
Bring Your Own Controller: Enabling
Tenant-defined SDN Apps in IaaS Clouds

Haopei Wang∗, Abhinav Srivastava†, Lei Xu∗, Sungmin Hong‡, Guofei Gu∗
∗‡SUCCESS Lab, Texas A&M University

∗{haopei, xray2012, guofei}@cse.tamu.edu, ‡ghitsh@tamu.edu
†AT&T Labs - Research, abhinav@research.att.com

Abstract—The need of customized network functions for enter-
prises in Infrastructure-as-a-Service (IaaS) clouds is emerging.
However, existing network functions in IaaS clouds are very
limited, inflexible, and hard to control by the tenants. Recently,
the introduction of Software-Defined Networking (SDN) technol-
ogy brings the hope of flexible control of network flows and
creation of diverse network functions. Unfortunately, enterprises
lose access to the SDN controller when they move to clouds.
Moreover, the cloud SDN controller is only managed by the
provider administrators for security and performance reasons.
To allow enterprise tenants to develop and deploy their own
SDN apps in the cloud, in this paper, we introduce a new cloud
usage paradigm: Bring Your Own Controller (BYOC). BYOC
offers each tenant an individual SDN controller, where tenants
can deploy SDN apps to manage their network. To manage these
tenant SDN controllers, we propose BYOC-VISOR, a new SDN-
based virtualization platform. BYOC-VISOR addresses several
security and performance challenges which are specific to IaaS
clouds. We show that BYOC-VISOR supports different controller
platforms and diverse SDN security applications such as firewall,
IDS, and access control. We implement a prototype system and
the performance evaluation results show that our system has low
overhead.

I. INTRODUCTION

Software-Defined Networking (SDN) [20] brings new op-
portunities to control and design enterprise networks by decou-
pling the control plane from the data plane. It uses the logically
centralized network operating system (a.k.a., SDN controller)
to flexibly and dynamically manage the forwarding behaviors
of the data plane. Due to these reasons, many network func-
tions are being built and deployed as SDN apps. There are
already many emerging SDN-based network tools/apps [14],
[29] that enterprises employ to manage routine networks.

Enterprises are also embracing elastic computing offered
via the cloud computing. Infrastructure-as-a-Service (IaaS)
clouds (such as Amazon EC2, Microsoft Azure, OpenStack,
and Google Compute Engine) provide enterprises with on-
demand computing resources along with networking and stor-
age capabilities. The pay-as-you-go model offered by the cloud
computing enables enterprises to conveniently scale up and
decrease resources to meet the peak demand. Cloud providers
themselves employ SDN technologies to enable multi-tenancy
by creating better management of tenants’ networks.

While both technologies, SDN and cloud computing, pro-
vide numerous benefits to enterprises, enterprises encounter
a difficult situation when they migrate to public clouds –
relinquishing control over their in-house SDN controller along

with the entire suite of SDN apps running atop it. The cloud
provider’s SDN controller that manages all OpenFlow-enabled
hardware as well as software switches is not accessible to
tenants. Despite tenants’ demand of diverse network functions
such as intrusion detection, access control, measurement,
traffic engineering, and QoS, most cloud providers only of-
fer elementary network functions such as ACL rules, load
balancing, or a software suite with limited customizability.
Losing access to the SDN controller deprives tenants of local
and third-party SDN apps that cater their needs. Therefore, a
cloud tenant desires an SDN controller to develop and deploy
arbitrary SDN apps.

To this end, in this paper, we present the design and
implementation details on our project called Bring Your
Own Controller (BYOC) that provides an SDN controller,
called User Controller, to each IaaS cloud tenant. The goal
is to allow tenants to manage a network consisting of their
own VMs by using the user SDN controllers onto which
they can implement customized network functions (either by
repurposing existing SDN apps or implementing new apps). To
manage these individual SDN controllers, we propose BYOC-
VISOR, a network virtualization platform which is tailored
to IaaS clouds and provides customized, secure, and scalable
services to tenants. Our conceptual architecture is illustrated
in Figure 1. BYOC-VISOR operates from the cloud control
domain and acts as a middleware layer. It provides a logical
control plane instead of the actual control plane to tenants.

