
AUTOPROBE: Towards Automatic Active Malicious Server
Probing Using Dynamic Binary Analysis

Zhaoyan Xu
SUCCESS LAB

Texas A&M University
College Station, TX, US

z0x0427@cse.tamu.edu

Antonio Nappa
IMDEA Software Institute &
Universidad Politécnica de

Madrid, Spain
antonio.nappa@imdea.org

Robert Baykov
SUCCESS LAB

Texas A&M University
College Station, TX, US

baykovr@cse.tamu.edu
Guangliang Yang

SUCCESS LAB
Texas A&M University

College Station, TX, US
glyang@cse.tamu.edu

Juan Caballero
IMDEA Software Institute

Madrid, Spain
juan.caballero@imdea.org

Guofei Gu
SUCCESS LAB

Texas A&M University
College Station, TX, US

guofei@cse.tamu.edu

ABSTRACT
Malware continues to be one of the major threats to Internet
security. In the battle against cybercriminals, accurately identifying
the underlying malicious server infrastructure (e.g., C&C servers
for botnet command and control) is of vital importance. Most
existing passive monitoring approaches cannot keep up with the
highly dynamic, ever-evolving malware server infrastructure. As
an effective complementary technique, active probing has recently
attracted attention due to its high accuracy, efficiency, and scalabil-
ity (even to the Internet level).

In this paper, we propose AUTOPROBE, a novel system to
automatically generate effective and efficient fingerprints of remote
malicious servers. AUTOPROBE addresses two fundamental limita-
tions of existing active probing approaches: it supports pull-based
C&C protocols, used by the majority of malware, and it generates
fingerprints even in the common case when C&C servers are not
alive during fingerprint generation.

Using real-world malware samples we show that AUTOPROBE
can successfully generate accurate C&C server fingerprints through
novel applications of dynamic binary analysis techniques. By con-
ducting Internet-scale active probing, we show that AUTOPROBE
can successfully uncover hundreds of malicious servers on the
Internet, many of them unknown to existing blacklists. We believe
AUTOPROBE is a great complement to existing defenses, and can
play a unique role in the battle against cybercriminals.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;
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Security;
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1. INTRODUCTION
The Internet is an essential part of our life, but malware poses a

serious threat to its security. Millions of computers have been com-
promised by various malware families, and they are used to launch
all kinds of attacks and illicit activities such as spam, clickfraud,
DDoS attacks, and information theft. Such malicious activities are
normally initiated, managed, facilitated, and coordinated through
remotely accessible servers, such as exploit servers for malware’s
distribution through drive-by downloads, C&C servers for mal-
ware’s command and control, redirection servers for anonymity,
and payment servers for monetization. These malicious servers
act as the critical infrastructure for cybercrime operations and
are a core component of the malware underground economy.
Undoubtedly, identifying malware’s server infrastructure is of vital
importance to defeat cybercrime.

Traditional approaches for detecting malicious servers mostly
rely on passive monitoring of host and network behaviors in
home/enterprise/ISP networks. However, such passive approaches
are typically slow, incomplete and inefficient because miscreants
use dynamic infrastructures and frequently move their servers (e.g.,
for evasion or as a reaction to takedowns). To solve this issue,
active probing techniques have been proposed to detect malicious
servers and compromised hosts in an active, fast, and efficient
way [25, 41]. The basic idea is to use a network fingerprinting
approach that sends specially crafted packets (i.e., probes) to
remote hosts and examines their responses to determine whether
they are malicious or not. Since probes are sent from a small set of
scanner hosts, active probing is cheap and easy to deploy, and it is
highly scalable, even for the entire Internet.

In this work we describe AUTOPROBE, which implements a
novel approach to the problem of automatically building network
fingerprints that can be used for actively detecting malware servers
on the Internet. Our goal is similar to the recently proposed
CYBERPROBE [25], which demonstrated how active probing can
successfully detect malicious servers at Internet scale. However,
our approach to fingerprint generation radically differs from the
one used by CYBERPROBE. While CYBERPROBE takes as input
network traces and leverages machine learning techniques on
network traffic to generate the fingerprints, AUTOPROBE assumes



the availability of a sample of the target malware family and applies
dynamic binary analysis on the malware executable. AUTOPROBE
addresses fundamental limitations in CYBERPROBE. First, CY-
BERPROBE is not able to generate fingerprints for malware families
that contain replay protection. In addition, the lack of semantics
available in network traffic and the noise in the input network traces
limit the quality of CYBERPROBE’s fingerprints. Furthermore,
CYBERPROBE cannot generate fingerprints when there is no known
live C&C server to experiment with (thus no network interactions
can be observed) or when the known C&C servers are only alive
for a very short time (thus not enough traffic for building reliable
fingerprints).

Dynamic binary analysis has been previously used by PEER-
PRESS to generate fingerprints for P2P malware [41]. However,
PEERPRESS cannot be used to detect remote malicious servers.
It can only generate fingerprints for malware that embeds some
server-side logic and listens on the network for incoming requests
such as P2P bots. Instead, the majority of malware families use
a pull-based C&C protocol, where bots contain only client-side
logic, send periodic requests for instructions to the remote C&C
servers, and close the communication after the response from the
C&C server is received. Pull-based C&C is the dominant choice
because it avoids incoming probes being blocked by NAT gateways
and firewalls. To build fingerprints for remote servers PEERPRESS
would require the C&C server software, which is not available.

AUTOPROBE greatly complements PEERPRESS. It enables
generating fingerprints for identifying C&C servers for malware
that has only client-side logic, extending active probing beyond
P2P bots to also include C&C servers.

AUTOPROBE applies dynamic binary analysis to achieve pro-
found understanding on the packet semantics and deeper insight on
the malware’s logic for request generation (to remote servers) and
response handling (back from the servers) in the following ways.

First, in analyzing (outgoing) request generation logic, AUTO-
PROBE focuses on two tasks: (1) It tracks the generation of variant
bytes, whose value may change in a different environment, and
their semantics. Through re-generating variant bytes in realistic
environments, AUTOPROBE obtains a more accurate probe request.
(2) It analyzes the logic to uncover as many request generation
paths as possible. Thus, AUTOPROBE can generate more probing
requests than existing approaches.

Second, in analyzing (incoming) response handling logic, AU-
TOPROBE employs a novel scheme for detection, i.e., AUTO-
PROBE identifies specific response bytes that can affect client-
side malware’s execution as the evidence to detect malicious
servers. More specifically, AUTOPROBE applies dynamic symbolic
execution to find a set of path constraints and generates light-weight
network-level symbolic-constraint-based fingerprints for detection.
Furthermore, AUTOPROBE can generate fingerprints even when a
remote server is not alive, thus no response can be received by the
malware client, an unsolved challenge for existing approaches.

Our paper makes the following contributions:
• We propose a novel approach for automatically generat-

ing active probing fingerprints, which can detect remote
malicious servers. Compared with prior work [25, 41],
our approach leverages dynamic binary analysis, is able
to generate fingerprints for the large number of malware
families that use pull-based C&C protocols, and works even
when no live C&C server is available for training.

