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Abstract

File carving is the process of reassembling files from disk fragments based on the file content in the absence of file system metadata.
By leveraging both file header and footer pairs, traditional file carving mainly focuses on document and image files such as PDF and
JPEG. With the vast amount of malware code appearing in the wild daily, recovery of binary executable files becomes an important
problem, especially for the case in which malware deletes itself after compromising a computer. However, unlike image files that
usually have both a header and footer pair, executable files only have header information, which makes the carving much harder.
In this paper, we present Bin-Carver, a first-of-its-kind system to automatically recover executable files with deleted or corrupted
metadata. The key idea is to explore the road map information defined in executable file headers and the explicit control flow paths
present in the binary code. Our experiment with thousands of binary code files has shown our Bin-Carver to be incredibly accurate,
with an identification rate of 96.3% and recovery rate of 93.1% on average when handling file systems ranging from pristine to
chaotic and highly fragmented.
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1. Introduction

File carving [1, 2, 3] is a process by which raw data is ex-
amined with the goal of reconstructing previously indexed files
when file system meta-data such as super-blocks, directory en-
tries (dentry), and index-node (inode) tables are corrupted or
missing. File carving is feasible because, when most operat-
ing systems delete a file, the file’s content is not overwritten;
only the metadata is affected. This is partly due to the fact that
file systems are optimized for performance and protecting their
security and privacy is not a primary concern.

File carving has largely been used for data recovery [4] (a
lucrative market recently), such as restoring deleted files or re-
covering data from a damaged device. The need for this utility
stems from the fact that end-users sometimes unintentionally
“permanently” delete a file, and sometimes disk directory con-
tent is corrupted (by malware for instance). File carving is also
useful for digital forensics [2], as it can recover evidence files
that have been “deleted” by criminals.

File carving, theoretically a permutation problem, is chal-
lenging for several reasons. For example, it is often difficult to
determine where files begin and end without some sort of data
block index to provide the block order for a single file. More-
over, even though we can detect the start and end of a file, it
is still not sufficient because of fragmentation [2], which can
cause a contiguous sequence of file blocks to be split into two
or more contiguous sequences.

Traditional file carving techniques utilize header-footer pairs
to identify file boundaries, leading to the recovery of files that
are contiguous on the media [1, 2, 3, 4]. For example, all JPEG

files begin with the hexadecimal sequence FF D8 and end with
FF D9 [5]. By looking for this kind of unique sequences, this
approach is effective for certain types of files containing reliable
header-footer signatures (such as JPEG files) in the absence of
fragmentation. However, it is weak when applied to heavily
fragmented files or those without exact header and footer infor-
mation.

Meanwhile, traditional file carving focuses mainly on files
of common forensic interest such as documents (e.g., TXT/DOC/

PDF), images (e.g., JPEG/GIF/PNG), audio (e.g., WAV/WMF/

MP3), and video (e.g., AVI/MPEG/MP4) files [2, 4]. Fewer
attempts have been made toward the recovery of binary exe-
cutables. However, binary executable recovery is also useful.
At the very least it can narrow down the search of the tradi-
tional carving space. That is, when given a disk image, we can
exclude the binary executable files if we can identify them and
only focus on other chunks of the disk.

On the other hand, binary executable carving has become
an important concern recently to security and forensic investi-
gation. This is because in the past few years, we have witnessed
an exponential increase of malicious executable files. For ex-
ample, according to a report from AV-Test [6], they processed
an average of 54k malware samples daily in 2010 (up from an
average of 33k in 2009, and 426 in 1998). Furthermore, mal-
ware code often deletes itself (to remove its footprints) after
accomplishing certain tasks. It is therefore helpful to have an
approach with which executable files on a disk image can be
enumerated, mapped, and recovered.

Thus, in this paper, as a first-in-its-kind proof of concept
for binary executable file carving, we present a novel system,
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Bin-Carver, to focus in particular on ELF executables in the
Linux/UNIX platform. (Note that PE [7] files for Windows
share the same methodology as ELF files for UNIX and thus
can be handled in a similar way). Our system is fully automatic.
The key idea is not only that it explores the file structure infor-
mation from the ELF headers, but also that it explores the in-
trinsic characteristics of the binary code such as the code distri-
butions and the explicit control flow path present in the code. In
particular, inspired by the image file carving which uses magic
numbers to identify both headers and footers, we use magic
numbers to first identify ELF headers, which will serve as a
road map to recover all other sections/segments [8]. Because of
fragmentation, the ELF header alone is not sufficient, and we
further explore the binary code content. We especially focus on
the explicit function call control flow path as a guideline with
which to efficiently solve the fragmentation problem.

Bin-Carver focuses on the recovery of the binary code for
the widely used x86 architecture. Since we leverage the internal
control flow path of the binary code to handle fragmentation, it
would appear that we have to solve the disassembly problem,
which is challenging because x86 instructions could start at any
address (i.e., there is no address alignment constraint). For-
tunately, by looking at the code distributions, we find that the
code sequence of the function call control flow path has unique
signatures. Thus, Bin-Carver will not disassemble all of the bi-
nary code; it will only inspect a small amount to construct the
control flow.

The main contribution of this paper is summarized as fol-
lows:

• We make the first step in recovering fragmented executable
files in a disk image.

• We present the use of the road map information defined
in executable file headers and the explicit control flow
paths contained in the binary code to guide the recovery
of the executable file.

• We have implemented a tool called Bin-Carver, and ap-
plied it to recover thousands of binary executables from
a number of disk images. Our experimental results show
that our technique achieves extraordinary accuracy even
with large fragmentation.