The design to equip each tenant with an individual SDN
controller comes with several critical challenges – security,
privacy, performance, and scalability – that BYOC-VISOR
aims to solve. We present the main challenges and BYOC-
VISOR’s design to address them below:

1. Topology Abstraction: The cloud SDN controller op-
erates on the provider’s network topology to route flows
dynamically to tenant networks. However, tenant SDN con-
trollers cannot be given access to this topology as it would
reveal the sensitive infrastructure-level details to tenants. Many
attacks that target the cloud infrastructure (e.g., side channel
attack [27]) use sniffing the physical topology and config-
urations as a stepping stone. Moreover, relying directly on
the physical topology makes the tenants’ SDN applications
error-prone due to the dynamic nature of cloud systems.
Some recent work (e.g., [10], [19]) proposed to translate
physical topology to logical topology using loose-coupling
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approaches. However, they suffer from poor performance, as
discussed in Section III. We attempt to provide balanced
trade-off between the flexibility and overhead. To solve this
problem, we abstract the underlying topology and create the
notion of a pseudo switch that is controlled by a tenant SDN
controller. The abstracted topology consists of a set of tenant
VMs connecting to a pseudo switch controlled by the tenant
SDN controller. BYOC-VISOR’s task is to map the abstracted
topology into the provider’s topology by programming the
underlying switches. The topology abstraction scheme (V-
Topo) prevents the leaking of sensitive provider’s topology
and provides the static view of the network even when the
tenant VMs are frequently migrated.

2. Performance: BYOC-VISOR needs to maintain the
communication between the tenant SDN controller and the
cloud data plane. In particular, each data plane message should
be delivered to the corresponding tenant controller (called
mapping step) according to the origin of the message. Given
the scale of a cloud system, if the mapping step is not efficient,
BYOC-VISOR becomes the bottleneck and stalls all tenants
network operations [28], [10]. This problem can also appear
when a malicious tenant floods the network with the spoofed
traffic from the VM to paralyze the cloud infrastructure. To
solve this challenge, we design a message tagging technique
called Message Cookie to improve the performance and defend
against the flooding attack.

3. Security: SDN controllers influence flow routes by
installing flow rules. The lack of a strong isolation among
tenant SDN controllers may facilitate one tenant’s flow rules
to impact other tenants network traffic. In particular, mali-
cious tenants can launch packet injection and forwarding loop
attacks (described in Section IV-D2 in detail). To provide a
fine-grained access control to restrict the malicious behavior
from user controllers, we design a Message Guard module to
monitor, profile, and filter undesired controller messages.

We incorporate all of our design choices in a prototype
system of BYOC-VISOR on the GENI [5] platform. BYOC-
VISOR supports multiple unmodified SDN controllers, such
as Floodlight [3], OpenDaylight [7], as a user SDN controller.
To demonstrate the efficacy of our system, we deployed many
existing unmodified SDN-based security applications atop
the user controllers. Our performance evaluation shows that
BYOC-VISOR has low overhead, and scales well in clouds.

In this paper, we make the following contributions:
• We highlight the problem of migrating SDN apps to

clouds, and introduce a new cloud use paradigm, Bring
Your Own Controller, which provides an individual SDN
controller to each tenant to design and deploy customized
SDN apps.

• We describe the challenges in realizing BYOC-VISOR
and present techniques– topology abstraction, message
cookie, and message guard– to overcome them.

• We implement a prototype system of BYOC-VISOR, and
test it with different SDN controller platforms and a va-
riety of applications. Our evaluation results demonstrate
that the system is efficient and effective.

Our paper constructs as follows. Section II provides the back-
ground knowledge and threat model. Section III introduces
some related work. Section IV presents our design of BYOC-
VISOR. Section V presents our prototype implementation and
evaluation results. Section VI discusses the limitation and
future work, and Section VII concludes the paper.

II. BACKGROUND & MOTIVATION

In this section, we provide some basic background of SDN
applications, motivating examples and our adversary model.

A. SDN Application Background

SDN and its reference implementation, OpenFlow [23],
bring convenient and flexible network management by sep-
arating the network control plane from the data plane. The
control plane is logically centralized and works as the network
operating system. In recent years, many SDN applications
have been proposed, such as measurement, firewall, IDS/IPS,
scanning detection, botnet detection, and DDoS detection [36],
[11], [22], [13]. Besides, researchers have also proposed high-
level interfaces such as FRESCO [29], Frenetic [14] to support
the development of SDN applications.

In general, SDN-based network applications operate by fol-
lowing a series of steps sequentially as summarized here. First,
the controller establishes the connection with the data plane
switches. Once the connection is established, the controller or
higher-level applications discover and maintain the topology
information by using PacketIn and PacketOut messages with
LLDP payload [17]. In the next step, the network applications
obtain required network data by installing flow rules and
retrieving performance counters. Finally, the SDN applications
respond to network events and take relevant flow control
actions (e.g. drop, set, forward) as per the enterprise policies
by installing flow rules into switches.