• We have implemented our approach into AUTOPROBE, a tool
that uses a novel combination of dynamic analysis techniques
including taint tracking, dynamic slicing, and symbolic ex-

ploration for producing accurate and high coverage probe
generation, port selection, and classification functions.

• We conduct an extensive evaluation of AUTOPROBE with
real-world malware families. We show that AUTOPROBE can
successfully generate on average 2 fingerprints per malware
family (regardless of whether the remote servers are alive
or not). Furthermore, AUTOPROBE has successfully and
quickly found hundreds of live malware servers on the
Internet, most unknown to existing blacklists.

2. PROBLEM STATEMENT AND OVERVIEW
Active probing (or network fingerprinting) is a powerful ap-

proach for classifying hosts that listen for incoming network
requests into a set of pre-defined classes based on the networking
software they run. In a nutshell, active probing sends a probe to
each host in a set of targets, and applies a classification function
on the responses from each of those target hosts, assigning a class
to each host. Given some target network software to detect, a
fingerprint captures how to build the probe to be sent, how to
choose the destination port to send the probe to, and how to classify
the target host based on its response.

The problem of active probing comprises two steps: fingerprint
generation and scanning. This paper focuses on the fingerprint
generation step, proposing a novel approach to automatically build
fingerprints for detecting malware servers. Our approach assumes
the availability of a malware sample and applies dynamic binary
analysis on the malware to build the fingerprint.

2.1 Motivation
Our program analysis approach to fingerprint generation ad-

dresses the following challenges that existing approaches suffer.
Produces valid C&C probes. In existing approaches, the candi-
date probes to be sent to the remote hosts are manually selected
using protocol domain knowledge [7], generated randomly [7],
or selected from prior messages the malware has been observed
to send [25]. However, these three approaches are problematic.
First, domain knowledge is not available for most C&C protocols.
Second, randomly generated probes are most likely invalid because
they do not satisfy the C&C protocol syntax and semantics. A
remote C&C server is likely to refuse responding to invalid probes
and the malware owners may be alerted by the invalid requests.
Third, previously observed malware requests may be invalid when
replayed at a different time and/or machine. For example, Figure 1
shows a Win32/Horst.Proxy malware request that includes the bot’s
IP address and an open port where it runs a Socks proxy. If the
values of these fields do not match with the sender’s, the C&C
server can detect such inconsistency and refuse to respond.

Figure 1: Request of Win32/Horst.Proxy

In another example, Win32/ZeroAccess [40] encodes the bot’s IP
address and OS information in an obfuscated URL (Figure 2). Iden-
tifying state-dependent fields, even when obfuscated, represents a
great challenge for existing network-based approaches [7, 25].
Explores the space of valid C&C probes. CYBERPROBE is
limited to using probes that have been previously observed being
sent by the malware. However, those requests are often only a



Figure 2: Request of Win32/ZeroAccess

small subset of all probes the malware can generate. For example,
Win32/Dirtjumper [1] uses a time-dependent algorithm to generate
the URL’s filename. Without extracting the request generation
logic from the malware, it is almost impossible for network-based
approaches to produce all possible valid requests.
Minimizes false positives. One goal of adversarial fingerprint
generation is to minimize the amount of traffic that needs to be
sent to remote C&C servers during fingerprint generation [25].
As a consequence, few responses might be available to build a
signature on the response. When faced with insufficient training
data, machine learning approaches can introduce false positives.
Instead, AUTOPROBE leverages the intuition that the malware
that produces the request knows how to check if the received
response is valid. By examining the malware’s response handling
logic, AUTOPROBE identifies the checks the malware performs to
determine if the response is valid, which AUTOPROBE uses as a
signature that minimizes false positives.
Does not require a live C&C server. Network-based approaches
to fingerprint generation [7, 25] assume that at least one request-
response interaction between malware and a C&C server has been
captured on a network trace. However, an analyst often only
has a malware sample that when executed no longer successfully
connects to a live C&C server. That does not mean the operation
to which the malware belongs no longer exists. Most often, the
malware sample is simply old and tries to connect to dead C&C
servers that have since been replaced with fresh ones. AUTOPROBE
is able to generate fingerprints even when there is no known live
C&C server from the malware family of interest to experiment
with. The produced fingerprints can be used to scan for fresh
servers that may have replaced the old ones.

2.2 Problem Definition
This paper addresses the problem of automatic fingerprint gen-

eration. Given a malware sample P from a malware family F
the goal of automatic fingerprint generation is to automatically
produce a fingerprint φ that can be used to scan for malicious
servers belonging to family F located somewhere on the Internet.
We assume the server-side code is not available in any form. The
malware sample is provided in binary form with no source code or
debugging symbols. We assume the malware sample initiates a set
of requests S to contact its malicious servers.

A fingerprint comprises three elements: a port selection function,
a probe generation function, and a classification function. AUTO-
PROBE builds these 3 functions using dynamic binary analysis on
the malware sample.

The malware may select to which port to send a probe based
on its local environment and the C&C server to be contacted,
e.g., based on the time when the probe is sent and the C&C’s IP
address. Thus, the port selection function takes as input the local
environment of the scanner host where it is executed and the target
address to be probed. It returns the TCP or UDP port to which the
probe should be sent.

The probe generation function takes as input the local environ-
ment and the target address to be probed and outputs the payload
of the probe to be sent to the target address. Building the probe

1 if(InternetOpenUrl(handle, url_str) == VALID) { 

2   if(!HttpQueryInfo(handle, HTTP_QUERY_STATUS_CODE,  

    &status)) { 

3       if (status != HTTP_STATUS_OK) 

4         return ERROR; 

5   } 

6   if(!HttpQueryInfo(handle, HTTP_QUERY_CONTENT_LENGTH, 

          &length))  

7       return ERROR; 

8    while(length) { 

9       InternetReadFile(handle, lpBuffer, &bytes); 

10       sscanf(lpBuffer, “<a>%d</a>”, &command); 

11       if (command <= 3 && command > 0) { 

12           ... //  

13       } 

14       length -= bytes; 

15    } 

16  } 

 

S1 = get_from_header(STATUS_CODE)
S2 = get_from_header(LENGTH_CODE)
S3 = get_payload()

S1 == 200 & // Status code is 200
S2 >= 0   & // Response has payload
(SEARCH(S3, “<a>1</a>”) |
SEARCH(S3, “<a>2</a>”) |
SEARCH(S3, “<a>3</a>”) ) // Contains string

Figure 3: Classification function example.

generation function comprises two steps: (1) identify the variant
and invariant fields of each request r the malware sends, (2) for
each variant field, generate a re-generation logic which determines
the value of the field based on the local environment of the scanner
host and the target’s address.

The classification function is a boolean function that takes as
input the response from a target server, the local environment, and
the target’s IP addresses. It outputs true if the received response
satisfies the checks that the malware performs on the response,
which means that the target server belongs to family F . If it outputs
false, the target server does not belong to family F . We verify that
the malware sample performs checks on the response to determine
that the response is valid. Otherwise, the probe is discarded as its
response does not allow to classify target servers with certainty and
would introduce false positives.