2. Approach Overview

In this section, we first define our file carving problem, then
outline the challenges, and finally provide an overview of our
system.

2.1. Problem Statement and Assumptions

In this paper, we aim to recover an ELF executable file e
from a disk image D in the presence of only the file content
blocks. Meanwhile, we only focus on recovery of the file con-
tent and do not attempt to recover its filename. For proof-of-
concept and simplicity, we assume a Linux platform with EXT2
file system and block size 4K. It is important to note that, while
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Figure 1: Illustration of Our File Carving Problem.

newer file systems such as EXT3 and EXT4 are more com-
monly used in Linux machines recently, there is no difference
in how the data blocks are laid out. EXT3 and EXT4 add im-
provements such as journaling and higher-level metadata that
helps reduce fragmentation, but core structures remain similar
enough that file carving accuracy is the same. EXT2 is used be-
cause its relative simplicity is useful in writing tools to evaluate
accuracy.

We also assume the file content has not been overwritten. In
addition, we assume the file content is stored in an increasing
order in the disk. While this may not always be the case, we
believe that violations of this assumption are rare enough that
we can ignore the possibility for the purpose of evaluating this
algorithm. At least in our evaluation with the EXT2 file system,
we did not encounter such a case.

More formally, as illustrated in Fig. 1, assume that for an
ELF file e that has n blocks in the disk, our goal is to link these
n blocks together to eventually recover the files. As such, our
solution is a graph-based approach. In particular, we utilize the
internal logic between graph nodes to connect the data blocks.
Note that the block address A(b j) is greater than A(bi) (the in-
creasing order assumption), and there may be zero, one, or more
data “garbage” gaps with size 4K each between the data block
bi and b j where i, j ∈ {0, n − 1}.

2.2. Challenges

In the absence of file system meta data such as the inode

and dentry, file carving is challenging. For instance, we can-
not recover the filename that is managed in the dentry even
though the dentry is not corrupted (overwritten). We made a
detailed case study in the EXT2 file system (our experimental
file system) and found that the inode pointer is cleared in the
corresponding dentry. Consequentially, we cannot correlate
any dentry with the inode to recover the file name. That ex-
plains why most file carving systems cannot recover filenames.

However, the most challenging problem is the fragmenta-
tion. A study by Garfinkel in 2007 [2] showed that 15% of
binary executables were found to be fragmented. However,
in our experiments with EXT2 filesystems, we discovered that
the incidence of non-contiguous data block sequences is com-
monly even higher. For example, we took a /bin/ls binary
with 92,376 bytes (requiring at least 23 4K data blocks) and
observed how this binary file gets organized in a brand new
disk. We found that this simple ls file actually gets fragmented
(not stored contiguously) in the disk. In particular, we found
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Figure 2: System Overview of Our Bin-Carver.

this file requires 24 data blocks and there is a special data block
which stores the pointer to the other data blocks. An investi-
gation with the EXT2 file system data structure reveals that the
13th data block stores the one-layer indirect data block point-
ers. Therefore, in an EXT2 file system with 4K data blocks,
the probability for a file with size larger than 48K being frag-
mented is very high, because there are only 12 direct data block
pointers in the inode.

An intuitive approach that filters the indirect block by look-
ing at the block content may be able to solve this problem.
However, there are many other situations that can cause disk
fragmentation. For example, on a disk already exhibiting a large
degree of fragmentation, storing large files or appending data to
existing files may further increase fragmentation, because there
may not be a sufficient number of contiguous data blocks to
store the new data.

2.3. System Overview

An overview of our system is presented in Fig. 2. There
are three key components in our system: ELF-header scanner,
block-node linker, and conflict-node resolver. As the first step,
ELF-header scanner is used to scan all possible ELF-headers hi

using the ELF-file magic value. After that, guided by the road
map from each hi and the internal control flow of the binary
code, block-node linker scans the disk image and tries to iden-
tify all the possible nodes and link them together. Finally, our
conflict-node resolver will remove the conflict nodes introduced
by our linker due to the fragmentation or possible garbage data
to eventually output the ELF-file ei.

3. Bin-Carver Design

3.1. ELF-header Scanner

The ELF header always resides at the beginning of an ELF
file data block, and holds a “road map” describing the organi-
zation of an ELF file [8]. By searching for the magic number
sequence 7f 45 4c 46 (.ELF) at the starting address of each

ELF Header

Program Header

00000000  7f 45 4c 46 01 01 01 00  00 00 00 00 00 00 00 00
00000010  02 00 03 00 01 00 00 00  80 9a 04 08 34 00 00 00
00000020  78 64 01 00 00 00 00 00  34 00 20 00 08 00 28 00
00000030  1c 00 1b 00 06 00 00 00  34 00 00 00 34 80 04 08
00000040  34 80 04 08 00 01 00 00  00 01 00 00 05 00 00 00
00000050  04 00 00 00 03 00 00 00  34 01 00 00 34 81 04 08
00000060  34 81 04 08 13 00 00 00  13 00 00 00 04 00 00 00

...
00000130  04 00 00 00 2f 6c 69 62  2f 6c 64 2d 6c 69 6e 75
00000140  78 2e 73 6f 2e 32 00 00  04 00 00 00 10 00 00 00

00016390  6c 73 00 00 52 a8 bd 5a  00 2e 73 68 73 74 72 74
000163a0  61 62 00 2e 69 6e 74 65  72 70 00 2e 6e 6f 74 65

...
00016470  75 67 6c 69 6e 6b 00 00  00 00 00 00 00 00 00 00
00016480  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00

...
000164a0  0b 00 00 00 01 00 00 00  02 00 00 00 34 81 04 08
000164b0  34 01 00 00 13 00 00 00  00 00 00 00 00 00 00 00