B. Motivating Example

We allow tenants to use a user controller in the cloud similar
to requesting other virtual resources such as VM, storage,
and networks. Tenants employ the SDN controller to develop
mainly two types of applications. In the first type, a tenant
deploys an SDN application in the user controller to achieve
certain network functionality. For example, a tenant needs to
detect malicious scanners and redirect them to a third-party



honeypot (reflector net app in [29]). The tenant can implement
the detection and redirection functions as an SDN application
in a user controller. In the second type of applications, tenants
deploy legacy appliances, such as middleboxes and virtual
network functions, in the cloud and use their SDN controller to
steer the flows towards the appliances. For example, a tenant
with a Snort IDS deployed in a VM steers the network flows
to the VM to monitor the traffic of other VMs. The key
difference between the two types of applications is that the
major processing phase occurs either in the controller or in
the data plane devices.

C. Network Model

The target of our work is multi-tenant cloud networks. A
multi-tenant cloud network provides individually separated
cloud services to each tenant on top of a shared physical
infrastructure. Our work assumes the entire physical network
topology which contains both hardware and software switches
is constituted in a typical Top-of-Rack or End-of-Row ar-
chitecture. Each individual cloud host contains a hypervisor
and multiple virtual machines (VMs). The hypervisor contains
an OpenFlow-enabled software virtual switch (Open vSwitch,
abbr. OVS) which connects VMs to tenant virtual networks.

D. Adversary Model

We assume that cloud providers and their physical infras-
tructure, including the cloud controller node and services
including BYOC-VISOR running inside it, are secure and
trusted. We provide each tenant with a user SDN controller
and several VMs. Once a powerful adversary who takes over
the VMs and/or the user SDN controller, he can launch a
variety of attacks, such as flooding, spoofing, or other denial-
of-service attacks on the cloud infrastructure and also affect
other tenants in the cloud. The design of BYOC-VISOR, as
described in Section IV, mitigates these attacks.

III. RELATED WORK

Network Virtualization: Network virtualization is a hot
research topic in recent years. One work very close to BYOC-
VISOR is FlowVisor [28]. While seemingly related, there are
some striking differences with our work. First, FlowVisor is
designed for the enterprise network under a single adminis-
trative domain, which is different from clouds that support
multiple administrative domains as targeted by BYOC-VISOR.
Second, FlowVisor creates parallel controllable networks by
slicing the physical resources including the network topol-
ogy. Since each FlowVisor slice reflects a part of the real
physical topology and configurations, the slicing solution will
not operate in the cloud as it does not address security &
privacy concerns outlined in Section I. Finally, the peak rate
of message processing in FlowVisor is about 1,200 per second
[28]. This throughput does not scale well in clouds, and it will
decrease with the scale of the data plane. Another system VeR-
TIGO [12] extends FlowVisor to allow the tenants to specify
virtual links. These two slicing solutions are considered to
have a tight coupling between physical and virtual topology.

A different approach is based on a loose coupling between
physical and virtual topology, allowing tenants to customize
the virtual topologies as adopted by OpenVirteX [10] and NVP
[19]. However, such solutions are too costly to be applied
in clouds due to the overload of flow rules and failure to
address the security threats. FlowN maps the NOX [16] API
calls instead of the OpenFlow messages and uses a database
instead of an in-memory complex data structure to reduce
the overhead. Some network-as-a-service solutions [24] allow
the tenants to specify the high-level routing policies for their
traffic. However, our work provides dynamic, fine-grained and
more flexible management through user controllers.

SDN Security: There are two main themes in the SDN
security research. The first theme consists of systems that
implement security logic in the control plane due to the
controller’s centralized view of the network. In this category,
a series of SDN-based network security tools have been pro-
posed [36], [11], [34], [22], [13]. The other theme addresses
several security challenges in the software-defined networks
itself. FortNOX [25] proposes a security enforcement kernel
to address the flow tunneling attack. Avant-Guard [31] and
FloodGuard [33] protect the OpenFlow control plane from
the saturation attack. Rosemary [30] protects the OpenFlow
control plane against malicious or faulty applications by in-
troducing a sandbox-based solution. TopoGuard [17] addresses
the network topology poisoning attack.

IV. SYSTEM DESIGN

In this section, we present BYOC-VISOR, a network virtu-
alization platform that provides customized, secure, and scal-
able SDN services to cloud users. BYOC-VISOR operates as a
network hypervisor and is transparent to both user controllers
and the cloud data plane.

A. System Architecture

The overall architecture of BYOC-VISOR is shown in
Figure 2. BYOC-VISOR consists of three main modules. The
User Controller Hypervisor virtualizes standard OpenFlow
interfaces for user controllers, monitors all communication
messages, and blocks malicious flow rules generated by user
controllers. The Topology Abstraction module achieves the V-
Topo by rewriting the control plane and data plane messages.
The Database module contains the profile and communication
record of user controllers, the mapping table between physical
and logical topology, and the message cookie information.

