
Reinforcement Learning Benchmarks
for Traffic Signal Control

James Ault
Texas A&M University

College Station, TX
jault@tamu.edu

Guni Sharon
Texas A&M University

College Station, TX
guni@tamu.edu

Abstract

We propose a toolkit for developing and comparing reinforcement learning (RL)-
based traffic signal controllers. The toolkit includes implementation of state-of-the-
art deep-RL algorithms for signal control along with benchmark control problems
that are based on realistic traffic scenarios. Importantly, the toolkit allows a first-
of-its-kind comparison between state-of-the-art RL-based signal controllers while
providing benchmarks for future comparisons. Consequently, we compare and
report the relative performance of current RL algorithms. The experimental results
suggest that previous algorithms are not robust to varying sensing assumptions and
non-stylized intersection layouts. When more realistic signal layouts and advanced
sensing capabilities are considered, a distributed deep Q-learning approach is
shown to outperform previously reported state-of-the-art algorithms in many cases.

1 Introduction

Travel time studies in urban areas show that 12–55% of commute travel time is due to delays induced
by signalized intersections (stopped or approach delay) [14, 24]. Hence, optimized signal control has
the potential of reducing commute time, traffic congestion, emissions, and fuel consumption, while
requiring minimal infrastructure changes.

A signalized intersection is composed of incoming and outgoing roads where each road is affiliated
with one or more lanes. A signal controller must assign right of passage to phases, where each
phase corresponds to a specific traffic movement through the intersection (incoming to outgoing
roads/lanes). Two phases are defined to be in conflict if they cannot be enabled simultaneously (their
affiliated traffic movement is intersecting). Each intersection serves vehicles which are assumed to
continuously arrive on incoming roads. Each vehicle is associated with a specific, outgoing target
road. At each time step, the signal controller is tasked with assigning right-of-passage (green signal)
to a set of non-conflicting phases such that some utility measurement is optimized. The utility to be
optimized is commonly defined as the sum of vehicles’ delay imposed by the intersection [20, 3].

Given that signalized intersections vary with regards to their layout and demand profile, optimized
control policies may differ and are instance dependent. Consequently, signal controllers usually
require to be optimized based on the observed state of the environment. Such online optimization
of signal controllers requires: (a) sensing the state of approaching traffic (e.g., number and position
of approaching vehicles, approaching speeds, queue length, accumulated delay) aggregated by
approaching roads/lanes, and (b) defining a control policy that takes the current state of traffic as input
and outputs the next phases to be enabled (which is translated to a green, yellow, and red assignment
for each light box).

A line of publications has attempted to harness deep reinforcement-learning (RL) techniques towards
this control optimization problem. While several approaches claim state-of-the-art performance [7,

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.



18], they fail to compare performance between themselves using a standard testbed. Consequently, it
is challenging to determine which algorithm results in state-of-the-art performance and under what
circumstances. This paper attempts to address this gap by establishing:

1. An RL testbed environment for traffic signal control that is based on the well-established
Simulation of Urban Mobility traffic simulator (SUMO) [5].

2. Benchmark single- and multiagent-signal control tasks which are based on realistic traffic
scenarios from SUMO.

3. An OpenAI GYM interface [6] which allows easy deployment of standard RL algorithms.

4. A standardized implementation of state-of-the-art RL-based signal control algorithms.

The presented testbed and benchmark environment denoted REinforced Signal COntrol or RESCO
is used to provide a first-of-its-kind comparison between state-of-the-art RL-based signal control
algorithms. The reported comparative study is performed using the aforementioned, SUMO simulator
and scenarios which are inspired by real-world cities and calibrated demands. The reported results
paint a picture where algorithms that claim state-of-the-art performance struggle in realistic traffic
scenarios and are often outperformed by a decentralized deep Q-learning approach [19].