...
000168c0  98 63 01 00 df 00 00 00  00 00 00 00 00 00 00 00
000168d0  01 00 00 00 00 00 00 00

sec[1].interp

00000150  01 00 00 00 47 4e 55 00  00 00 00 00 02 00 00 00
00000160  06 00 00 00 08 00 00 00  61 00 00 00 68 00 00 00

...

sec[2].note.ABI-tag

000014b0  ff 35 08 e1 05 08 ff 25  0c e1 05 08 00 00 00 00
000014c0  ff 25 10 e1 05 08 68 00  00 00 00 e9 e0 ff ff ff

...
00001a70  ff 25 7c e2 05 08 68 d8  02 00 00 e9 30 fa ff ff
00001a80  31 ed 5e 89 e1 83 e4 f0  50 54 52 68 60 9e 05 08

...

sec[12].plt

sec[13].text
...

...

sec[27].shstrtab

Section Header

Section Headers:
  [Nr] Name              Type     Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL     00000000 000000 000000 00      0   0  0
  [ 1] .interp           PROGBITS 08048134 000134 000013 00   A  0   0  1
  [ 2] .note.ABI-tag     NOTE     08048148 000148 000020 00   A  0   0  4

  ...
  [12] .plt              PROGBITS 080494b0 0014b0 0005d0 04  AX  0   0  4
  [13] .text             PROGBITS 08049a80 001a80 0104bc 00  AX  0   0 16
  [14] .fini             PROGBITS 08059f3c 011f3c 00001c 00  AX  0   0  4
  [15] .rodata           PROGBITS 08059f60 011f60 003e4c 00   A  0   0 32

  ...
  [27] .shstrtab         STRTAB   00000000 016398 0000df 00      0   0  1

Figure 3: Data Layout of Our ls Binary.

data block (4K in our case) in D, we are able to locate the ELF-
headers, which contain a wealth of information on how to tra-
verse all other code/data sections.

typedef struct {
00 unsigned char e_ident[16];
16 Elf32_Half e_type;
18 Elf32_Half e_machine;
20 Elf32_Word e_version;
24 Elf32_Addr e_entry;
28 Elf32_Off e_phoff;
32 Elf32_Off e_shoff;
36 Elf32_Word e_flags;
40 Elf32_Half e_ehsize;
42 Elf32_Half e_phentsize;
44 Elf32_Half e_phnum;
46 Elf32_Half e_shentsize;
48 Elf32_Half e_shnum;
50 Elf32_Half e_shstrndx;
} Elf32_Ehdr;

In particular, according to the above ELF header definition,
each ELF header has 52 bytes, and it specifies the file offset
of the program header table (PHT) and section header table
(SHT). As shown in Fig. 3, for our working example ls bi-
nary, the PHT (an array of program headers) starts at address
0x34 00 00 00 (52 bytes into file) and SHT (an array of sec-
tion header) starts at address 78 64 01 00 (91,256 bytes into
file). It also tells us that this binary code has 8 program headers
with 32 bytes each, 28 section headers with 40 bytes each, and
the section header string table index is at 27.

Searching SHT As can be seen in Fig. 3, the SHT is usually
at the end of an ELF file (our profile with over 1K binaries
in /bin and /usr/bin directory also confirmed this). Thus,
as each ELF binary file has a well-defined ELF header, and
from the header we can locate the logical address of the SHT
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(which could serve as a footer), that is L( f ooter)=78 64 01

00 (91256) in our working example. As a result, we need to
search the disk to identify the footer.

Meanwhile, since L( f ooter) equals 78 64 01 00, then we
only need to search the disk starting at the 0x14-th disk block
(as our data block size is 4K) from the block of our ELF-header
hi because A( f ooter) > A(hi). In addition, we have another
constraint from the ELF-header that our footer is starting at
the offset 0x678 of the potential data block, and that it has
28 entries (indicated in the ELF header) with 40 bytes each
(sizeof(Elf32 Shdr)=40).

Now we must derive a value invariant signature [9] for the
section header. Fortunately, section headers do have a unique
signature. Specifically, using the section header data structure
definition below,

typedef struct {
00 Elf32_Word sh_name;
04 Elf32_Word sh_type;
08 Elf32_Word sh_flags;
12 Elf32_Addr sh_addr;
16 Elf32_Off sh_offset;
20 Elf32_Word sh_size;
24 Elf32_Word sh_link;
28 Elf32_Word sh_info;
32 Elf32_Word sh_addralign;
36 Elf32_Word sh_entsize;
} Elf32_Shdr;

from the documentation of ELF structure [8], we check the fol-
lowing:

• V(sh name) ∈ {0, .., 255} for the first 4 bytes. This is
because, since the section string table is usually less than
256 bytes, the string table index, V(sh name) should be
within {0, 255}

• V(sh type) ∈ {0, .., 11} or it takes the other four special
values such as 0x7000000 and 0x7fffffff

• V(sh f lag) ∈ {0x1, 0x2, 0x4, 0x f 0000000}

• V(sh addr) aligned with 4 bytes

• V(sh o f f set) < L( f ooter)

• V(sh size) < L( f ooter)

• V(sh link) and V(sh in f o) could be 0, or I which is an
index value to SHT, string table, or dynamic symbol table

• V(sh addralign) is 0 or positive integral power of two

• V(sh entsize) is 0 or E which is the size of the corre-
sponding entry

From our profile, I is usually less than 13, and E is less than
11. With these value constraints, and the total number of section
headers (28 in our working example), we are able to accurately
locate our footer.