B. Topology Abstraction

We first describe our topology abstraction scheme.
1) Abstraction Solution: We introduce a new abstraction

solution called V-Topo that provides each user controller a
logical topology abstracted from the corresponding physical
topology. The abstraction scheme has two steps. The first step
is to decide on a physical topology representation for each
tenant, and the second step is to map the physical topology
to a logical topology as viewed by the user SDN controller.



Data Plane

BYOC-Visor

Southbound API

REST API

Security Logic

VMs
Open vSwitches

(Message Cookie Enforced) 

Southbound API

REST API

Security Logic

Southbound API

REST API

Security Logic
User 

Controllers

User Controller 
Manager

User Controller 
Manager

User Controller 
Manager

Message Mapping

Control Plane 
Message 
Rewriter

Data Plane 
Message 
Rewriter

Database

User Controller 
Hypervisor

Topology Abstraction

Message 
Guard

Fig. 2. BYOC-VISOR Architecture

The physical topology consists of the tenant VMs and corre-
sponding Open vSwitches (OVS) switches, running on each
compute node.1 In the logical topology, all VMs belonging
to a single tenant are connected to a big pseudo switch. The
pseudo switch contains virtualized configuration information
(e.g., datapath ID and ports), which protects sensitive
private information. Thus, each user controller has a logically
separated view of the physical topology. Figure 3 shows a
concrete example, where Tom and Alice are two tenants with
several VMs running. Through BYOC-VISOR, Tom’s user
controller views one pseudo switch that is abstracted from
the physical switch 000034 and 000042. Likewise, Alice’s
user controller views one switch abstracted from the physical
switch 000034 and 000092.

In our implementation, V-Topo is achieved by modifying the
message header of OpenFlow communication messages. The
modification of the message header is based on the physical-
logical topology mapping table maintained in the database. In
the above example, Tom’s data plane messages generated from
the real switch 000034 is viewed as the pseudo switch 000001.
Flow rules that Tom attempts to install into switch 000001 are
actually installed into the real switch 000034 and/or switch
000042. In particular, if Tom’s user controller installs a flow
rule that steers the flow with original destination 1.1.0.1 to
1.1.0.3 then in the physical topology BYOC-VISOR installs
several flow rules in both switches 000034 and 000042 and
utilize the underlay cloud networking to route the flows.

Topology Abstraction module achieves the logical topol-
ogy by dynamically rewriting the header fields of OpenFlow
messages. For data-to-control plane messages, Data Plane
Message Rewriter modifies the message header to insert
the logical information by using the abstracted topology
mapping in the database. After the modification, the data

1In Section IV-C2, we describe the reason for choosing only OVS as part
of the physical topology.
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plane message rewriter sends the new messages to the User
Controller Hypervisor for message mapping and distribution.
The Control Plane Message Rewriter does the opposite
work. It receives each control plane message and correspond-
ing datapath (logical datapath) information from the User
Controller Hypervisor, modifies the message header of each
message by inserting the physical information, and finds
the physical datapath corresponding to the logical datapath
information. The control plane message rewriter sends the
modified messages to the corresponding physical datapaths.
Consequently, the abstraction process is transparent to both
the data plane and the logical control plane.

2) Dynamic Topology Handling: Before describing the
dynamic topology handling details, we first provide some
background knowledge on the live VM migration. There are
two types of live VM migrations: pre-copy and post-copy.
A pre-copy migration copies the memory pages to the target
host, suspends the original VM, and finally copies the delta
memory changes changed during the process. In contrast, a
post-copy migration suspends the VM first and then moves it
to the target. No matter which approach is employed, BYOC-
VISOR performs several actions (by changing the physical to
logical topology mapping) to handle dynamism only during
the “down-time” or “suspend-time”. This guarantees that there
should be no packet in flight during our mapping update.

BYOC-VISOR solves two challenges associated with the
migration process. Topology Consistency: In the above exam-
ple, if the VM 1.1.0.2 migrates from switch 000034 to switch
000092, the physical topology changes. However, instead of
changing the whole logical topology to address the migrated
resource, we only update the mapping information of this VM
in the mapping table. The mapping table during the migration
process is shown on the right side of Figure 3. With this
approach, after the migration, the logical topology viewed
by Tom still remains the same as before the migration. Flow
Rules Consistency: A flow rule consistency ensures that the
flow rules installed by the user controller should be migrated



transparently with the VM migration. During the migration
state, the user controller manager migrates the corresponding
flow rules and counters to the new location. If the migrated
VM changes its IP address, we also verify and update the
matching fields in each flow rule and counter.