The classification function is a conjunction of boolean expres-
sions corresponding to validation checks the malware performs on
a received response. It can be expressed on the raw byte string or
on the protocol fields if the C&C protocol is known, e.g., HTTP.
In the latter case it is used with a protocol parser. An example
classification function is shown in Figure 3. The malware checks
that the response is successful (200 status code), that there is
an HTTP body, and that the HTTP body contains one of three
command strings.

2.3 Approach Overview
Figure 4 shows the architecture of AUTOPROBE. It comprises

4 phases: malware execution, probe generation, classification
function construction, and probing.
Malware execution. AUTOPROBE first runs the malware exe-
cutable inside an execution monitor that introspects the execution,
monitors the system and API calls the malware uses, and produces
an instruction-level trace of the execution. The execution monitor is
implemented at the hypervisor-level so that the malware executing
in the guest OS cannot interfere with it. The execution monitor
is located inside a contained network environment that proxies
communications to the Internet. The DNS proxy forwards DNS
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Figure 4: System architecture of AUTOPROBE.

requests from the malware to the Internet. To incite the malware to
start a C&C connection, if the DNS resolution fails, the DNS proxy
creates a dummy response that points to a sinkhole server. For other
TCP and UDP traffic AUTOPROBE uses whitelists to determine if
the connection is considered benign and should not be analyzed
(e.g., connection to top Alexa sites used by malware to check for
connectivity) or if it is a C&C connection.
Probe generation. The probe generation phase analyzes the logic
that the malware uses for (1) selecting the port to which the
request is sent, and (2) generating the request. Both steps leverage
backwards taint analysis, dynamic slicing, and symbolic execution
techniques. Using these techniques AUTOPROBE identifies how
the port parameter passed to the socket function and the buffer
passed to the function that sends the request (e.g., send) are
generated from the output of prior system calls. For each variant
part in the request (or for the port number) the goal of this phase is
to output a regeneration slice that can produce a new value based
on the local host environment and the target’s address. Since the
malware may obtain the value of a variant field using some multi-
path logic, not fully observable in a single execution, we develop
a control-flow-based exploration technique that finds all paths that
affect the generation of a variant field. We detail probe generation
in Section 3.
Classification function construction. To build the classification
function AUTOPROBE analyzes the logic the malware uses to
validate the received response. Intuitively, invalid responses from
target servers that do not belong to the malware family should fail
the validation and force the malware to behave differently, e.g.,
close the connection or resend the request. The goal is finding an
effective symbolic equation for classifying a server’s response.

If during malware execution the C&C servers that the malware
tries to connect were all down, AUTOPROBE uses a combination
of two techniques: response fuzzing and symbolic execution explo-
ration. In the case when the malware execution phase captured
at least one response from a remote server, AUTOPROBE tries to
identify if the response is from a C&C server or other type of
benign server, e.g., a sinkhole or a server that happens to be reusing
the IP address previously assigned to a C&C server. For this it
compares the malware’s processing of the response from the remote

server with the malware’s processing of a random (i.e., invalid)
response. If they are similar the collected response is likely invalid
and can be ignored as it most likely comes from a benign server.
Otherwise it is a valid C&C response and can be used to guide
the symbolic execution exploration. We detail the classification
function construction in Section 4.
Probing. The probing phase takes as input the target IP ranges to
probe (e.g., the currently advertised BGP ranges) and the finger-
print. It uses the port selection and probe generation functions to
send the probe to a target, and applies the classification function on
the response, determining if each target is a server of the malware
family, or not. We detail the probing phase in Section 5.

3. PROBE GENERATION
The probe generation phase comprises 2 main steps: control-

flow-based exploration and trace analysis. The control-flow-based
exploration component executes multiple paths in the malware’s
request generation logic to identify different requests the malware
may generate (Section 3.1). The trace analysis component identi-
fies the variant parts of a request, identifies their semantics, and
produces regeneration slices for them (Section 3.2). These two
steps output the port selection function and a classification function
that captures the valid requests the malware may generate.

3.1 Control-Flow-Based Exploration
One limitation of dynamic analysis is that it only analyzes one

execution path in the malware’s request generation logic. The
analysis of a single execution typically captures a large number of
different requests that the malware can generate by modifying the
values of variants fields in a request. However, it cannot capture
different requests that the malware may generate depending on
control-flow decisions on the running environment, i.e., on the
output of system calls.

Figure 5 illustrates this problem. The malware checks the
existence of a registry key using the RegOpenKeyEx function
(line 3). If the call fails, the HTTP GET request sent by the
malware contains a URL formatted according to line 2. But, if the
call succeeds, the malware modifies the URL format by appending
an additional parameter value to the end of the URL (lines 4-
6). To understand that the malware can produce two different
types of requests AUTOPROBE needs to explore the two execution
paths introduced by the branch at line 3. For this, AUTOPROBE
uses control-flow-based exploration, a technique that modifies the
output of system calls that influence the request generation logic.

Figure 5: Network request generation logic of
Win32/LoadMoney.AF.

Control-flow-based exploration performs a backwards analysis
on the execution trace starting at the function that sends the request,
e.g., InternetOpenUrl on line 8 in Figure 5. For each branch it
encounters, it performs a backwards taint analysis on the eflags
register to check if it has been influenced by the output of a system



call. If it is not influenced then it keeps processing backwards
until it finds the next branch. When it finds a branch that has
been influenced by the output of a system call (line 3)1 it forces
the system call to generate an alternative result, i.e., it forces
the conditional to take the branch not explored in the trace. In
our example, if in the original trace RegOpenKeyEx returned
SUCCESS, it forces the function to return FAILURE so that the
other execution branch is executed. This process stops when the
beginning of the execution is reached or a configurable maximum
number of system-call-influenced branches has been found (100 by
default). Control-flow-based exploration is detailed in Algorithm 1.

Θ: Trace
ins: instruction in trace
Φ: Set of Instruction of Conditional Branches
∆: Set of Labeled System Call Output Memory/Register
T : Set of Tainted Memory/Register
F : Set of System Calls Affecting Control Flow
req: Request Sent by Malware
for insi in Θ do

if insi in Φ then
eflags → T
Backward Taint eflags
if tainted ∈ ∆ then

Record System Call into F
Clean eflags

end
end

end
for fun in F do

for output:oi of fun’s outputs do
if oi changes control flow then

Rerun malware
Enforce oi for fun along execution
Collect new trace Θi Collect new reqi

end
end

end
Algorithm 1: Algorithm for Control-flow-based Exploration

3.2 Trace Analysis
The analysis of an execution trace that produced a network

request comprises 3 steps: identify the variant bytes in the request
and the target port, recover the semantics of variant bytes in the
request, and generate a regeneration slice for the variant bytes in
the request and the port.
Identify variant parts and their semantics. The request is
commonly a combination of invariant and variant bytes. To identify
variant bytes in the request AUTOPROBE applies dynamic slicing to
each of the bytes in the request starting from the function that sends
the request. Note that while each byte slice is independent they can
be performed in parallel on a single backwards pass on the trace for
efficiency. If the slice ends in a fixed constant such as an immediate
value or a constant in the data section then the byte is considered
invariant. If the slice ends in the output of an API call with
known semantics and whose output is influenced by a system call
(e.g., rand), it is considered variant. In this case, AUTOPROBE
clusters consecutive bytes influenced by the same API call (e.g.,
all consecutive bytes in the request influenced by rand()) into
variant fields. Then it labels those variant fields using the semantic
information on the API call collected from public repositories
(e.g., MSDN). Some examples of semantic labels are time, ip,
random, and OS version. Currently, AUTOPROBE has semantics
information for over 200 Windows system and library calls. The
handling of the port selection is similar but it starts at the function