Searching PHT A PHT is used to locate the segments (note
that a segment is composed of a few sections) that contain in-
formation necessary to create the process memory image of the

  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align
  PHDR           0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4
  INTERP         0x000134 0x08048134 0x08048134 0x00013 0x00013 R   0x1
                 [Requesting program interpreter: /lib/ld-linux.so.2]
  LOAD           0x000000 0x08048000 0x08048000 0x15ea4 0x15ea4 R E 0x1000
  LOAD           0x016000 0x0805e000 0x0805e000 0x00390 0x0080c RW  0x1000
  DYNAMIC        0x016014 0x0805e014 0x0805e014 0x000e8 0x000e8 RW  0x4
  NOTE           0x000148 0x08048148 0x08048148 0x00020 0x00020 R   0x4
  GNU_EH_FRAME   0x015dac 0x0805ddac 0x0805ddac 0x0002c 0x0002c R   0x4
  GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RW  0x4

Figure 4: Program Headers of Our ls Binary.

program. Each program header is 32 bytes in length. In partic-
ular, for our ls binary, as depicted in Fig. 4, it has 8 program
headers (specified in the ELF header) starting at 0x34. Usually,
a program header starts right after the ELF headers (it will be
in the same 4K block). We do not need to search to locate this.
However, if necessary, we can derive the program header sig-
natures according to its definition below, to scan for them in a
manner similar to section header signature derivation.

typedef struct {
00 Elf32_Word p_type;
04 Elf32_Off p_offset;
08 Elf32_Addr p_vaddr;
12 Elf32_Addr p_paddr;
16 Elf32_Word p_filesz;
20 Elf32_Word p_memsz;
24 Elf32_Word p_flags;
28 Elf32_Word p_align;
} Elf32_Phdr;

From the program header, we first infer the base virtual ad-
dress of the image file while loading into the memory. For ex-
ample, as shown in Fig. 4, the first segment PHDR starts at offset
0x34 with Addr 0x8048034. We can therefore conclude that the
base virtual address is 0x8048034 - 0x34 = 0x8048000. More
importantly, we can also learn each segment offset in the file, for
example, INTERP segment starts at 0x134 and its content con-
tains a string /lib/ld-linux.so.2. All other program code
segments such as .init, .plt, and .text sections are at
offset 0x0 with size 0x15ea4. After that, there is a data seg-
ment including sections such as .ctors, .got, .got.plt,

.data, .bss at 0x16000, with size 0x390. We keep iterating
each program header and eventually build a road map of the lay-
out of the binary code. The output of our road map containing
the place holders for every bi except b0 (i.e., hi) is well-defined
and filled. Our goal is to gradually fill in the content for each
other bi, where i ∈ {1, .., L( f ooter)/Block S ize}.

3.2. Block-node Linker

From the ELF header (the header) we can locate PHT, and
using the signature we can locate the SHT (the footer). If there
is no fragmentation, we can directly scan the disk and link bi

to its following bi+1 provided that we can exclude the indirect
data block (using some heuristics). However, if a garbage gap
exists, such an approach will fail. Thus, the most challenging
part in Bin-Carver is deciding how to link each individual bi

assuming the worst case scenario that a large volume of blocks
are fragmented.

As a result, we have to explore the internal semantic relation
between bi and b j to “logically” connect them. For input such
as text files, we may utilize word splitting heuristics to merge
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 804949d:   e8 de 00 00 00      call   8049580 <__gmon_start__@plt>
 ...

 8049580 <__gmon_start__@plt>:
 8049580:   ff 25 40 e1 05 08   jmp    *0x805e140
 8049586:   68 60 00 00 00      push   $0x60
 804958b:   e9 20 ff ff ff      jmp    80494b0 <_init+0x30>
 ...

 80494b0 <abort@plt-0x10>:
 80494b0:   ff 35 08 e1 05 08   pushl  0x805e108
 80494b6:   ff 25 0c e1 05 08   jmp    *0x805e10c
 80494bc:   00 00               add    %al,(%eax)
 ...

 8059e84:   e8 f7 f5 fe ff      call   8049480 <_init>
 ...

 8049480 <_init>:
 8049480:   55                  push   %ebp
 8049481:   89 e5               mov    %esp,%ebp
 8049483:   53                  push   %ebx
 ...

Figure 5: Sample Disassembled Code from ls.

two blocks. However, we are facing binary code. Therefore
an intuitive (but naive) approach may try to disassemble each
block bi and from the disassembled code to explore the seman-
tics between two blocks such as the program control flow paths.
However, it is very challenging to disassemble each bi individ-
ually for x86 binary code because a legal instruction could start
at arbitrary place in bi.

Fortunately, we have a new observation: we can explore
the address pair of caller-callee to fill the block place holder
of caller bcaller and callee bcallee, and logically “link” bcaller and
bcallee together. For example, as shown in Fig. 5, for the in-
struction e8 de 00 00 00 at file offset 0x0149d (in b1), its
target address is encoded in the operand de 00 00 00 which is
0x0149d (the file offset) + 5 (instruction length) + 0xde (operand)
= 0x01580. Then we can expect the target address at 0x01580
to be a function prologue. Note that a function prologue usually
has a signature such as push ebp, mov esp, ebp (for local
function calls within the binary code), or a PLT table with a
jmp, push, jmp instruction sequence (for library calls). Thus,
we can search for the function prologue at an offset of 0x580
from block bi (i ≥ 1), and we find it is at 0x01580 which is
in PLT and still in b1. Then, we could “link” the two blocks
together though they are both b1 in this case.