C. Performance Improvement

We design Message Cookie technique to improve the scal-
ability of BYOC-VISOR and defend against certain security
threat. A message cookie has two main functions. First, it iden-
tifies the origin (from which VM) to handle spoofing threat.
Second, it improves the throughput of processing mapping
step.

1) Message Cookie: The throughput of the mapping step is
mainly affected by the processing of PacketIn messages. There
are two reasons. First, PacketIn messages are the majority
traffic to the controller triggered by new data plane traffic.
Second, for other messages, the processing could be easier
by using a request/response pair mapping (by searching the
pending request messages) to find the corresponding control
logic. Existing solutions (such as FlowVisor) use a flow space
mapping approach that forms an n-dimensional space based on
n bits in the network packet headers. Each tenant maintains an
isolated subspace that represents all packet headers belonging
to the tenant. Thus, to identify the owner of a flow, we need
a search algorithm to map from a high-dimensional packet
header space to a tenant subspace, which is inherently slow
and not suitable for large-scale cloud systems.

We introduce a novel technique, namely, Message Cookie,
to address the scalability challenge. Our approach is motivated
by the well-known SYN Cookie technique. The idea is to
enable switches to embed a tag to store the mapping state
information within the data-to-control plane messages. We
refer to the tag as Message Cookie. When generating PacketIn
messages, the switch can preserve mapping information into
the messages by leveraging the flow table pipeline. We can
utilize reserved fields such as 8 bit TOS field or unused IP
header options to embed the message cookie. For example,
a flow rule with “src/dst = 1.1.0.1, actions : set-tos-bits
= 52, output : controller” suggests that generated PacketIn
messages which satisfy the condition “src/dst = 1.1.0.1” will
be marked belonging to Tom (whose UseID is 52). With this
approach, it is possible to use a few flow entries to realize
the mapping at each switch. Compared with the traditional
flow space mapping approach, we distribute the computational
workload of mapping to multiple switches instead of a single
choke point. Therefore, our approach addresses the scalability
challenge and achieves much higher throughput.

2) Edge-based Optimization: The overhead of the message
cookie scheme depends on the location of the switches. In
particular, the backbone switches, such as ToR switches or
core switches, may need a large number of flow entries to
implement the tagging function, making it impractical due to
the limited memory space in each switch.

We propose an edge-based optimization approach to solve
the problem by implementing the message cookie only inside

the edge switches. An edge switch is a hypervisor software
switch (Open vSwitch) that is directly connected to VMs. We
note that the V-Topo’s (in Section IV-B) physical topology
also assumes the tenant VMs are connected to adjacent edge
switches. The reasoning behind the edge-based solution in an
IaaS cloud deployment is that each edge switch is normally
connected to no more than 30 VMs [35]. Thus, it is possible
to enforce efficient and simple tagging function at the edge
switches with low overhead (a few flow entries).

D. User Controller Hypervisor

1) User Controller Manager: The main function of the
User Controller Hypervisor is to virtualize interfaces for the
user controllers. The user controller manager leverages the
standard OpenFlow protocol to communicate with the user
controller. For the Connection Initiation and Topology Dis-
covery request messages, the manager automatically generates
the data-to-control plane messages to respond to the user con-
trollers. For example, in response to the negotiation messages
(FeatureReq/Res, SetConfig), the manager provides the config-
uration of the abstracted topology to the user controller. For
the OpenFlow messages in the attack detection and response
actions stages, the manager simply relays these messages.
Although the communication (we define as Hypercalls) be-
tween the manager and the user controller uses the OpenFlow
protocol, it is not a “real” OpenFlow communication; in fact,
it is between the cloud control plane and logical control plane.

2) Message Guard Module: Another major function of the
User Controller Hypervisor is to restrict the behaviors of user
controllers and enhance the security of our system by checking
the Hypercall messages. In each User Controller Manager,
there is a Message Guard module. This module continuously
monitors the hypercall communication and detects any possi-
ble malicious behaviors from user controllers. More specifi-
cally, the message guard module introduces several security
features including fine-grained access control, profiling, and
rate-limiting. In case of attacks, our system quickly blocks
the malicious tenant and removes all counters and flow rules
that are installed by the attacker. The cloud administrator can
gather detailed information on the identified malicious tenants
for further fine-grained analysis.

The message guard module limits the cumulative number
of both control-to-data plane messages and the rate of data-to-
control plane messages for each tenant. Limiting the control-
to-data plane messages is to restrict the data plane resources
that one user controller can consume. On the other hand,
limiting the data-to-control plane messages is to prevent the
flooding attack originating from VMs.