1Or an API call known to perform a system call like Re-
gOpenKeyEx

that selects the port (e.g., connect, sendto) and since the port
is an integer value, AUTOPROBE slices for all bytes that form the
integer simultaneously.
Reconstruction slices. For each variant field in the request the
probe construction function captures how the variant field needs
to be updated as a function of the scanner’s environment (e.g., the
current time). For this, AUTOPROBE applies dynamic slicing on
the previously identified variant bytes. The slice contains both data
and control dependencies. For control dependencies, AUTOPROBE
conservatively includes in the slice the eflags register value
for each branch instruction it encounters that may influence the
generation of the variant bytes. The slice ends when all variant
bytes are traced back to some semantic-known system calls or the
trace start is reached. The slice is a program that can be re-executed
using the current local environment (e.g., local IP, MAC address, or
time) to reconstruct the field value.

4. CLASSIFICATION FUNCTION
CONSTRUCTION

To build the classification function, AUTOPROBE conducts dy-
namic binary analysis on the malware’s response handling to ex-
tract a set of symbolic equations. Figure 6 depicts the architecture
of the classification function construction. The intuition behind
this phase is that the malware’s processing of a response typically
comprises two widely different logic to handle valid and invalid
responses (without differentiating them the malware could be
controlled by arbitrary messages, which is certainly not desirable
by the malware author).

For example, if the response is considered valid, the malware
may continue its communication with the remote C&C server, but
if considered invalid it may close the communication or re-send
the previous request. To verify the validity of a response, the
malware parses it and checks the values of some selected fields.
Such validation checks are branches that depend on the content of
the response. Each check can be captured as a symbolic formula
and their conjunction can be used as a classification function.

Figure 6 shows the workflow of the classification function
construction. First, it collects different responses, which can come
from live C&C servers the malware contacted during execution
or be produced by the fuzzing module. Second, it executes the
malware (devil icon) with those responses, applying symbolic
execution and path exploration analysis to identify a valid response.
Last, it generates the classification function for each valid request
and response repair.

The remainder of this section describes the classification func-
tion construction when a C&C response was obtained during
malware execution, which is illustrated in the left side of Figure 6
(Section 4.1) and when no response is available, which is illustrated
in the right side of Figure 6 (Section 4.2).

4.1 With a C&C Response
To distinguish between valid and invalid responses AUTOPROBE

focuses on the differences between validation checks on both types
of responses. For example, a valid response will successfully go
through all validation checks but an invalid response will fail at
least one of those checks producing an execution trace with a
smaller number of content-dependent branches.

This case comprises 3 steps shown in the left part of Figure 6.
First, AUTOPROBE marks as symbolic each byte in the response
received from the server during the original malware execution
and performs symbolic execution on those symbols along the
execution. For each branch influenced by the input symbols (i.e.,
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each validation check), it produces a symbolic expression that
summarizes the check. The symbolic execution stops when the
execution reaches some preselected calls such as closesocket
and exitprocess, or when no validation check is found in the
previous n branches (e.g., n = 50). In addition to the symbolic
formula, AUTOPROBE also outputs a θ1 forward slice containing
all instructions that operate on symbolic inputs.

Second, AUTOPROBE repeats the previous step but this time on
a randomly generated (i.e., invalid) response. If the C&C base
protocol is known (e.g., HTTP) rather than a random response
AUTOPROBE uses a generic error message (e.g., an HTTP 404
response). The outcome is another symbolic expression and a θ2
forward slice.

Third, AUTOPROBE determines if the θ1 and θ2 slices capture
the same logic. For this, it aligns them and produces a δ slice,
which records the instruction differences. Then it computes the
distance between both slices η as:

η =
θ1
θ2

=
ωbnΣbn1 + ωfnΣfn1

ωbnΣbn2 + ωfnΣfn2

where bn and fn are respectively the number of unique code blocks
and unique system calls in δ. Since malware mainly uses system
calls to conduct malicious behaviors, the ωfn weight is set higher
than ωbn, to give preference to unique system calls.

If η is below a predefined threshold m (experimentally set
to 10), the response is discarded since it is handled similarly
to the random response and thus is likely invalid. Otherwise,
AUTOPROBE considers both executions different and extracts the
symbolic constraints, which differentiate θ1 and θ2, as two sets of
equations, St and Sn, representing the validation checks results
for valid and invalid responses. This step discards unnecessary
symbolic equations, reducing the classification overhead.

During probing, AUTOPROBE compares the response from a
target server with these two sets of symbolic equations. It deter-
mines that the target server is malicious if the response satisfies all
symbolic expressions in St and none in Sn.

4.2 Without a C&C Response
The malware may not receive any response from the C&C server

during malware execution. In this case, AUTOPROBE uses the
approach illustrated on the right part of Figure 6, which comprises
two steps: fuzzing responses and exposing possible malicious logic.

The first step is to fuzz the malware with multiple responses.
When the C&C protocol is unknown, the fuzzing uses random
responses. If the C&C base protocol is known (e.g., HTTP), it
starts with a successful response such as 200 OK and then continues
with other message types. The payload of the response can be
constructed based on responses from some known benign servers or
from arbitrary bytes. The malware should not trigger its malicious
logic for these responses because they are invalid server responses.
For each pair of responses AUTOPROBE calculates the distance η
and uses the pair with largest η as the baseline of the second step.

In the second step, AUTOPROBE conducts forced execution [41]
on all response-sensitive branches. Forced execution is a binary
analysis technique which forces the program to execute a spe-
cific path, exposing more behaviors. Two limitations of forced
execution are inefficiency and that the forced execution may not
be reachable because in a real execution environment the branch
condition cannot be satisfied. To solve these issues, AUTOPROBE
combines symbolic execution with forced execution. In particular,
it symbolizes each byte in the response and applies online symbolic
execution. If it finds any branch that depends on the symbolic byte,
it records the branch. Then, it forces execution of the unexplored
branch. Next, it calculates the η of the original and forced paths
and if η increases it records the symbolic equation for the forced
path. It iteratively continues the exploration finding all symbolic
equations that increase η. Algorithm 2 details the path exploration
process.

