
,
 M
A
I
L
,
 
…
,


d
r
o
p
)


u
d
p
p
r
:
:
P
o
r
t
R
a
n
d
o

m


(
D
N
S
,
 
…
,
 d
r
o
p
)


F
r
o
m
D
e
v
i
c
e

(
e
t
h
0
)


D
r
o
p


C
l
a
s
s
i
f
i
e
r


A
R
P
R
e
s
p
o
n
s
e

r


F
r
o
m
D
e
v
i
c
e

(
e
t
h
1
)


T
o
D
e
v
i
c
e

(
e
t
h
1
)


R
R
S
c
h
e
d
u
l
e
r
1
 R
R
S
c
h
e
d
u
l
e
r
2


S
e
t
T
C
P
C
h
e
c
k
s
u
m
 S
e
t
U
D
P
C
h
e
c
k
s
u
m


S
e
t
I
P
C
h
e
c
k
s
u
m


T
o
D
e
v
i
c
e

(
e
t
h
0
)


Q
u
e
u
e
 Q
u
e
u
e


Fig. 4. Click configuration of the network-level CloudRand Translator.

B. Application Level Translator

For application-level translator, currently we implemented
a Firefox browser plugin/tool-bar as shown in Figure 5. If a
client tries to connect to (CloudRand protected) web servers,
he can simply type server URLs in the CloudRand tool-bar.
Then, it automatically translates the port to connect the web
server.

Fig. 5. FireFox browser extension for CloudRand translator.

C. Host Level Translator

This host-level CloudRand translator has two modules: a
kernel monitoring module and a user-level policy module. For
every incoming and outgoing packet, CloudRand translator
will do the examination to identify the validity of each packet.
The examination and translation are at the kernel level, which
means every packet will go through our kernel monitoring
module first. Meanwhile, the user-level component will main-
tain the trusted process list and interact with kernel-level
component to block illegal packets if necessary. Currently, our
implementation can successfully randomize and translate the
port number of TCP and UDP packets on Windows and Linux.

• CloudRand translator for Windows
We develop a kernel-level filter-hook based on the Win-
dows IP Filter Driver, IpFltDrv.sys, which exists in
both Windows XP and Windows Vista. We manipulate
(randomize/translate/rewrite) the packet fields such as
Dest Port Number and Checksum. Another data struc-
ture,ProcessGuard, specifies the processes which are
allowed to use client-side port translation.

• CloudRand translator for Linux
The implementation on Linux is built on top of the
well-known firewall, IPTables. Through loading the
kernel module IptableNat, we can easily redirect the
packet to the translated destination port using Redirect
option. We note that this is essentially the similar use



8

of NAT/PAT function supported by IPTables. That is,
existing NAT/PAT capable device can be slightly modified
to support CloudRand port translation function. Through
another IPTables kernel module IptOwner, we can
specify pid option to allow only trusted specific process
to use client-side Port Translation function. User-level
policy module is similar to Windows implementation,
which dynamically correlates the process information to
current running PID.

VI. EVALUATION

The CloudRand framework provides an effective and
lightweight solution to greatly reduce the attack surface of
our networked systems. In this section, we conduct an evalu-
ation to demonstrate its efficiency and effectiveness. Section
VI-A evaluates CloudRand’s ability to defeat attacks such as
malware propagations. Section VI-B deliberately measures the
overhead impact of the CloudRand on hypervisor and other
extended scenarios (e.g., host/network level).

A. Effectiveness Evaluation

CloudRand system can effectively defeat malicious epi-
demic attacks from outside or inside networks. To evaluate its
effectiveness, we build a network with the topology shown in
Figure 6(a). We set up the test in a safe virtual environment
and run Agobot [1](to connect to our controlled command
and control server). The botmaster tries to command the
Agobot to attack two Windows machines, Target A (without
protection) and Target B (with CloudRand protection). Both
Target A and B have DCOM vulnerability which could be
successfully exploited by Agobot. Since Target A does not
employ CloudRand protection, it can be easily exploited by
Agobot, as shown in Figure 6(c). On the contrary, since Target
B has CloudRand service to randomize the vulnerable port 135
and 445, it is not infected, as shown in Figure 6(b).