As another example, for the last call instruction e8 f7 f5

fe ff at file offset 0x11e84 (virtual address 0x8059e84) in
Fig. 5, from the operand f7 f5 fe ff, we can infer the callee
block from 0x11e84 + 5 + 0xfffef5f7 = 0x1480. Meanwhile,
we have learned 0x1480 is in our second block b1, and we can
directly compute the bcaller = b11 because (0x1480 - 0xfffef5f7
- 5)/4096=11. Then we can link b1 to b11 or b11 to b1 because
once either node is determined, we can determine the other one.
That is, the “logic” connection is bi-directional.

We could also observe that for the library call case (the first
example), since we have learned the PLT block number, we can
use the PLT block number as an anchor with which to identify
the absolute block number of the calling block. For a local call
case, we can only determine the relative distance between caller
and callee block. Also, we need to emphasize that we only need
to search for instruction sequences starting with e8 (the CALL
opcode) without really disassembling the binary code. There

are many e8 sequences scattered across blocks (Note that an
unpacking framework Eureka [10] also leveraged this observa-
tion for their bi-gram analysis). For example, we found 958
direct call instructions scattered across 18 blocks among the 23
blocks in total for ls. But we cannot use indirect calls (machine
code ff or 9a) because we cannot resolve the target address
statically. Also, unlike a callee’s prologue-signature, we cannot
use the jmp target because we cannot differentiate the target ad-
dress since the jmp target could be anywhere (and there is no
signature of the target as well). Additionally, in most cases we
can directly use library calls to resolve all the block numbers
because the number of library calls is significantly larger than
local calls (for example, it is 956 vs. 22 in the ls binary).

3.3. Conflict-node Resolver

After being processed by our block-node linker, a particu-
lar place holder i could have several candidate blocks. We will
have to eliminate the redundant ones. Our solution is to use the
already identified non-conflict nodes, which we use to explore
the internal logic connections and resolve the conflict node. For
example, from our b0 (there is only one), the ELF header node,
we can resolve each segment and section if there are any con-
straints (such as, for a string table, we would expect that the
target node contains strings). If there are more than two library
calls in a block, the relative distance between the PLT and the
caller target should be identical if the PLT is located in one
block. Also, with more and more nodes identified, there will
be more caller and callee relations, and we will keep resolving
until reaching a fixed point (no node can be removed further).

Meanwhile, our block-node linker only focuses on linking
the code blocks of the ELF binary. One may wonder how we
handle the other data blocks such as data in .data or .debug
sections. Actually, our conflict-node resolver can facilitate this.
Specifically, our current Bin-Carver design is that we treat data
sections as one block that is between the ELF-header and the
first block of the code section we identified. If the data block
is fragmented, our resolver will explore other constraints de-
fined in the PHT and SHT to resolve them. For instance, the
.rodata section will be defined in the SHT, and .rodata is
usually strings. Thus, we can first resolve the location of the
.rodata section in the disk. This will also help identify other
sections. Various .debug sections, if present, show the same
predictable and exploitable patterns. In the worst case, if the
data section does not contain any of these identifiable sections
and is fragmented, then we cannot recover the data section, and
we have to resort to dynamic execution to eliminate the bogus
permutations. That is, we have to try the permutations of the
garbage block when generating the binary files to test. If the
recovered binary file does not crash during execution, then that
is one sign of successful recovery. One of our future efforts will
investigate other possible solutions.

3.4. Putting It All Together

When given a disk image D, Bin-Carver will first remove
those indirect data blocks because they are data gaps. The sig-
nature to remove them is to look for the data block in which
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data is well-aligned (4 bytes), for a certain chunk it contains a
contiguous block number (non-decreasing), and that there is no
duplicated element in the entire block (data block is not shared).
It is not entirely necessary to use this signature to filter the in-
direct block, as our linker and resolver is able to get rid of it
in most cases. However, to make our system more efficient
(run faster), we use this signature approach to filter the indirect
blocks.

After that, we search all the ELF headers using our ELF
header scanner. For each ELF header hi, we use the algo-
rithm presented in Algorithm 1 to recover the ELF file ei. More
specifically, we first search the PLT table using the signature
described in §3.2 and locate its logical block number (line 2).
Next, we find the end block of our file by invoking function
SearchSectionFooter (line 3). After that, we initialize the
set for each file content block from 0 to n with an empty set
(line 4 and line 5), except B0 with the ELF-header block (line
6). Then we scan each physical block starting from ELF-header
block (b0) to the maximum block bMax (line 7). If there are any
library calls in the physical block (line 8), we will compute its
logical block number using the PLT block number (line 9), and
union the target block with this physical block (line 10). Our
algorithm from line 5 to line 8 works similarly to the insertion
sort algorithm [11] in the sense that we both first scan the blocks
and then insert the block at the right place.

Not every Bi gets filled with a block bx, because bx may
not have library calls. Then we explore the logic gaps in two
selected blocks to fill the unselected blocks. For example, if
Bi and Bk both have blocks but not B j, then we will fill the
unselected “gap” blocks to fill B j (HandleUnselectedNode in
line 11). After that, a particular set Bi may have multiple b, then
we will explore all other constraints as described in §3.3, to
eliminate the redundant nodes in Bi (ResolveConflictNode
in line 12). Eventually, we concatenate the block content from
Bi to output the final ELF file (line 13).

4. Evaluation

To demonstrate the effectiveness of this approach, we have
implemented Bin-Carver using C# for our algorithm 1. A mix-
ture of C# and Python code was used to help collect statistics
and produce disk images. The entire system consists of approx-
imately 1,700 lines of code.