Θ: Execution Trace Execution
Θ0: Execution Trace For Random Response
P : Malicious Program
pc: Instruction Pointer
S: Set of Symbolized Set for Response
Φ: Set of Branches Instruction
Ψ: Output Symbolic Equations Set
Symbolize all bytes in Response
Running Malware P
for eip do

Enable Forward Symbolic Execution if eip ∈ Φ then
if eflags symbolized then

Save Execution Snapshot i
Enable Enforced Execution
Revert eflags
Disable Enforced Execution
Monitor Execution and Collect Θi

Calculate ηi
if ηi > η0 then

Online solving symbols
if Solvable then

Save Trace Θi

Add Symbolic Equations for Θi to Ψ
end
else

Recover to Snapshot i to eip
Continue Execution

end
end

end
end

end
Algorithm 2: Algorithm for Path Exploration

5. PROBING
Once the fingerprints are generated by AUTOPROBE the next

step is to scan networks (e.g., the Internet) looking for mali-



cious servers. For TCP fingerprints, the scanner first performs a
horizontal SYN scan to identify hosts with the target port open.
For each target host listening on that port, the scanner uses the
slices to regenerate the values of the state-dependent fields in
the request, sends the updated request to the target, and records
its response. UDP fingerprints are handled similarly except that
horizontal scanning is not needed.

Our response classification module takes as input the symbolic
equations in the fingerprint and the concrete target response, and
conducts symbolic-equation-based matching. If the request is
generated from our non-response analysis, the detection result is
a suspicious score,

λ =
# of matched equations

# of equations

The higher λ, the more likely the target server is malicious.
Otherwise, if the request is generated from concrete (live) server’s
response, we require the response to satisfy all the symbolic
equations to declare detection.

6. EVALUATION
In this section, we first evaluate AUTOPROBE for generating

fingerprints of real-world malware samples. Then, we use the
fingerprints to scan for malicious servers.

Malware collection. We collect recent malware from 56 fam-
ilies broken into two datasets. Dataset I contains 37 popular and
notorious malware families including Sality [13], ZeroAccess [40],
Ramnit [30], Bamital [4], and Taidoor [34]. We are able to
collect 10 different variants (with different MD5) for each family
from public malware repositories [22, 27], thus making a total of
370 malware binary samples in Dataset I. Dataset II contains 19
malware families used by CYBERPROBE. We use Dataset II to
compare the accuracy of the fingerprints produced by AUTOPROBE
with the ones produced by CYBERPROBE.

Malware execution. we run the malware for 5 minutes each on
a virtual machine with Intel Core Duo 1.5 GHz CPU and 8 GB
memory. Each run outputs an execution trace that serves as the
starting point for the fingerprint generation.

Scanning setup. We use 5 machines for probing. All machines
run GNU/Linux Ubuntu 12.1 LTS with dual core 2.2 GHz CPUs
and the memory configuration ranges from 2 GB to 16 GB.

6.1 Evaluation of Probe Generation
In Table 1, we summarize the results from probe generation.

We collect malware’s execution/network traces and conduct the
analysis. First, AUTOPROBE analyzes the network traces, extracts
all the malware’s network requests, and filter out those requests
sent to domains in the Alexa top 10,000 list [2]. The number
of Remaining/Original requests are shown in Table 1 in the R/O
column. Then, for each dataset, the table splits the malware into
two groups corresponding to whether at least one request received
a response from a remote server (ResponseSeen), or all requests
failed to receive a response (NoResponse). For each group, the
table shows the number of requests produced by the malware in the
group during the executions and the number of probes produced
by AUTOPROBE, split into probes that contain some variable parts
and those that have only constant parts. The last column shows the
maximum number of probes that CYBERPROBE can produce for
the group.

All requests are HTTP and on average it takes AUTOPROBE 13.2
minutes to analyze/process one execution trace, relatively slow but
a reasonable cost for off-line analysis tools.

AUTOPROBE generated a total of 105 fingerprints/probes for all
56 malware families in the two datasets. Since multiple requests
may be generated by the same execution path, the total number
of probes is smaller than the number of requests captured on the
network. We also observe that the majority of generated probes
contain some variable parts. This means dynamic binary analysis
enables AUTOPROBE to extract more complete probe generation
functions than network-based approaches, because the variable
parts in the probe generation functions provide higher coverage.

Note that on both datasets, AUTOPROBE can generate finger-
prints for all the malware, even those with no response, for which
CYBERPROBE cannot. This demonstrates a clear advantage of
AUTOPROBE. For the samples with a response in Dataset II,
CYBERPROBE is able to generate a fingerprint similar to AUTO-
PROBE. However, for 57% of those, AUTOPROBE produces probes
construction functions with variable fields rather than concrete
probes in CYBERPROBE. Thus, AUTOPROBE probe construction
functions are potentially more accurate. We also find 4 cases in
which requests clustered together by CYBERPROBE are indeed
generated by different logic in the malware. Thus, they should have
been considered different as their responses are not guaranteed to
have the same format.

6.2 Evaluation of Classification Function
In this section, we first verify how our heuristics of classification

function work in the real world, i.e., whether malware behaves
differently when fed with valid and invalid responses. To verify
that, we extract all 76 probes that trigger responses from the live
remote servers. We also generate 76 random responses, which
comprise of HTTP 200 response code, a common HTTP header
and some arbitrary bytes in the payload. We feed our generated
responses to the malware and compare the malware execution
with the cases when the valid response from live remote servers
is received. Among all 76 test cases, we find that in 71 cases
(93%) malware has noticeable behavior differences (malware will
typically execute over 10 more system calls and over 50 more
code blocks when receiving valid responses). Then we manually
examine the remaining 5 exceptional cases. It turns out that all
these remotes servers are not malicious any more: four of them are
verified as sinkhole domains and the last one returns a 404 error
response (possibly server already cleaned). From this experiment,
we reasonably believe that our heuristics work well for most of
malware communications.

In our evaluation, AUTOPROBE generates a total of 70 classi-
fication functions for all ResponseSeen cases and 31 for the 29
NoResponse cases. The reason why we have more classification
functions than the number of cases is because some malware probes
can generate different responses to trigger different malware be-
haviors. This further demonstrates the advantage of AUTOPROBE
because existing work cannot generate such probing.

The matching efficiency is important for the classification func-
tion. For the ResponseSeen cases, the detection requires that
all symbolic equations in the classification function match, so
AUTOPROBE can finish matching when any of the equations fails to
match. For the NoResponse cases, it calculates the suspicious score
based on the matching results for all equations. For efficiency, our
scanner records the response traffic and conducts offline matching.

Table 2 summarizes the classification function efficiency. It
shows the time consumed for classifying 1,000 responses. For the
ResponseSeen cases, on average, the classification function consists
of 17 equations and takes 251 ms to complete the matching. The
worst case is one classification function that consists of 36 equation
comparisons (CP) and takes 757 ms to parse 1,000 responses.



Probe Generation Functions
Dataset Type Malware Families # R/O AUTOPROBE Probes Variable Constant CYBERPROBE
I ResponseSeen 24 45/74 39 22(56%) 9 (23%) N/A
I NoResponse 13 167/167 14 11(78%) 2 (14%) 0
II ResponseSeen 9 113/183 37 21(57%) 16(43%) 37(100%)
II NoResponse 10 121/121 15 8(54%) 7 (46%) 0

Table 1: Probe generation results.