Next, to evaluate the effectiveness of CloudRand to stop, or
at least slow down, malware propagation in a relatively large-
scale network, we perform a packet-level simulation using
GTNETS network simulator [25]. We use a tree network
topology with a total number of hosts at 2,400. The 2,400
hosts divide into 24 subnets and each subnet could be con-
sidered as a virtual cloud. Their IPs range from 192.168.1.1
to 192.168.24.100. We simulate a UDP worm with scan-
ning rate of 50 packets per second and keep running each
simulation for 10 minutes. At the same time, the simulated
UDP worm only targets at 10 possibly vulnerable ports (such
as 33,37,42,53,80,123,137,138,139, and 194) to perform its
exploitation. In the experiment, we start from one worm-
infected machine in the whole network and let it infect the rest.
We vary the protection coverage of CloudRand to show the
different results, as shown in Figure 7. We can clearly see that
when all networks deploy CloudRand, the worm can hardly
propagate at all. With higher ratio deployment of CloudRand,
the number of final infected machines in simulation decreases
significantly. This clearly confirms that CloudRand is an
effective protection scheme for malware epidemic attacks. And

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Propagation Time(s)

In
fe

ct
ed

 N
od

es

 

 

0 subnet
8 subnets
16 subnets
20 subnets
24 subnets

Fig. 7. Worm propagation under different CloudRand protection ratio.

since it is incrementally deployable on a network, each subnet
can benefit from the technique.

In addition to defeating malware propagation, CloudRand
system can prevent specific ports from being blindly scanned
and thus efficiently filter large volume of unwanted traffic
while still providing legitimate clients access. To demonstrate
this, we perform an examination of how well a trusted client’s
request can be handled in the situation when large volume of
unwanted attacks (e.g., scan attempts) are occurring. For this
test, we assume that our service has been deployed to protect
a web server, and we use two kinds of client tools for this test:
(i) wget program [16] (to initiate a normal HTTP request to a
target web server to download a web page); (ii) A TCP SYN
packet generator to produce unwanted traffic (which can be
considered as a kind of SYN flooding attacks). In particular,
we send around 6,000 SYN packets per second as unwanted
traffic in this test. We measure the time for retrieving a web
page, i.e., the time difference between the time for the first
packet establishing a HTTP connection and the time for the
last packet terminating the HTTP connection after retrieving a
web page. We call this retrieving time as client latency and it
represents how a client feels when she is served by a network
(web) service.

Figure 8 shows the client latency comparison when network-
level CloudRand protection (deployed in a Click software
router connecting an attack machine and a normal Apache
web server) is turned on and off. We perform several trials
to retrieve a simple 168-bytes web page, and in each trial
we measure 1,000 times of client latency and then calculate
the mean. From the figure we can see that in the pres-
ence of large volume of unwanted scanning attempts, we
can achieve roughly more than 2 times faster client latency
when the CloudRand protection is enabled. This is because
in this case the router can efficiently filter unwanted traffic
and let the legitimate packets go through. In the case of
no CloudRand protection, legitimate clients have to compete
with large number of unwanted traffic at the router. This test
clearly demonstrates the effectiveness of CloudRand to defeat
unwanted network penetrations and provide better service for
legitimate clients.

B. Overhead Evaluation

In this section, we comprehensively measure the overhead
impact of our CloudRand system. All the experiments were



9

(a) (b) (c)
Fig. 6. Effectiveness of CloudRand to defeat malware propagation attacks.

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Trial

C
lie

n
t 

L
at

en
cy

 [
m

s]

 

 

Without CloudRand
With CloudRand

Fig. 8. Effectiveness measurement of CloudRand in the presence of large
unwanted traffic volume.

performed with two machines. The first machine is used as a
server providing CloudRand service and the specification of
this machine is Intel Core Duo Processor at 2.93 GHz with
3GB RAM. Our implementations of on host level, hypervisor
level, and network level are realized in this machine. On host
level, each DomU guest ran Windows XP SP2 or Redhat Linux
Enterprise system. On Hypervisor level, Dom0 ran a Centos
5 linux system.

1) Overhead Evaluation on Hypervisor: In our hyper-
visor level implementation, deploying CloudRand frame-
work may introduce extra overhead for each inside vir-
tual machine. In this section, we conduct several evalu-
ation to measure the overhead brought to each hypervi-
sor/VM. The overhead mainly comes from three aspects: (1)
CloudRand service registration; (2) Network-level examination
and redirection/rewriting; (3) Client-side process monitor-
ing/introspection.