2 Background

Recent publications [15, 25] proposed to utilize state-of-the-art reinforcement learning (RL) algo-
rithms for online optimization of signal controllers. In this approach, the state of the intersection is
usually defined by the set of incoming vehicles (incoming lane, speed, waiting time, queue position)
and the current signal (right-of-passage) assignment. An RL agent is tasked with optimizing a policy
which maps states to signal assignment. Such an approach showed a potential reduction of up to 73%
in vehicle delays when compared to fixed-time actuation [20].

2.1 Reinforcement learning

In reinforcement learning (RL) an agent is assumed to learn through interactions with the environment.
The environment is commonly modeled as a Markov decision process (MDP) which is defined by:
S – the state space, A – the action space, P(st, a, st+1) – the transition function of the form
P : S × A × S → [0, 1], R(s, a) – the reward function of the form R : S × A → R, and γ – the
discount factor. The agent is assumed to follow an internal policy π which maps states to actions,
i.e., π : S → A. The agent’s chosen action (at) at the current state (st) affects the environment such
that a new state emerges (st+1) as well as some reward (rt) representing the immediate utility gained
from performing action at at state st, given by R(s, a). The observed reward is used to tune the
policy such that the expected sum of discounted reward, Jπ =

∑
t γ

trt, is maximized. The policy
argmaxπ[Jπ] is the optimal policy and is denoted by π∗.

Common approaches for training a policy using RL include, value-based, policy-gradient, and
actor-critic approaches. A value-based approach attempts to learn the expected future utility from
states (state value) or from action-state pairs (action value or q-value). The control policy is then
directed towards actions/states that maximize the expected utility (Jπ). A prominent example of
a value-based approach is the model-free deep Q-learning algorithm [19]. In the policy-gradient
approach [30] a policy is defined through a parameterized differential equation, where the parameters
are gradually updated, following the policy gradient, towards favorable outcomes (as experienced
through the reward function). Using state or action value estimations for defining favorable outcomes
for policy-gradient updates is usually referred to as an actor-critic approach. A prominent example
of a state-of-the-art actor-critic approach is the proximal-policy optimization (PPO) algorithm [22]
which provides some guarantees regarding monotonicity in the policy improvement over training
iterations.

2.2 Traffic signal control as an MDP

A signalized intersection is composed of incoming and outgoing roads where each road is assembled
from one or more lanes. The intersection is assigned a set of phases, Φ. Each phase, φ ∈ Φ, is
affiliated with a specific traffic movement through the intersection, as illustrated in Figure 1. Two

2



Figure 1: Typical phases, or traffic movements, in a 4-way intersection.

phases are defined to be in conflict if they cannot be enabled simultaneously (their affiliated traffic
movement is intersecting).

For example, in the phase allocation presented in Figure 1, φ2 and φ1 are conflicting phases. At each
time step, a signal controller is responsible to enable some combination of non-conflicting phases
such that a long-term objective function is optimized. When considering RL-based controllers, the
signalized intersection environment is commonly modeled through the following MDP.

State Space (S): the state space is defined by the state of incoming traffic and the currently enabled
phases. Specifically, the state of incoming traffic is defined through the assumed sensing capabilities.
These assumptions vary between publications. Some published work [3] assume state-of-the-art
traffic sensing technology [13] which allows high-resolution data regarding incoming traffic. For
example, real-time observations regarding the number of approaching vehicles, stopped vehicles
accumulated waiting time, number of stopped vehicles, and average speed of approaching vehicles.
Other publications assume less informative sensing capabilities. For instance by assuming that only
the stopped queue length per lane is visible [7], or by assuming that only the waiting time of the first
vehicle in the queue is visible [18].

Previous work also varies in the assumed sensing radius. While some assume a sensing radius that
covers the entirety of the incoming roads [7],1 others assume a more realistic 50 meter [18] or 200
meter [3] sensing radius.

Action Space (A): at each time-step, the controller chooses a set of non-conflicting phases to be
assigned the right-of-passage (green light). If the chosen phases differ from the currently enabled
phases then a mandatory yellow phase is enforced for a predefined time duration. Note that assigning
yellow phases is not a part of the action space but a constraint imposed on the control sequence by
the environment.