For the best case, it takes 9 comparisons and 102ms to finish
the matching. For the NoResponse cases, a classification function
typically contains more equations than the ResponseSeen cases (50
on average) and takes 973 ms on average to complete the matching.
For the best case, the matching takes 37 comparisons and 483ms
to obtain the result. Overall, when classifying responses from
Internet-wide scanning (Section 6.5), our classification component
takes an average of 5 hours to analyze 71 million responses.

6.3 Case Studies
In this section, we study some probes generated by AUTOPROBE

for real-world malware samples.
Bamital. Bamital is a malware family involved in click-

fraud. The probe generation component identifies three variable
parts in the initial C&C request (Figure 7): (1) requested file
name: m.php (2) os field which is obtained from the system
call GetVersionEx (3) host field which is the output of a
customized domain generation algorithm (DGA).

GET/[%1]?subid=61&pr=1&os=20&id=8BBFF356C9BA

905540BBB48D98C90697&ver=[%2] HTTP/1.0 

Host: [%3].info 

User-Agent: Mozilla/4.0 (compatible; MSIE 

7.0; Windows NT 5.1) 

Pragma: no-cache 

 

[%1] = slice_0(random) 

[%2] = slice_1(os_version) 

[%3] = slice_2(time) 

Figure 7: Probe for Batimal Trojan

During malware execution no C&C server response was ob-
served, as the C&C servers were no longer alive. However, by
feeding the malware with a HTTP/1.1 200 OK response, AU-
TOPROBE is able to analyze the malware’s logic, which searches
for the strings <a> and <b> in the response and eventually
constructs new requests to download binary files. The produced
classification function requires a successful connection with 200
status code and the presence of the string <a>[.*]</a> and
<b>[.*]</b>. If a response to a probe satisfies those constraints,
the sender is classified as a Bamital C&C server.

Taidoor. Taidoor is a malware family that has been used in
targeted attacks [34]. Its C&C is also built on top of HTTP. The
first state-dependent field is the URL filename, which is randomly
generated with its length limited to 5 characters. The idURL para-
mater value is built from the output of the GetAdaptersInfo
library call, used to obtain the host’s MAC address. When malware
parses the response, the malware uses the value of the id field (the
MAC address) as the key to decode the response, which introduces
a strong correlation between the request and the response. The
classification function comprises two steps: decode the data using
the request’s id as key, and check that the decoded data is a valid
ASCII string.

Sality. For Sality, AUTOPROBE identifies 3 HTTP probes for
files spm/s_tasks.php, logos_s.gif and 231013_d.exe.
For the request of the 231013_d.exe executable, the down-
loaded file will be directly executed. The classification function
considers the set of three file requests and responses. Any server
hosting files at those URLs will be considered a Sality server.

Other Malware. For Xpaj.B, AUTOPROBE generates one HTTP
POST request with an encoded string, such as
POST /tRHmgD?kjBQMgpwJFLP=QOrbhqDjVeJmN. The clas-
sification function looks for the string "filename=" at the
beginning of the response. For ZeroAccess AUTOPROBE produces
an HTTP probe for the links.php file. The malware visit all
URLs in the response. The classification function flags the target
host as a ZeroAccess server if the response contains a list of URLs.
6.4 Localized Scanning

As mentioned earlier, AUTOPROBE generated totally 105 probes
for 56 malware families. To test the effectiveness of these probes,
we select 28 malware families for localized probing test.

Target network range. We first scan the network ranges that
have been observed in the past to host some malicious servers. Ac-
cording to the provider locality property of malicious servers found
in [25], these network ranges are more likely to find malicious
servers than other regions on the Internet. We start with a seed set of
9, 500 malware server IPs collected from MalwareDomainList.com
as well as the IP address of the malicious servers detected in [25].
We then expand the IP list to include their network neighbors,
i.e., those in the same /24 subnets and those from the BGP route
information2. In this way, we have collected 2.6M IPs for our
localized scanning.

Result. Table 3 details the 28 localized scans. The left part of
the table shows the scan configuration: the scan date, the malware
dataset, the target port, the number of hosts scanned, and the
number of scanners used (SC). The middle part of Table 5 shows
the results: the scan duration, the response rate (Resp., i.e., the
percentage of targets that replied to the probe), the number of total
malicious servers found, the number of found malicious servers
already in the seed set, and the number of new malicious servers
(not in the seed set). Through 28 scans, AUTOPROBE has identified
a total of 172 malicious servers among which 81 are known (in
the seed set) and 91 are new (previously unknown) malicious
servers. We compare our results with some existing malicious
domain blacklists, namely VirusTotal [36] (VT), Malware Domain
List [23](MD), and URLQuery [35](UQ). The best coverage is
achieved by VirusTotal, which knows 14.1% of the servers found
by AUTOPROBE (24/172). URL Query knows 11(6.39%) servers
and Malware domain list knows only 3(0.02%) malicious servers.
In this case, AUTOPROBE detects 6 times more malicious servers
than the best of these blacklist services, clearly demonstrating
that AUTOPROBE is an effective scheme for detecting malicious
servers. On average, AUTOPROBE can efficiently scan 2.6 million
IPs with two parallel scanners in 3 hours.

2We obtain the most specific BGP route that contains each seed IP
address.



Matching Scheme Worst (CP) Worst (ms) Best (CP) Best (ms) Avg. (CP) Avg. (ms)
ResponseSeen 36 757 9 102 17 251

NoResponse 67 1,923 37 483 50 973

Table 2: Efficiency of Classification Functions (time measured when handling 1000 continuous responses). Here CP denotes the
number of equation comparisons.

ID Scan Date DataSet Port # Scanners Time Resp. Found Known New VT MD UQ
1 2013-11-03 II 80 3 2.3h 64% 6 4 2 2 1 0
2 2013-11-03 II 80 3 2.4h 64% 4 3 1 0 0 0
3 2013-11-03 II 80 3 2.4h 64% 5 2 3 0 0 0
4 2013-11-03 II 80 3 2.3h 64% 4 2 2 0 0 0
5 2013-11-03 II 80 3 2.8h 64% 2 2 0 0 0 0
6 2013-11-03 II 80 3 3.2h 64% 9 4 5 1 0 0
7 2013-11-08 II 80 3 2.6h 63% 2 2 0 1 0 0
8 2013-11-08 II 80 3 2.7h 63% 1 1 0 1 1 0
9 2013-11-08 II 80 3 1.2h 63% 0 0 0 0 0 0

10 2013-11-08 II 80 3 1.8h 63% 0 0 0 0 0 0

11 2013-11-10 I 80 2 3.3h 64% 32 12 20 1 0 0
12 2013-11-10 I 80 2 3.8h 64% 12 3 9 1 1 0
13 2013-11-10 I 80 2 4.1h 64% 3 0 3 0 0 0
14 2013-11-10 I 80 2 3.2h 64% 3 1 2 1 0 0
15 2013-11-10 I 80 2 3.8h 64% 17 4 13 2 0 0
16 2013-11-10 I 80 2 3.9h 64% 5 4 1 0 0 0
17 2013-11-10 I 80 2 3.6h 64% 9 5 4 0 0 0
18 2013-11-10 I 80 2 3.2h 64% 11 4 7 1 1 1
19 2013-11-10 I 80 2 3.3h 64% 0 0 0 0 0 0
20 2013-11-10 I 80 2 3.5h 64% 4 2 2 0 0 0
21 2013-11-10 I 80 2 3.3h 64% 3 1 2 1 1 0
22 2013-11-10 I 80 2 3.7h 64% 0 0 0 1 0 0
23 2013-11-10 I 80 2 3.1h 64% 8 8 0 1 1 0
24 2013-11-10 I 80 2 3.0h 64% 1 1 0 0 0 0
25 2014-02-17 I 80 2 3.6h 60% 11 3 8 3 0 0
26 2014-02-17 I 80 2 3.9h 60% 7 5 2 1 2 1
27 2014-02-17 I 80 2 4.1h 60% 4 3 1 3 1 1
28 2014-02-17 I 80 2 3.8h 60% 9 5 4 3 2 0

TOTALS: 172 81 91 24 11 3

Table 3: Localized Scanning Results of AUTOPROBE.