The basic overhead for each hypervisor machine contains
the invocation/updating/termination of CloudRand service. In
our measurement, CloudRand consumes around 0.3 second to
register a new CloudRand-protected service at each hypervisor.
The randomization is synchronized every 24 hours between
hypervisors. The cost of updating one record is around 0.1
second. When user asks for disabling the CloudRand service,

0 1 2 3 4 5 6 7
5

5.5

6

6.5

7

7.5

8

8.5

9

Trial

C
lie

n
t 

L
at

en
cy

 [
m

s]

 

 

Without CloudRand
With CloudRand

Fig. 9. Overhead measurement of CloudRand with Hypervisor

it spends around 0.01 second.
To understand the (translation/rewriting) overhead at the

network level, we measure the client latency. In particular, we
use wget to retrieve a 168-byte web page from an Apache
web server (version 2.0.64). We measure the client latency
for 6 trials. For each trial, we retrieved the web page 1, 000
times with and without CloudRand protection and calculated
the mean of client latency. The result is shown in Figure 9.
As the client latency is concerned, the extra overhead brought
is around 2.3% in the best case (around 10% in the worst
case). It shows that our CloudRand is evidently a lightweight
solution and the user can barely realize the existence of port
translation.

Another overhead need to measure is the (in-cloud client-
side) periodic process introspection time. We construct an
environment with four domU virtual machines installed on
one dom0 Xen hypervisor. Among them, two domU virtual
machines are under protection by CloudRand. One Windows
machine runs 19 processes and another Linux machine runs
26 processes. Meanwhile, 4 out of all processes are registered
as CloudRand-protected processes.

We measure the average introspection time taken to allow
registered process initiate a CloudRand protected connection
(TCP or UDP). The consuming time for both TCP and
UDP cases is recorded in Table III. As the result shows,



10

the introspection overhead is affordable for mainstream cloud
platforms to protect the service in real time. It demonstrates
that our CloudRand can be easily deployed into existing Cloud
computing environment with relatively low overhead.

Guest OS # of Processes TCP Time(ms) UDP Time(ms)
XP SP2 4/19 10.6 8.3

Ubuntu 9.04 4/26 9.7 9.1

TABLE III
INTROSPECTION OVERHEAD ON HYPERVISOR LEVEL

2) Overhead Evaluation on Extended CloudRand: In this
section, we measure the overhead of extended CloudRand on
both host (kernel driver) level and network (router) level.

The basic overhead of host-level CloudRand is shown in
Table IV. At the invocation phase, Windows system need
to load CloudRand kernel driver and policy module. Linux
system enables the iptables module and configures it
according to CloudRand requirement. The termination simply
stops all the CloudRand service.

Invocation(s) Update/Policy(s) Termination(s)
Windows Host 1.63 2.43 1.03

Linux Host 0.013 0.012 0.008

TABLE IV
BASIC DEPLOYMENT OVERHEAD OF EXTENDED CLOUDRAND

TRANSLATOR

For each incoming/outgoing packet, the introduced overhead
of redirection/rewriting are summarized in Figure 10. We
measure the client latency with the mean of 1, 000 connection
trials. For network-level measurement, we turn on our click
module and let it act as normal router at the network perimeter.
Accordingly, we enable our Windows/Linux kernel driver for
each protected host. The result of network and host level
measurement is compared with the case without CloudRand
protection. In this case, we measure additional overhead,
which is caused by CloudRand, and describe the overheads
in terms of percentage.

As shown in Figure 10, it is evident that the overhead of
CloudRand measured by client latency is extraordinarily small
(less than 2.5% for host-level and around 1.5% for network-
level). With such reasonably small overhead, the extended
CloudRand can provide us a more complete deployment
solution for other scenarios, such as enterprise network or
even worldwide Internet. We conclude that our CloudRand
is a lightweight, comprehensive, and deployable solution in
real world.

3) Overhead Comparison between CloudRand and En-
crypted Network Channels: Besides measuring the overhead
of CloudRand itself, we are also interested in measuring its
overhead compared with commonly used network encryp-
tion mechanisms such as Secure Sockets Layer (SSL). It is
worth noting that CloudRand is never intended to replace
these encryption mechanisms. Instead, it is quite possible that
CloudRand is used to complement them to make a more secure
cloud computing environment. In this situation, we need to

Click Router Windows Host Linux Host
0

0.5

1

1.5

2

2.5

A
d

d
it

io
n

al
 O

ve
rh

ea
d

 [
%

]

Fig. 10. Overhead of Packet Redirection/Rewriting using CloudRand

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

55

Trial

C
lie

n
t 

L
at

en
cy

 [
m

s]

 

 
SSL
CloudRand

Fig. 11. Overhead measurement between CloudRand and SSL.

measure the additional overhead added by CloudRand in the
environment.

To investigate this, we compare the overhead of CloudRand
with SSL, a widely used network encryption protocol. In our
test environment, we enable the SSL module of the Apache
web server (version 2.0.64 with all default parameters and no
server certificate checking) and make HTTPS requests at the
client side. We query the 168-byte web page for 1, 000 times
with wget program and calculate the average client latency.
As a comparison, we query the same web page with normal
HTTP requests from the same client machine (with CloudRand
enabled) and perform the port translation at the kernel layer
of the CloudRand server.