Transition function (P): the transition function is defined by the traffic progression following the
signal assignment. This progression can be defined within a simulated environment following a
specific traffic model (as in this paper) or by real-world traffic progression as part of a real-world
implementation (out of scope for this paper).

Reward function (R): previous publications commonly used (minus) queue length summed over
all incoming lanes as their reward function [29]. Such a reward function is simple to implement
and is relevant to congestion alleviation. On the other hand, it fails to normalize the benefits from
optimized signal operation over travel times. Consequently, other reward functions were suggested.
Among them, (minus) total delays imposed by the intersection [23], (minus) waiting time at the
intersection [3], and (minus) traffic pressure [18].

2.2.1 Multiagent control

In many real-world scenarios traffic flow is sought to be optimized over a road network which includes
multiple intersections. In such scenarios, signal control is assumed to be centrally coordinated over
all the intersections. These control problems are denoted multiagent signal control and are defined by
the Cartesian product of the composing intersections’ state spaces and action spaces.

Following the curse of dimensionality [4] introduced by a multiagent control task, some researchers
take a hierarchical control approach where intersections are partitioned into local control groups [18,
7].

1Chen et al. 2020 does not explicitly specify the sensing radius. However, the referenced codebase (3/6/2020)
uses an unbounded sensing radius.

3



2.3 Related work

Next, we review several RL algorithms that claim state-of-the-art performance for traffic signal
control.

Deep Q-Learning: deep Q-learning [19] has been proposed for the control of signalized intersections
in a number of works [3, 25, 23, 16, 20, 12, 27, 15]. Here we adopt the implementation of [3], which
reported up to a 19.4% improvement over an actuated controller. Ault et al. defined a convolutional
Q-network where queue length, number of approaching vehicles, total approaching speed, and total
waiting time are aggregated in convolutional layers over lanes composing the same incoming road.
This implementation uses a (minus) total waiting time reward function.

MPLight: MPLight [7] utilizes the concept of pressure to coordinate multiple intersections. Pressure
is the difference in queue lengths from incoming lanes of an intersection and the queue length on a
downstream intersection’s receiving lane. Chen et al. used pressure as both the state and reward for a
DQN agent shared over all intersections on top of the FRAP [32] model. The authors reported up to a
19.2% improvement in travel times over the next best compared method, PressLight [28].

FMA2C: FMA2C [8] builds on the prior work of MA2C. MA2C enabled cooperation between
signal control agents (one per intersection) denoted workers. Adjacent workers are coordinated
through a local discounted neighborhood reward, discounted neighborhood-appended states, and
action fingerprint sharing on otherwise independent advantage actor-critic agents. FMA2C extends
this to a hierarchy of managing agents on top of the workers. The managing agents are trained to
optimize flow within their assigned region. The workers are then trained to incorporate the high-level
goals of their managing agent. The authors reported up to a 6% improvement in average delays over
the Greedy controller described in Section 3.4.

2.3.1 Evaluation environments for RL-based signal controllers

For their experimental evaluation, previous publications relied on custom-made scenarios that were, in
many cases, tailored for the evaluated RL algorithm. Jinming and Feng 2020 used the well-established
simulation of urban mobility (SUMO) environment. SUMO is widely accepted in the transportation
community and—as we also note—is a reasonable testbed choice. Jinming and Feng did provide
results on a scenario that is based on a real-world city (Monaco). However, the reported scenario
was based on a modified Monaco scenario which contains an addition of 18 synthetic traffic signals
beyond the official “MoST” scenario [9] and also includes non-validated inflated traffic demands.
We extend on that work by introducing benchmark signal control tasks that are based on validated
traffic scenarios while providing a flexible interface that is suitable for a variety of RL algorithms.
Moreover, our codebase is publicly available allowing researchers to perform meaningful comparative
evaluations.