6.5 Internet-wide Scanning and Comparison
with CYBERPROBE

We next conduct Internet-wide scanning and compare the results
with CYBERPROBE. To minimize the impact to the whole Internet
because of our scanning while still clearly verifying the effective-
ness of AUTOPROBE, instead of scanning all fingerprints, we focus
on three malware families (soft196, ironsource, optinstaller) also
scanned by CYBERPROBE [25].

Since these 3 malware families use HTTP C&C, we first perform
an Internet-wide horizontal scan of hosts listening on the target
port 80. For the horizontal scan, we collect the BGP table
from RouteViews and compute the total number of advertised IP
addresses. We conducted two horizontal scans on November 4,
2013 and February 19th, 2014. Both are summarized in Table 4.
We limit the scan rate to 60,000 packets per second (pps) for good
citizenship. The scan takes 2.9 hours and we find over 71 million
live hosts listening on port 80.

After obtaining this 71 million live HTTP server list, we per-
formed 3 scans using the fingerprints from AUTOPROBE and
CYBERPROBE for the three selected malware families. Table 5
summarizes the comparison. The top part of the table has the
results for the CYBERPROBE scans (CP-x) and the bottom part
the results for AUTOPROBE (AP-x). Each row corresponds to one
scan. Similar to the localized scanning, we also compare the results
with popular blacklist databases: VirusTotal (VT) [36], Malware
Domain List (MD) [23] and URLQuery (UQ) [35].

The results show that for every malware family the fingerprints
produced by AUTOPROBE find more servers than the one produced

by CYBERPROBE. Overall, AUTOPROBE has found 54 malware
servers, versus 40 malware servers found by CYBERPROBE, which
represents a 35% improvement. Finally, we also conduct five
additional Internet-wide scans for probes that cannot be generated
by CYBERPROBE, i.e., those from the NoResponse malware
server cases. The results are summarized in Table 6. They show
that AUTOPROBE can detect 83 malware servers and most of them
(80%) are new servers. Compared with CYBERPROBE, which
cannot generate any probe for NoResponse cases, AUTOPROBE has
a unique advantage and complements existing work well.
False positives and false negatives. Given the lack of perfect
ground truth, to measure false positives we check whether the
malware can establish successful communication with the detected
remote servers and whether a server’s response successfully trig-
gers the malware’s malicious logic. In particular, for each detected
server, we conduct another round of verification by redirecting
the malware’s request to the detected servers and monitor the
malware’s execution afterwards. If the malware’s execution goes
into the behaviors we found in the analysis phase, we consider it a
true positive. In our test, we do not find any false positive.

We cannot properly measure false negatives as the total number
of malicious servers is unknown. Instead, we use the detection
result of CYBERPROBE as the ground truth to check that AU-
TOPROBE does not miss servers found by CYBERPROBE. The
result shows that AUTOPROBE can correctly detect all the servers
in CYBERPROBE using different signatures for the same families.
We further discuss potential false positives and false negatives in
Section 7.



HID Type Start Date Port Targets # Scanners Rate(pps) Time Live Hosts
1 I 2013-11-04 80 2,528,563,104 4 60,000 2.9h 71,068,585 (2.8%)
2 I 2014-02-19 80 2,659,029,804 4 50,000 3.5h 71,094,003(2.8%)

Table 4: Horizontal scanning results.

ID Scan Date Port Fingerprint SC Time Resp. Found Known New VT MD UQ
CP-1 2013-11-06 80 soft196 2 24.6h 91% 9 8 1 1 0 0
CP-2 2013-11-06 80 ironsource 2 24.6h 92% 11 7 4 4 1 0
CP-3 2013-11-08 80 optinstaller 2 24.6h 90% 20 4 16 6 0 0

CYBERPROBE TOTALS: 40 19 21 11 1 0
AP-1 2013-11-08 80 soft196 2 25.3h 90% 13 8 1 3 1 0
AP-2 2013-11-08 80 ironsource 2 25.3h 92% 17 6 4 9 2 0
AP-3 2013-11-08 80 optinstaller 2 25.3h 90% 24 5 16 9 2 0

AUTOPROBE TOTALS: 54 19 21 21 5 0

Table 5: Comparison of malware servers found using AUTOPROBE and CYBERPROBE for three malware families. Here CP-x denotes
CYBERPROBE and AP-x denotes AUTOPROBE.

7. DISCUSSION
We now discuss limitations and possible evasions of AUTO-

PROBE.
Possible false positives and false negatives. As discussed in

Section 6, we do not find any false positives and false negatives in
our detection result. The lack of false positives may be due to our
strict criteria to determine that a server is malicious. For example,
we ensure the response can indeed trigger malware to download
malicious file or send some response. However, since our criteria of
detecting malicious server purely depends on malware’s behaviors,
lacking of full and precise understanding of malware logic could
introduce inacuraccies. For example, malware may download one
malicious file from the server and its follow-up logic may depend
on the download success. However, if the malware execution does
not capture the malware using such file in the limited monitoring
time, AUTOPROBE may directly treat any server hosting this file
as malicious. The root cause of such false positive/negative is a
fundamental limitation of dynamic analysis: it can only observe
behaviors executed. To improve and provide more accurate result,
we should provide longer analysis time and improve code coverage.

Malware checks on responses. Our classification function
construction assumes that the malware will behave differently when
receiving valid and invalid responses from remote servers. If the
malware violates this assumption, i.e., performs no checks or only
cursory checks on the responses, the generated fingerprints may
produce false positives when probing benign servers. However, this
situation does not arise in our examples and we believe it is unlikely
as it would be extremely easy to infiltrate such C&C protocol.

Classification function through code reuse. The classification
function produced by AUTOPROBE is a logic expression applied
on the response or the output of a parser on the response. Those
expressions are difficult to extract if the variables follow non-
linear relations. In those cases we could apply binary code
reuse techniques [5, 20] to directly (re)use the malware’s reponse
handling code. In the extreme case, AUTOPROBE could rerun the
malware in the controlled environment on the responses received
from target servers. Obviously, such approaches are expensive,
so they are better used only when our current approach cannot
determine a symbolic expression.