Figure 11 shows the overhead of CloudRand and SSL.
We can clearly see that the overhead of CloudRand is much
smaller than that of SSL; SSL is more than 6 times slower
than CloudRand in the experiment. This result implies that
when we apply CloudRand to a cloud computing environment
to complement network encryption mechanisms, CloudRand
causes almost negligible additional overhead to the environ-
ment.



11

VII. DISCUSSION

In this section, we review the issues that we do consider
but not fully describe in previous Sections.

Synchronization issue. In order for correct port random-
ization and translation, we require the client and server have
loose synchronization when applying the hash function. Since
a typical time period is one day, this requires very loose
synchronization which will not cause an issue for most hosts.
In case of a failure because of a time lag, the legitimate client
can also try the next day’s hash value. In any case, hosts can
easily use NTP (Network Time Protocol) to synchronize the
time to solve the synchronization problem.

Session management at the change of port. CloudRand
changes its port number periodically to prevent hackers from
guessing current randomized network port. However, it is
necessary to maintain old network connections, to maintain
previously established connections (in previous time period).
In this case, session management table which maintains estab-
lished connections can solve this. Usually, these port changes
do not occur so often since port number alterations occur on
a daily basis or even longer.

Compatibility with some applications. Some applications
such as FTP may have port information embedded in the
application layer packets. Thus, if we only rewrite transport
layer port numbers, there will be problems (not correctly
rewrite application layer port information). This is not unique
to CloudRand. Actually, our system has essentially the same
problem faced by NAT devices. Most of NAT/PAT solutions
already consider this issue and they can perform application
aware rewriting of port information at application level (if they
are in clear text). Our CloudRand can solve the problem in
similar way.

CloudRand deployment on Internet. Although we discuss
CloudRand mainly in the context of clouds (or enterprise
networks), it is clear that it could be easily extended and incre-
mentally deployed onto the whole Internet. Using CloudRand
will definitely increase the diversity of the current Internet,
significantly reduce the cyber attack surface, and dramatically
decrease malware epidemic attacks.

Other Limitations. CloudRand is not designed to be a per-
fect security solution. It has limitations. For example, it does
not prevent legitimate users to leak randomizing algorithms
(keys) to others nor prevent attackers to obtain them from
other approaches (e.g., network sniffing or social engineering),
which are also common assumptions for most (if not all)
cryptographic key related protection mechanisms.

Meanwhile, it cannot prevent the possible invasion caused
by credential stolen through process injection or spawned pro-
cess. Furthermore, CloudRand itself does not indicate which
users should or should not obtain randomizing algorithms,
leaving it as a policy level task for administrators. After all,
CloudRand simply does what it does to reduce, instead of
fully prevent, the attack surface with the moving-target idea.
Since it is orthogonal to most existing security mechanisms,
we believe CloudRand is a valuable add-on to the defense-in-
depth strategy.

VIII. SUMMARY AND FUTURE WORK

As a new element in defense in depth, we presented
CloudRand, a lightweight framework and system to protect
cloud computing environments by reducing the attack sur-
face. We implemented CloudRand prototype systems as a
comprehensive toolkit. Our extensive evaluation showed that
our solution has low overhead to both of the system and
the network, and it can successfully defeat unwanted network
attacks from both of inside and outside. Our solution is also
incrementally deployable in cloud or on Internet, and each
cloud/network can benefit from (and thus be motivated to
deploy) the techniques.

For future work, we will further implement CloudRand into
software-defined networking environment such as Openflow
[5]. In addition, we will study new coordinated, cross-layer
system interface randomization techniques to defeat cyber
attacks.

REFERENCES

[1] Agobot (computer worm). http://en.wikipedia.org/wiki/Agobot.
[2] Iptables. www.netfilter.org.
[3] Security is chief obstacle to cloud computing adoption,study says. http:

//www.darkreading.com.
[4] Xen. http://www.xen.org.
[5] The openflow switching consortium. http://www.openflowswitch.org/,

2009.
[6] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis.

Defending against hitlist worms using network address space random-
ization. In WORM ’05: Proceedings of the 2005 ACM workshop on
Rapid malcode, pages 30–40, New York, NY, USA, 2005. ACM.

[7] E.G. Barrantes, D.H. Ackley, S. Forrest, T.S. Palmer, A. Stefanovic, and
D.D. Zovi. Randomized instruction set emulation to disrupt binary code
injection attacks. In Proc. of the 10th ACM Conference on Computer
and Communications Security, Oct 2003.