Zhang et al. 2019 presented their own simulation testbed denoted CityFlow. This evaluation testbed
suffers from two main drawbacks, (1) as opposed to SUMO, CityFlow is not rigorously calibrated and
evaluated by the general transportation community. CityFlow is claimed to produce equivalent output
as SUMO. However, those claims are based on results from simplified grid network scenarios; (2) a
common benchmark scenario in CityFlow is the Manhattan, NY network. This scenario is claimed to
represent real-world city layout and demand. However, support for this claim is limited.

Other relevant publications [21] presented evaluations that are based on the autonomous intersection
management (AIM) simulator [10]. The main drawback of the AIM simulator is the lack of traffic
scenarios which are based on real-world cities. AIM commonly produces a simple grid network with
symmetric intersections. Again, one might claim that such a grid network is akin to the road layout in
Manhattan, NY, yet a deeper analysis of traffic trends is required to support such claims and their
relevancy to the real world.

4



3 The Reinforced Signal Control (RESCO) toolkit

We present a standard RL traffic signal control testbed denoted reinforced signal control or RESCO.
The main goals of this standard testbed are:

1. Provide benchmark single- and multiagent-signal control tasks which are based on well-
established traffic scenarios.

2. An OpenAI GYM interface [6] within the testbed environment which allows easy deploy-
ment of state-of-the-art RL algorithms.

3. A standardized implementation of state-of-the-art RL-based signal control algorithms.

RESCO is open source and free to use/modify under the GNU General Public License 3. The code
is built on top of SUMO-RL [1] and is available on Github at github.com/Pi-Star-Lab/RESCO.
The embedded traffic scenarios are distributed with their own licenses. Cologne based scenarios are
under creative commons BY-NC-SA and Ingolstadt based with the GNU General Public License 3.

3.1 State and action Space

In order to allow a variety of sensing assumptions (as described in Section 2.2, “State space”),
RESCO assumes the most advanced sensing capabilities [3]. The user can pull any subset of the state
features based on specific sensing assumptions. Specifically, per state, per intersection, per lane, the
system provides a dictionary with the following features: stopped vehicles queue length, number
of approaching vehicles (not stopped), total waiting time for stopped vehicles, sum of approaching
vehicles’ (not stopped) speed, maximum waiting time (over stopped vehicles), number of arrivals
(added vehicles during last time step), number of departures (vehicles removed during last time step).
On top of that, the user can also define the effective sensing distance on initialization.

For each intersection the provided benchmark control task defines the set of non-conflicting phases.
The action space is the set of non-conflicting phase combinations as defined in Section 2.2, “Action
space”. By default acts are chosen for the next 10 seconds of simulation, with the first 3 seconds
reserved for yellow signals if necessary, these values follow Ma and Wu [18]. The interface accepts a
unique intersection ID and an index representing the chosen phase combination to be enabled.2

3.2 Reward metrics

In order to allow maximal flexibility for the user, the interface allows designating any of the reward
metrics defined in Section 2.2 “Reward function”, as well as a custom weighted combination of these
metrics. When initializing a control task, the user can pass a weight vector as an argument where
each entry designates the weight of one of the metrics in the reward function. The weight vector
entries are defined as follows. 1: system travel time, 2: approximated signal induced delays,3 3: total
waiting time at intersections, 4: average queue length, 5: traffic pressure.

3.3 Benchmark control tasks

The presented signal control benchmark tasks are based on two well-established SUMO scenarios,
namely, “TAPAS Cologne” [26] and “InTAS” [17]. Both scenarios describe traffic within a real-world
city, Cologne and Ingolstadt (Germany) respectively, including road network layout and calibrated
demands. The road network for these scenarios is shown in Figure 2. These scenarios were chosen as
they are well-accepted by the transportation community and include a congested downtown zone with
multiple signalized intersections. Note that RESCO can easily be fitted to other SUMO scenarios.