We also provide fine-grained access control on all control
messages generated by user controllers. The purpose of access
control is to guarantee the control logic enforced by one
tenant should not affect other tenants’ network traffic. The
message guard module monitors and verifies all control-to-data
plane messages. We only allow two types of control-to-data
plane messages, namely, FlowMod and StatsReq messages.
The FlowMod message is used to insert, modify, or delete



flow rules. To verify if a tenant is allowed to perform certain
operations, source or destination address in each matching rule
or header fields after modification should be within the scope
of the address space of the tenant. The action in each flow
rule can take one of these values: DROP, CONTROLLER,
SET, or FORWARD (means drop, trigger PacketIn to the
controller, modify the packet header, or forward this flow).
The StatsReq message is to request the traffic statistics (flow
statistics, port statistics, etc.). We only allow the flow statistics
requests and the matching rule of the flow should have the
same requirement as for the flow rules.

However, the above access control policies are not enough
to block all malicious behaviors from user controllers. It is
difficult to predict the effect of the action field in each flow
rule. Especially, we consider two new action-based attacks.
Packet injection attack means the user controller can use the
“modify” action to change the header fields of packets to
inject arbitrary packets to the cloud network. Those spoofed
packets may affect other tenants’ VMs or even user controllers.
Forwarding loop attack means the user controller can install
flow rules to form a routing loop of its own traffic in the cloud.
By increasing the traffic quantity, the routing loop can obstruct
the cloud infrastructure.

Algorithm 1 switch iteration
Input: r: new flow rule,

sw: switch ID in which r will install,
s[].r list: all installed flow rules of every switch

1: if policy check (r) == Malicious then
2: return False
3: end if
4: if Action.Forward ∈ r.actions then
5: sw′ = sw.switchID(r.actions.forward)
6: if Action.Modify ∈ r.actions then
7: r.match = modify (r.match, r.actions.modify)
8: end if
9: for i ∈ s[sw′].r list do

10: r′.match = i.match ∩ r.match
11: r′.actions = i.actions
12: if !(switch iteration(r′, sw′)) then
13: return False
14: end if
15: end for
16: return True

17: end if

We design an iteration algorithm, shown in Algorithm 1,
to achieve the above-mentioned goals. Our algorithm dynam-
ically verifies the new flow rules in the physical topology of
each tenant because the physical topology is tied to the actual
behavior of the network. The input to this algorithm is a new
flow rule and a set of already installed flow rules. Existing
real time data plane verification tools such as VeriFlow [18]
are of limited use because flow rules with “set” action change
the header space of packets that cannot be handled by these
tools. Our algorithm generates the derived forwarding rules
from the new flow rule hop by hop. Then, we verify if the
derived forwarding rule violates some access control policies.
For example in Figure 3, given that Tom installs a rule that
steers the flow from the original destination 1.1.0.1 to 1.1.0.3
into his pseudo switch, the flow rule that will be installed
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Fig. 4. Test Environment for Case Study

into the OVS switch 000034 is: “Sw000034 : * -> 1.1.0.1 :
set(1.1.0.1 -> 1.1.0.3), forward Sw000042”, given the existing
flow rule in the data plane is: “Sw000042 : *-> 1.1.0.3 :
set(1.1.0.3 -> 1.1.0.1), forward Sw000034”. After running 2
iterations in our algorithm, the derived forwarding rule violates
the forwarding loop policy since it loops back to the original
switch. For messages that do not meet the above-described
access control policies, the user controller manager drops the
control message and returns an OFPET EPERM error.

V. EVALUATION

To demonstrate the practicability and efficiency of the
BYOC-VISOR design, we develop realistic SDN security
applications atop various user controllers and evaluate the
performance and scalability of BYOC-VISOR.

A. System Implementation

We have implemented a prototype system of BYOC-VISOR
based on the libfluid [6] library bundle. To evaluate the
dynamism handling and performance overhead, we employ
resources including VMs, hypervisors, and OpenFlow-enabled
switches to emulate the cloud environment on the GENI [5]
platform. To evaluate the scalability, we create a testbed using
three host machines with dual-core Intel Core2 3GHz CPU
running 64-bit Ubuntu Linux. The first machine emulates the
cloud data plane using Mininet [21], and a benchmark tool
CBench [1] as the bulk messages generator, another is to
run BYOC-VISOR, and the third operates as user controllers.
Our system currently supports OpenFlow 1.0 specification
and is compatible with most of the OpenFlow controllers as
user controllers. We demonstrate our system using both the
OpenFlow-based apps and legacy network functions.

B. Case Study

In Section II, we discuss two types of SDN applications with
the key difference being the location of the major processing
phase – inside the controller or data plane devices. In our
evaluation, we design and deploy three SDN-based network
functions to work atop user SDN controllers, and three legacy
network functions to operate inside the VM in the data plane.
The test environment is shown in Figure 4.