It is worth noting that initially we planned to compare Bin-
Carver with some other state-of-the-art file carving tools such as
Foremost [12] and Scalpel [13]. However, it turns out that nei-
ther of them support carving for fragmented ELF binary files.
This again demonstrates that Bin-Carver is truly a first-of-its-
kind tool that offers a unique file carving capability.

4.1. Experiment Setup

Sample data collection To evaluate Bin-Carver, we created 8
disk images with 2G-bytes each, and they can be classified into
two sets: one (from Disk-1 to Disk-4) is the disk images with-
out any overwritten files, the other set (from Disk-5 to Disk-8)

Algorithm 1 ELF-file Recovery
Require: LibCall(b) returns a list of the library calls in a
block b; Dist(c,plt) returns the absolute block number of the
caller block for a library call c when given PLT block number
plt; SearchPLT(i, j) returns the block number of the PLT table
in block bi and b j; P(x) returns the physical block content of
x; SearchSectionFooter(b) returns the block number of the
physical disk address of the SHT searched from block b.
Input: the disk image D (which has excluded indirect data
blocks), an ELF-header hi, and the total logic block number
n which is identified from either the section header offset in
ELF-header or the maximum file offset from the PHT.
Output: ei, an executable file for header
hi.

1: ELF-Carver(hi, n, D){

2: K ← SearchPLT(0, n)
3: Max← SearchSectionFooter(b0)
4: for j ∈ {0, n} do:
5: B j ← {}

6: B0 ← {b(hi)}
7: for j ∈ {0,Max} do:
8: for each c ∈ LibCall(b j) do:
9: m← Dist(c, K)

10: Bm ← Bm ∪ {b j}

11: HandleUnselectedNode (0,Max)
12: ResolveConflictNode(0, n)
13: ei ← Concatenate(B0, Bn)
14: }

is the disk images with multiple copy-and-delete rounds. In
particular,

• Disk 1 – This disk contained the contents of /bin. This
is a small baseline sample, as it contained 117 binaries at
only around 10 MB in size.

• Disk 2 – This disk contained /bin, /sbin, and /usr/bin.
This resulting in more ELF files, for a total of 1,090 bi-
naries.

• Disk 3 – This disk contained about half the binaries from
disk 2 (545 files), with another half of that unlinked be-
fore the snapshot was taken, leaving 274 binaries on disk
and 271 deleted binaries remaining in the raw data.

• Disk 4 – This disk contained the entirety of disk 2 as well
as some SO ELF files from /lib, resulting in a total of
1,265 binaries.

• Disk 5 – This disk was created by first copying all of the
files from disk 4 into the disk, deleting all of them, and
then randomly copying half back.

• Disk 6 – This disk was created by first copying all of
the files from disk 4 into the disk, deleting half of them
randomly, and then copying half of the files from disk 4
back into the disk.
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Disk Creation Disk Characteristics
Disk Image ∑

Copies
∑

Removes
∑

Operations
∑

ELF F
∑

Del F
∑

Frag F
∑

Breaks GF GD

Disk 1 117 0 117 117 0 38 38 1.0 0.322
Disk 2 1,090 0 1,090 1,090 0 389 390 1.002571 0.357
Disk 3 546 273 819 545 271 190 191 1.005263 0.3498
Disk 4 1,265 0 1,265 1,265 0 466 467 1.002164 0.3689
Average 754.5 68.25 822.75 754.25 67.75 273 271.5 1.0025 0.349425
Disk 5 1,897 1,265 3,162 632 633 449 1,449 1.004474 0.3546
Disk 6 1,897 633 2,530 934 317 502 1,678 1.161148 0.415
Disk 7 1,771 378 2,149 681 584 453 800 1.5364 0.5497
Disk 8 1,097 981 2,078 772 319 785 955 2.065789 0.7195
Average 1,665.5 814.25 2,479.75 754.75 463.25 547.25 1,220.5 1.44195 0.5097

Table 1: Disk Statistics on the Sample Data

bi bj1F1

bi     bj10F2

bi        bj50F3

bi bj1F1'

bi bj1F2'

F3'

  bk1

bi bj1 bk1 bl1

Figure 6: Example file system fragmentation patterns: F and F′.

• Disk 7 – This disk repeated the same cycle as the previous
one 2 times with smaller batches to create a messier disk
image.

• Disk 8 – This disk did more unpredictable, smaller copy
and delete cycles to create the most chaotic image.

Some metrics on disk image creation (such as the number
of copy and remove operations) are provided along in Table 1
to help clarify the operations that went into constructing each
data point. It is important to note, however, that disk state is just
as much a product of the context and order of the operations as
it is the quantity, so the descriptions of each disk’s creation are
important to understand as well.

More specifically, we use the following nine metrics (show-
ing from the 2nd column to the 10th column in Table 1) to de-
scribe the characteristics of these disk images. In particular,

1.
∑

Copies – The total executions of the cp command used
to build the disk.

2.
∑

Removes – The total executions of the rm command
used to build the disk.

3.
∑

Operations – The sum of all operations applied to the
disk.

4.
∑

ELF F – The total number of ELF files on the disk.
This is a count of the valid ELF files on the hard drive
before it was unmounted and the image was created.

5.
∑

Del F – The total number of ELF files deleted from
the disk. This is the number of ELF files which were
originally on the hard drive, but were deleted at some
point before the image was created.

6.
∑

Frag F – The total number of fragmented ELF files.
This is the number of ELF files whose data block se-
quence contains one or more non-contiguous block pairs.
In Figure 6, this would be 3 for both collections because
each one contains 3 fragmented files.