Semantics-guided fuzzing. The fingerprints produced by AU-
TOPROBE use valid probes that satisfy the C&C protocol grammar
because the probe construction functions that generate them have
been extracted from the malware’s request generation logic. How-
ever, for some families it may be possible to generate additional
fingerprints using invalid probes that do not satisfy the C&C

grammar but still trigger a distinctive response from the C&C
servers. Invalid probes are easier to be identified by the C&C server
managers but may be useful when the C&C masks as a benign
protocol. When a live C&C server is known, AUTOPROBE could be
enhanced with a semantics-guided fuzzing approach that uses the
semantic information extracted during probe generation to modify
valid probes into invalid and test them against the C&C server.

Dynamic analysis limitations. The dynamic analysis tech-
niques used by AUTOPROBE are known to have some limita-
tions. For example, dynamic taint analysis is known to be
vulnerable to over-tainting and under-tainting [33], which may
introduce inaccuracies in our detection of variable parts during
probe generation. Similarly, symbolic execution is challenging in
the presence of complex loops [32] and implicit flows [18], and
may explore unreachable paths [33]. We admit all these issues can
affect the performance of AUTOPROBE. However, these issues
are not specific to AUTOPROBE and affect in some degree all
dynamic analysis solutions. More importantly, AUTOPROBE takes
steps to minimize the effect of those challenges. For example,
AUTOPROBE does not need to analyze the complete malware logic
but only its request generation and response handlig logic. It
can confirm that paths build requests by monitoring that indeed a
request is observed on the network. Furthermore, even if dynamic
analysis marks some request parts as variable, AUTOPROBE still
does backward slicing on those bytes verifying that they are indeed
generated from the output of system/API calls. Clearly, any future
advances in dynamic binary analysis will also benefit our approach.

Handling encrypted traffic. In the evaluation, we find around
30% malware samples use encoded packets to communicate with
their remote servers. While in current AUTOPROBE we do no
decode these encrypted traffic (a common research challenge in
this area, and out of the scope of this paper), AUTOPROBE can
observe malware’s logic of handling correctly-encoded response
and incorrectly-encoded response. In particular, we can generate
some random response packet and record the malware execution
path, which represents malware’s logic of handling invalid packet.
If any response packet deviates malware’s execution from this path,
we think the source of the packet is likely suspicious.

Other possible evasions. Among possible evasions, one is to
use some existing exploits as the client request. AUTOPROBE needs
to filter out all the requests that exploit remote servers and malware
authors could use that to prevent being tampered by AUTOPROBE.
However, using exploits for remote communication increases the
probability of being detected by existing IDS systems. Another
possible evasion is to use coordinated servers since AUTOPROBE



ID Scan Date Port Fingerprint SC Time Resp. Found Known New VT MD UQ
AP-1 2013-11-06 80 Sality 5 12.1h 90% 23 3 20 1 0 0
AP-2 2013-11-06 80 Taidoor 5 13.2h 91% 14 4 10 2 1 0
AP-3 2013-11-08 80 Bamital 5 12.6h 92% 11 1 10 2 0 0
AP-4 2014-02-23 80 Vidgrab 5 13.4h 94% 21 6 15 3 1 0
AP-5 2014-02-23 80 Horst 5 13.9h 94% 13 2 11 2 1 0

AUTOPROBE TOTALS: 82 16 66 8 3 0

Table 6: Additional 5 scanning results of AUTOPROBE for NoResponse cases.

does not correlate traffic to different servers. Malware authors
may allow one server to receive a request, forward it to another
server, and allow the other server to issue commands. This scheme
definitely increases the maintenance cost for botmasters. Some
existing IDS systems such as BotHunter [15] could complement
AUTOPROBE in some situations.

8. RELATED WORK
Research on Internet-wide probing. Scanning the internet is

one way to find large-scale network-level vulnerabilities. Provos et
al. scanned Internet to identify vulnerable SSH servers through
vulnerability signatures [29]. Dagon et al. [11] scanned DNS
servers on Internet to find those providing incorrect resolutions.
Heninger et al. [16] scanned the Internet to find network devices
with weak cryptographic keys. All these studies apply some
widely-known signatures to achieve the purpose.

Different from them, active probing to detect network-based
malware has been proposed in several previous work [3, 14, 25, 28,
41]. In [14], Gu et al. proposed to actively send probing packets
through IRC channels. Zmap [12] is another internet-wide scanner
which is efficient enough to scan the whole internet in less than 45
minutes. However, it targets to test the aliveness of remote hosts
instead of detecting possible malicious servers.

PeerPress [41] is one related work that also adopts dynamic
malware analysis to find P2P malware’s network fingerprints.
Nevertheless, as we have stated the difference earlier, the target
of such probing is on the malware samples that actively open the
port for communication, such as P2P malware and Trojan Horse.
AUTOPROBE targets at remote malicious servers and we assume
the server-side logic is not available for analysis in collected
binaries, a different assumption from PeerPress.

Research on network fingerprint generation. Fingerprinting
network applications is a widely studied topic. Botzilla [31] is a
method for detecting malware communication through repetitively
recording network traffic of malware in a controlled environment
and generating network signatures from invariant content pat-
terns. AUTOPROBE has a different goal of fingerprinting malicious
servers and adopts binary-level analysis to find the invariant part in
packets.

FiG [7] proposed a framework for automatic fingerprint genera-
tion that produces OS and DNS fingerprints from network traffic.
In contrast, AUTOPROBE applies a different approach for automatic
fingerprint generation that takes as input a malware sample and
applies dynamic binary analysis on the malware’s execution.

Research on malware binary analysis. There are multiple
existing studies that discuss effective and efficient techniques for
malware analysis. Such techniques include taint analysis [19, 26],
enforced execution [38], path exploration [24], program slicing [5],
symbolic execution [37] and trace alignment [17]. AUTOPROBE
applies many of these techniques in our new problem domain in a
novel way to automatically generate network fingerprints.

Among all studies on binary analysis, protocol reverse engi-
neering work, such as [8–10, 21, 39], is also closely related to

AUTOPROBE. We adopt similar approach as in [6] to figure
out the semantics meanings of malware’s request. However,
one difference between AUTOPROBE and existing work is that
AUTOPROBE does not attempt to understand the complete protocol
of malware’s communication, and AUTOPROBE uses many other
different techniques to aid the generation of fingerprints.

In short, the above studies are complementary to our work.
AUTOPROBE will greatly benefit from the advances in these fields.

9. CONCLUSION
In this paper, we present AUTOPROBE, a novel tool to gener-

ate active probing fingerprints for Internet-wide malicious server
detection. AUTOPROBE implements a novel dynamic analysis
approach to improve the effectiveness and efficiency of existing
work. The dynamic analysis can help expose more requests,
build a classification function on a server’s response based on
the malware validation checks, and assist in efficient detection.
Furthermore, AUTOPROBE proposes new solutions for some real-
world challenges such as generating fingeprints when no live C&C
server is known. We also show that AUTOPROBE can generate
more accurate network fingerprints for malicious servers probing.
In our extensive Internet-scale scanning, AUTOPROBE outperforms
the existing state-of-the-art system in discovering more malicious
servers.
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