Control-plane network functions: We develop three SDN
apps on top of three different user SDN controllers. The first
two are firewall SDN apps which are developed to work with
POX [8] and Floodlight [4]. The third SDN app is a reflector
net application developed upon FRESCO [29] that executes
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on a NOX controller. We notice that BYOC-VISOR supports
the correct operations of all three original SDN-based network
functions on diverse OpenFlow controller platforms, without
any modification on the controller or app side.

Data-plane network functions: We deploy three different
legacy network applications, namely Snort [32], BotHunter
[15], and Bro [9]. We install these legacy applications in
three VMs as middle-boxes (a.k.a. NFV, Network Function
Virtualization). On top of the user controller, we develop an
SDN application using the FRESCO platform [29]. The SDN
application steers the network traffic destined to tenant VMs
towards the Snort/BotHunter/Bro VMs. When the middle-box
VMs accept the traffic, it steers them back to the destination
VM. In our testing, all scenarios work smoothly as expected.
These applications demonstrate the effectiveness of our system
in allowing tenants to design and deploy SDN apps. We also
hope that these examples would provide guidelines for tenants
to develop more such apps on BYOC-VISOR.

C. Dynamic Handling

We first test the ability of BYOC-VISOR to handle frequent
topology changes. We design an experiment to verify that
the logical topology observed by the user controller remains
unchanged even with the frequent VM migration. We build
experimental topology as shown in Figure 3 using the GENI
[5] platform and use two VMs with IP addresses 1.1.0.4 and
1.1.0.5. At the beginning, two VMs are connected to the same
switch. Later, one VM (1.1.0.5) migrates to switch 000042,
and then migrates again to switch 000034. We generate
communication traffic between the two VMs and record the
traffic rate. To verify that the V-Topo remains unchanged from
the user controller side, we send StatsRequest messages from
the user controller to the pseudo switch in V-Topo to query the
real time traffic rate at the port2, which is initially connected to
VM 1.1.0.5 and show the accumulated traffic in Figure 5. We
observe that the migration occurs twice at about 51s and 195s
because the bandwidth suddenly decreases to zero. During the
migration, there is no traffic passing through the port. The
results show that even when the VM moves to another location

2In Section IV-D2, we mention that we only allow the user controller to
query the flow statistics not the port statistics. Here we temporarily relax this
assumption only to conduct this experiment.

in physical topology, the VM is still connected to the original
port of the pseudo switch. The experiment results verify that
the logical topology observed by the user controller is stable
and BYOC-VISOR elegantly handles VM migration.

D. Performance Overhead

BYOC-VISOR inserts an additional middle layer and un-
avoidably adds extra overhead to the system. From the ten-
ants’ perspective, there is an additional latency while sending
and receiving messages. To quantify the latency overhead,
we evaluate the increased response time for the two most
commonly used OpenFlow request messages– PacketIn and
StatsReq/Res– with and without our system. The PacketIn
message is used for the data plane to send a network packet to
the control plane when a new flow arrives in or a flow entry
sends a specific flow to the controller. The StatsReq message
is from the controller to query the data statistic, and the data
plane returns a response message with the statistics.

For the PacketIn message experiment, we set up an environ-
ment with a VM with two network interface cards attached to
an OpenFlow-enabled switch in GENI. An OpenFlow appli-
cation continuously sends randomly generated packets (with a
rate of 100 packets per second) to the switch through one
interface. The application simultaneously receives PacketIn
messages from the other interface that is connected to the
OpenFlow control port of the switch. Thus, this application
is able to measure the response interval between sending the
packet and receiving the PacketIn messages. The evaluation
results are shown in Figure 6(a). We observe that without
BYOC-VISOR, the average delay between each pair of packet
and PacketIn is about 0.25ms. With BYOC-VISOR, the av-
erage delay increases to about 0.37ms. We note that this
communication overhead is mostly added only on the first
packet and gets amortized across the duration of the flow.

For the StatsReq/Res message experiment, we set up another
environment with a VM as an OpenFlow controller that con-
nects to several OpenFlow-enabled switches. An application
queries the flow statistics from the switches at a peak rate
supported by the hardware. The application also measures
the delay between each pair of request and response. The
evaluation result is shown in Figure 6(b). We notice that
without BYOC-VISOR, the average delay is about 0.45ms,
and with our system is 0.52ms, which is a reasonably small
overhead.