7.
∑

Breaks – The total number of breaks in ELF data block
sequences for the entire disk. This gives an idea of how
many file fragments exists. For example, 2 files in 2
pieces each would result in a

∑
Breaks metric of 2, but

2 files in 4 pieces each would result in a
∑

Breaks metric
of 6. In Figure 6, file system F would have a score of 3,
while file system F′ would have a score of 6.

8. GF – The average garbage blocks per file among all frag-
mented files. This is 1

|F|
∑

i∈F |gi|, where F is the set of
fragmented files and gi is the set of garbage blocks in file
i. In Figure 6, F would have a score of 20.3 for this met-
ric, while F′ would have a score of 2.0.

9. GD – The average garbage blocks per file among all files
in the file system. This is 1

|D|
∑

i∈D |gi|, where D is the set
of fragmented files and gi is the set of garbage blocks in
file i. Since all files in Figure 6’s file systems are frag-
mented, this value will be the same as GF .

Note that all files in our system are ELF binaries. Thus, our
sample data is the worst case for our recovery because all the
noisy data blocks are likely to contain machine code, which sig-
nificant challenges our system, especially our block-node linker
and conflict-node resolver components, due to high false posi-
tive rates. We ran some tests to verify this assumption and no-
ticed no difference in recovery accuracy between comparable
disks that differed only in the addition of heterogeneous data.
We tested by filling a disk to capacity with PDF, MP3, MS Of-
fice, and image files. We then deleted enough to copy the 117
ELF files that will be used by Disk 1. No change in behavior
was observed.

Each testing disk image size is 2G-bytes to help cut down
on variation of carving results due to disk size. The algorithm
can scale up to larger disks if a few locality assumptions are
made. When the distance to look for section signatures is con-
strained to a constant, the performance of the algorithm for each
individual file is invariant with respect to the size of the disk.
This means that the algorithm’s performance relies only on the
number of files to be recovered rather than the size of the disk.
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Figure 7: Effectiveness of Bin-Carver.

Ground truth collection To evaluate how accurate our system
is, we also need to collect the ground truth; we have to verify
that our recovered files are the true ELF files. This turns out to
be a challenging problem since we are performing reverse en-
gineering. Fortunately, as when we create the disk image, we
have the ground truth of the true ELF files in terms of the file
contents. Thus, we can create an MD5 hash of both the first
block as well as each individual block of the entire file for each
true ELF binary (hashing each individual block of a file allows
us to detect the true data in highly fragmented scenario), and
then, for each recovered binary whose first block MD5 exists
among the true ones, we can compare each individual block
MD5 to ensure that the integrity was kept. This ground truth
collection is in fact a file fingerprinting based recovering tech-
nique [14].

4.2. Effectiveness
We tested Bin-Carver with the above 8 disk images for the

effectiveness, in terms of the identification rate and recovery
rate. More specifically, these two metrics are described in the
following:

1. Identification Rate (IR) - IR shows the portion we can
still identify in the disk no matter how fragmented the
disk is. It is defined as the proportion of valid files in
the file system that were identified before its image was
taken. For cases such as Disk 3 in which deletions oc-
curred but no further operations were carried out, the
deleted files are considered valid. In other cases, deleted
files are not considered valid if the hash value cannot
match the original files, as further copy operations may
have overwritten part of the latent file and this will be de-
tected by our block-based hash approach. Issues such
as malformed files, extreme fragmentation, or missing
Shared Object metadata can all degrade the identification
ratio.

2. Recovery Rate (RR) - This is the proportion of valid
files in the file system before its image was taken that
were identified and successfully recovered. This metric
directly shows how effective our system is with respect
to the identified files.
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Figure 8: Performance Overhead of Bin-Carver.

Our effectiveness evaluation results are presented in Fig 8.
We can see that our Bin-Carver has met our expectations: it per-
forms extremely well in extracting ELF binaries without meta-
data with an IR of 96.3% and RR of 93.1% on average when
handling file systems ranging from pristine to chaotic highly
fragmented. Additionally, on disk images 1, 2, 3, and 4, it has
predictably solid low failure rates (99.85% IR, 98.1% RR). The
similarity between disk 2 and 3 demonstrates that, when they
remain in the disk intact, the deleted ELF files are handled with-
out a problem.

Disk 4 only suffers a slight dip compared to disk 2, and this
is due to the unreliable nature of the Shared Object files, which
are not even required to have section header tables (SHT). Disks
5 through 8 show far greater fragmentation, as they were a result
of attempting to contrive pathological bad cases in which not
only is there heavy fragmentation, but in which the fragmen-
tation consists of other ELF files. The disks from 5 to 8 show
predictably degraded effectiveness as the disks were subjected
to an increasingly lengthy battery of copy and delete operations,
and disks 7 and 8 showed the greatest decline in the effective-
ness due to very messy file systems. However, Bin-Carver still
manages to recover a majority of the ELF files intact from the
extremely chaotic images.

The failed recovery in the non-fragmented images are due
to occasional files that do not match expectations. We manu-
ally examined the causes and we found these were mainly due
to SO libraries that do not have section header tables, or due
to the malformed ELF files. Also, there were several ELF files
that, upon manual inspection, did not seem to contain data that
matched their header in structure. These files obviously invali-
date many of the structural assumptions made during recovery
and will, as a result, not be recovered.

4.3. Performance Overhead

We also tested the run-time overhead of our Bin-Carver
against these disk images. The data is presented in Fig. 8. We
see that the performance is split into two groups. The first three
finished almost immediately, while the remainder took half a
minute to slightly over a minute to process. All performance
slowdowns occur during our linker and resolver which are more
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computationally expensive than the rest of the recovery process.
There are a few large files with wide gaps, and such gaps are de-
terimental to performance in these examples. This is because,
when the garbage data consists of ELF binary instructions, the
sheer number of caller-callee instructions that must be searched
bog down the algorithm’s run time, and so any disk image con-
taining such files will suffer performance penalties.