[8] Bellovin and M. Steven. Distributed firewalls. In USENIX login, 1999.
[9] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfus-

cation: an efficient approach to combat a broad range of memory error
exploits. In 12th USENIX Security Symposium, Washington, DC, August
2003.

[10] M. Chew and D. Song. Mitigating buffer overflows by operating system
randomization. Technical Report CMU-CS-02-197, Carnegie Mellon
University, Dec 2002.

[11] CipherDyne. fwknop: Single packet authorization and port knocking.
http://www.cipherdyne.org/ fwknop/ .

[12] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei
Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser.
N-variant systems: a secretless framework for security through diversity.
In Proceedings of the 15th conference on USENIX Security Symposium
(Security’06), Berkeley, CA, USA, 2006. USENIX Association.

[13] M. Armbrust et al. Above the clouds: A berleley view of cloud com-
puting. Technical Report UCB/EECS-2009-28, University of California
at Berleley, Feb 2009.

[14] S. Forrest, A. Somayaji, and D.H. Ackley. Building diverse computer
systems. In Proc. of the 6th IEEE Workshop on Hot Topics in Operating
Systems, pages 67–72, 1997.

[15] Carrie Gates. Coordinated scan detection. In Proceedings of the Network
and Distributed System Security Symposium (NDSS’09), 2009.

[16] GNU. GNU wget. http://www.gnu.org/s/wget/.
[17] Michael Holden. (Reuters) Cyber crime costs 27 billion

pounds a year. http://uk.reuters.com/article/2011/02/17/
uk-britain-security-cyber-idUKTRE71G34H20110217.

[18] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan.
Fast Portscan Detection Using Sequential Hypothesis Testing. In IEEE
Symposium on Security and Privacy 2004, Oakland, CA, May 2004.

[19] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Coun-
tering code-injection attacks with instruction-set randomization. In
CCS ’03: Proceedings of the 10th ACM conference on Computer and
communications security, pages 272–280, New York, NY, USA, 2003.
ACM.



12

[20] Eddie Kohler, Rober Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The Click Modular Router. In Proceedings of 17th
Symposium on Operating System Principles (SOSP), pages 217–231,
December 1999.

[21] Krzywinski M. Port knocking: Network authentication across closed
ports. In SysAdmin Magazine 12, 2003.

[22] Nmap. Nmap Free Security Scanner For Network Exploration and
Hacking. http://nmap.org/.

[23] Bryan D. Payne, Martim Carbone, and Wenke Lee. Secure and
flexible monitoring of virtual machines. In Annual Computer Security
Applications Conference (ACSAC’07), 2007.

[24] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In CCS ’04: Proceedings of the 11th ACM conference
on Computer and communications security, pages 298–307, New York,
NY, USA, 2004. ACM.

[25] Georgia Tech Network Simulator. http://www.ece.gatech.edu/research/
labs/MANIACS/GTNetS/.

[26] Ana Nora Sovarel, David Evans, and Nathanael Paul. Where’s the
feeb? the effectiveness of instruction set randomization. In SSYM’05:
Proceedings of the 14th conference on USENIX Security Symposium,
pages 10–10, Berkeley, CA, USA, 2005. USENIX Association.

[27] A. Srivastava and J. Giffin. Tamper-resistant, applicationaware blocking
of malicious network connections. In Proceedings of 11th International
Symposium On Recent Advances In Intrusion Detection (RAID), 2008.

[28] A. Srivastava and J. Giffin. Automatic Discovery of Parasitic Malware.
In Proceedings of 11th International Symposium On Recent Advances
In Intrusion Detection (RAID), 2010.

[29] Mudhakar Srivatsa, Arun Iyengar, Jian Yin, and Ling Liu. A client-
transparent approach to defend against denial of service attacks. In SRDS
’06: Proceedings of the 25th IEEE Symposium on Reliable Distributed
Systems, pages 61–70, Washington, DC, USA, 2006. IEEE Computer
Society.

[30] J. Lane Thames, Randal Abler, and David Keeling. A distributed firewall
and active response architecture providing preemptive protection. In
Proceedings of the ACM Southeast Conference, 2008.

[31] Thomas Wang. Integer Hash Function. http://www.concentric.net/
∼Ttwang/tech/inthash.htm.

[32] J. Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent runtime randomization
for security. Technical Report UILU-ENG-03-2207, University of
Illinois at Urbana-Champaign, May 2003.

[33] Cliff C. Zou, Don Towsley, and Weibo Gong. A firewall network
system for worm defense in enterprise networks. In Technical Report
at University of Massachusetts ECE (TR-04-CSE-01), 2004.