E. Scalability

To evaluate the scalability of BYOC-VISOR, we create a 3-
machine setup as described in Section V-A. All user controllers
run a firewall app. We first determine the CPU utilization
of BYOC-VISOR under normal circumstances except the
migration situation. We measure the CPU utilization when
using a different number of user controllers and message
rates. To measure the effect of different message rates, we
use one VM to continuously send packets at different rates to
the OVS to trigger PacketIn messages for the user controller.
To measure the effect of various numbers of user controllers,
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Fig. 6. Performance and Scalability Evaluation Results

BYOC-VISOR connects to several user controllers and sends
messages to each user controller at a constant rate. We measure
the CPU utilization at every one second for an extended
period of time and calculate the average. Since different types
of hardware devices may have different capabilities, it is
both difficult and insignificant to compare the absolute CPU
utilization among them. A better metric is to observe a growth
in CPU utilization with an increase in message rates and the
number of user controllers. Thus, in this experiment, we show
the CPU utilization growth using the relative CPU utilization
and compare it with a baseline value. The baseline utilization
value is generated using 100 MPS (messages per second) in
the first experiment, and a single controller in the second
experiment.

The results are shown in Figure 6(c)(d). We observe that
the CPU utilization scales linearly with the number of user
controllers and message rates. This is consistent with the
theoretical analysis, and is an acceptable growth trend. In
practice, cloud administrators may deploy multiple instances
of BYOC-VISOR to balance the load among tenants.

Secondly, we measure the message mapping throughput.
One benefit of message cookie is to avoid searching the entire
mapping flowspace for each PacketIn message. This suggests
the throughput of the message mapping process should not be
affected by the scale of the data plane topology. To validate the
hypothesis, we set up a message throughput experiment, using
a benchmark tool Cbench [1] to evaluate the throughput with

different scales of topology (by increasing the number of OVS
switches and VMs in the topology). In our testing topology,
each OVS connects to 8 VMs, while each user controller
manages 4 VMs, randomly assigned to it.

Like the CPU utilization experiment, we measure the rel-
ative growth in throughput instead of comparing the abso-
lute values. We measure the baseline throughput using the
Floodlight controller, without running BYOC-VISOR, in a 16-
switch topology. We evaluate a relative throughput compared
with the baseline by scaling the topology from 4-switch to
1024-switch and executing a single instance of BYOC-VISOR
in a single thread. The results are shown in Figure 6(e).
We observe that the throughput is not impacted with the
topology scale, outperforming FlowVisor whose throughput
decreases linearly under the same condition as described in
[28]. The results prove that our system scales well with a large
number of switches in a cloud environment. There are several
studies about the OpenFlow controller performance [2], [30].
These studies measure a baseline throughput of the Floodlight
controller in a dedicated server machine using the same 16-
switch topology, and the value is about 100k messages per
second. Using the same method, we estimate that BYOC-
VISOR can process about 70k messages per second.

Finally, we design an experiment that measures the through-
put performance using the different number of user controllers
to directly compare with FlowVisor. We simply use one
user controller corresponding to one slice in FlowVisor. In



this experiment, we use the 16-switch topology and test the
message throughput of both single thread BYOC-VISOR and
FlowVisor. Each user controller/slice manages the traffic from
8 VMs. We set the baseline value same as in the previous
experiment and show the relative throughput in Figure 6(f).
The results verify that the throughput of FlowVisor decreases
with the topology scale, which is the same as the theoretical
results mentioned previously [28]. However, the throughput of
BYOC-VISOR does not decrease with scale. Message cookie
distributes the computation workload to the edge switches,
making the throughput independent of the topology scale.

VI. DISCUSSION AND FUTURE WORK

Our current implementation of BYOC-VISOR supports
the OpenFlow v1.0 protocol. We plan to support the latest
OpenFlow v1.5 in our future work. Also, the user controller
may have the inconsistent update issue that implies all switches
cannot be updated atomically. Note that this issue is within
each individual user controller, and it is not the responsibility
of BYOC-VISOR. User controllers can directly leverage the
existing solution [26] to address the inconsistent update issue.
Finally, we implement the message cookie by installing flow
rules to add a tag to each message. This approach avoids any
hardware-level changes, creating a flexible yet less optimal
solution. Alternatively, we can improve the performance by
modifying the OpenFlow switches to enforce the message
cookie function in the circuit to avoid extra flow tagging rules.

VII. CONCLUSION

We aim to provide tenant-defined SDN applications in IaaS
cloud networks. To this end, we offer an individual user SDN
controller to each tenant. This approach requires addressing
several new challenges: topology abstraction, performance,
and security. We present BYOC-VISOR, a new SDN virtu-
alization platform to provide customized and scalable SDN
services to cloud users. We measure the overhead and scalabil-
ity performance with a prototype implementation of BYOC-
VISOR. Our evaluation results show that BYOC-VISOR scales
well in the cloud and only adds minor latency overhead.
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