5. Limitation and Future Work

In this section we examine limitations of our Bin-Carver
and propose future work to address them.

As mentioned in §1, the current focus of Bin-Carver is the
recovery of ELF binaries. Though technically UNIX-ELF and
Windows-PE [7] share a lot of similarities in their file format
design (e.g., they both have a roadmap description in the be-
ginning of the file describing each program segment), there are
some slight differences such as PLT (procedure linkage table in
ELF) vs. IAT (import address table in PE). Our immediate fu-
ture work is to address the issues relating to these differences
with the goal of handling PE binary files in Bin-Carver.

While our current design assumes that an ELF-footer (i.e.,
the SHT) is always at the end of a file, it is possible that the
ELF-footer is located in other places because ELF specification
does not tell where the ELF-footer should be [8]. Note that
we are still able to identify SHT using its signature. The only
problem is just SHT might not be used as our ELF-footer any
more in this case. One possible approach is to use the block
right before the other file’s starting block (e.g., ELF-header) as
the footer of the current to-be-recovered file. One of our future
efforts will investigate how to address this problem systemati-
cally.

ELF specification also does not specify where PHT will be.
To identify PHT, currently we assume it is always right after the
ELF-header, which is true for all the ELF binaries we tested.
It is possible that PHT is located in other places. Fortunately,
similarly to SHT, PHT also has clear signatures and we are able
to scan it. If we do encounter such cases, we will extend our
Bin-Carver to have a PHT signature.

Finally, for large fragmented disks, our conflict node re-
solver may not be able to remove all of the conflicted nodes.
The reason is that it is possible that we will not have enough
constraints to remove the garbage. For instance, if bi and bi+1
has 10 garbage blocks and three of which still satisfy our con-
straints, then we will have four final copies. As such, another
avenue of future work will design other techniques to further
remove the garbage blocks. We are currently working on a dy-
namic validation approach which involves running and testing
all the possibly recovered binaries. If the linked garbage block
crashes the program, we can label it as a redundant node and
eliminate it. We believe this dynamic validation approach will
also help removing the garbage data blocks.

6. Related Work

One of the widely used file carving programs is Foremost [12].
It is one of the first file carvers that recovers files based on their

headers, footers, and internal data structures. Scalpel [13], an
extended version of Foremost, is a more generalized file carv-
ing tool that aims to recover non-fragmented images. However,
advancements in both Foremost and Scalpel in file carving con-
cern performance considerations rather than resilience towards
fragmentation. Additionally, they are geared towards recover-
ing multimedia files and very little effort has been put forth to-
wards handling binary executables, which actually directly mo-
tivated our Bin-Carver.

Garfinkel [2] attempted to solve this fragmentation problem
by examining files as potentially split into a pair indicated by
the file’s header and footer. Once these endpoints are identi-
fied, different combinations of fragments pairs are exhaustively
checked until the file passes some decoder’s verification algo-
rithm. While this header-footer and verifier approach has made
a large step in file carving, Anandabrata et al. [3] illustrated
several problems with it. For example, this approach some-
times suffers from poor scalability: a bi-fragmented file with a
large gap in between will take too long to finish. Also, vali-
dation using decoding is frequently subject to false positives or
impossible to apply to a particular file type.

Another fragmentation-resilient carving approach was pro-
posed by Pal and Memon [1] that viewed the problem graph-
ically. They used a modified Dijkstra’s algorithm [15] to find
a shortest path between a graphical representation of the frag-
ments. It makes a greedy choice using a weight function de-
fined using a metric of “edge similarity” to rate transitions by
the compatibility of the concatenation of the contents at the end
of the start node and the beginning of the end node. An im-
provement was later proposed [3] for this approach, which uses
a sequential hypothesis test to move through the file block by
block and attempt to pinpoint the beginning and end of frag-
ments using statistical hypothesis testing.

Recent efforts in memory forensics also explored the graph-
based approach to recover data instances. In particular, exploit-
ing the points-to relation defined in data structure definitions,
SigGraph [16] shows that we can derive a robust graph-based
signatures in identifying kernel data instances. DIMSUM [17]
further pushes this graph-based approach in identifying deleted
data objects.

Bin-Carver shares the idea of exploring the graph connec-
tion between data blocks, but differs in the way of how to find
the connections. In particular, previous work did not attempt to
identify the signatures in the binary code such as our verifiable
caller-callee signatures to connect the data blocks. Moreover,
they did not make use of any “roadmap” within files and in-
stead rely on edge compatibility.

Finally, besides the above file carving technique, as demon-
strated in our experiment, we can use hash value (MD5) based
technique to identify the data block in disk for known files,
which was proposed by McDaniel and Heydari [14]. There are
also other approaches, such as byte frequency based classifica-
tion and clustering technique [18, 19, 20]. Bin-Carver comple-
ments these techniques by exploring other features inside file
content for the file recovery.
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7. Conclusion

We have presented Bin-Carver, a tool for dissecting, map-
ping, and recovering binary executable files from raw binary
data. The key idea is to explore the road map information
defined in executable file headers and the explicit control flow
paths present in the binary code, to “logically” connect the data
blocks in the disk. Our experiment with thousands of binary
code files has shown that our Bin-Carver is extremely accurate,
and much better than all the existing file carving techniques
when recovering binary files with fragmentations. In addition,
Bin-Carver also provides a useful complement to the more tra-
ditional header-footer pairing approach for file carving to gain
more complete disk image recovery.
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