Three benchmark control tasks are considered per traffic scenario, namely, (a) controlling a single
main intersection, (b) coordinated control of multiple intersections along an arterial corridor, and

2Control tasks in RESCO provide the set of valid (non-conflicting) phase assignments per intersection, each
affiliated with a unique index. Note that this set might differ between intersections based on their layout, unique
features, and safety considerations.

3Signal induced delays can only be computed in hindsight. RESCO follows previous work [2] which
suggested real-time approximation as the difference between the vehicle’s current speed and the maximum speed
limit over all vehicles.

5

github.com/Pi-Star-Lab/RESCO


Figure 2: Road networks extracted from the full-city SUMO scenarios for benchmarking. In the
full-city maps the areas bounded in red are the locations of the extracted networks. In the corridor
and region networks the bounded areas mark signalized intersections. All other intersections in the
extracted areas are controlled by traffic priority laws. Traffic demands for the extracted areas were
taken from routes in the full-city scenarios using the standard SUMO tool for creating sub-scenarios.

(c) coordinated control of multiple intersections within a congested area (downtown). The affiliated
intersections are depicted in Figure 2.

3.4 Benchmark algorithms

RESCO defines three baseline controllers and several RL-based controllers.

Baseline controllers:

(1) Fixed-time (or Pre-timed) control where each phase combination is enabled for a fixed duration
following a fixed cycle. The intervals are defined per intersection as part of the SUMO traffic scenario;
(2) Max-pressure control where the phase combination with the maximal joint pressure is enabled as
described in Chen et al. [7];
(3) Greedy control where the phase combination with the maximal joint queue length and approaching
vehicle count is enabled as described in Ma and Wu [18].

RL controllers:

(1) IDQN – independent DQN agents, one per intersection, each with convolution-layers for lane
aggregation as described by Ault et al. 2020. Hyper-parameters are left as the default values in the
Preferred RL library with the exception of the target network update interval, which was adjusted to
the Atari environment settings of 500 steps per update;
(2) IPPO – the same deep neural network is used as IDQN with the exception of the output layer,
coming from [3]. Hyper-parameters were set following the Preferred RL defaults for the Atari
environments;
(3) MPLight – implementation is based on the FRAP open source implementation [32] along with
the ChainerRL DQN implementation and pressure sensing. Hyper-parameters are identical to that of
IDQN;
(4) Extended MPLight – Denoted MPLight*, similar to the MPLight implementation with the
addition of sensing information matching IDQN appended to the existing pressure state;

6



Figure 3: A 4× 4 Grid validation scenario based on that presented by Chen et al. 2020 (left), and a
4× 4 Avenue scenario based on the scenario presented by Ma and Wu 2020 (right).

(5) FMA2C – built on top of MA2C open source implementation [8]. Hyperparameters were set
according to the open source implementation by Chu et al..

In each of IDQN, IPPO, and MPLight the learning algorithm implementation is called directly from
the ChainerRL [11] python library successor, Preferred RL.

4 Experiments

The experimental section is divided into three. First, we present results that validate our benchmark
algorithms implementation against performance trends reported in previous publications. Second,
we provide a comparative study between state-of-the-art approaches on the realistic traffic scenarios.
Finally, we draw general conclusions that characterize the algorithms and their performance.

4.1 Validation

For validating the benchmark algorithms implementation, we compare the learning curves and final
performance of the RL controllers from Section 3.4 against the baseline controllers. The traffic
scenarios are chosen to be similar to those presented in previous publications including the sensing
assumptions which might change between the algorithms. Consequently, the affiliated results cannot
be used for a comparative study between the RL controllers.

For validating the MPLight implementation, a traffic scenario was configured to be similar to the
synthetic 4 × 4 symmetric network that was presented in the original MPLight publication [7].
The RESCO network is depicted in Figure 3, 4 × 4 Grid, and can be compared with the original
network (Figure 5 in Chen et al. [7]). Demand was set according to Config. 4 in Chen et al. [7].
Figure 4 presents the learning curves for MPLight and IDQN. It also includes the baseline controllers
performance (dotted lines) and the final performance for FMA2C and IPPO. FMA2C and IPPO
require much more training episodes to converge (about 1,400 as opposed to 100 by IDQN and
MPLight). As a result, only the final performance is included for them. The full training curves for
FMA2C and IPPO are available in the appendix. Chen et al. 2020 reported a 13% improvement for
MPLight over Max-pressure. The RESCO results show a similar trend with an 11% improvement.

For validating the FMA2C implementation, a traffic scenario was configured to be similar to the
synthetic 4× 4 traffic grid presented in the original FMA2C publication [18]. This grid is formed
by two-lane arterial streets and one-lane avenues. The RESCO induced intersections are depicted in
Figure 3 and can be compared with the original network (Figure 3(a) in Ma and Wu [18]). Demand
was set according to the original scenario definition. Figure 4 presents the learning curve for the same
set of controllers. Again, The full training curves for FMA2C and IPPO are available in the appendix.

On 4 × 4 Avenues validation scenario Ma and Wu 2020 reported a 4% improvement for FMA2C
over Greedy and 19% improvement over IDQN. The RESCO results show a more pronounced trend
for improvement over the Greedy control with a 20% improvement and a 44% improvement over
IDQN. In general, both the MPLight and FMA2C implementations in RESCO present trends that
follow the originally published results for each.

7



Figure 4: Learning curves over 5 random seeds, with a sliding window average of 5 episodes. Error
margins display one-standard deviation from the mean delay in each episode. Baseline algorithms are
marked with dashed lines, while solid lines indicate RL algorithms. Square and triangle mark the
best performance of their associated algorithms, which require many times the number of episodes of
the others. MPLight* denotes the extended state version of MPLight.

4.2 Comparative study

For the full comparative study all of the benchmark RL controllers were compared on each of the
benchmark control tasks. Hyper-parameters are constant throughout and not tuned to each scenario.
Following Ault et al., All sensing capabilities are assumed to be available within a 200 meter radius.
The state and reward choices made by the algorithms are the primary ways in which coordination is
proposed. Significantly adjusting the state or reward would therefore no longer be representative of
the algorithms. Therefore the state and reward functions were set according to the definitions of each
algorithm (see Section 2.3). Expanding the state to include more measurements generally decreased
performance on coordination tasks. Future work should fully explore how best to augment relevant
algorithms when assuming increased sensing capabilities.

Figure 4 presents the learning curves for each algorithm in every scenario while Table 1 reports the
best performing episode (not necessarily the final performance) of each algorithm averaged over five
random seeds. For example, consider the “Ingolstadt Region” task, Figure 4 paints a picture where
MPLight diverges during training and eventually results in an average delay that is > 200 seconds.
Table 1, by contrast, presents a delay of 78 seconds for the same task. The discrepancy is because
Table 1 corresponds to the best episode, i.e., training episode 64 (before the training divergence).
Table 1 also includes commonly reported metrics of delay, trip time (duration), waiting time, and
queue length. However, we observe that in all but one case any one metric is sufficient to indicate
superior performance in the others. Namely, in the “Ingolstadt Corridor” scenario IPPO reports
improved performance over IDQN in delay, trip time, and waiting time while IDQN improves in
queue length, but not to a statistically significant degree. As a result, learning curves are presented
only for the delay metric (in Figure 4).

8



Table 1: Performance on benchmark scenarios

IDQN Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.

Avg. Delay 21.48 31.19 59.64 26.05 23.99 22.06
Avg. Trip Time 35.29 68.69 197.23 43.59 59.0 86.02
Avg. Wait 3.93 8.71 20.19 7.98 8.5 5.46
Avg. Queue 0.43 0.67 0.8 2.09 0.87 0.38

IPPO Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.

Avg. Delay 19.85 30.7 67.65 55.07 22.13 21.49
Avg. Trip Time 34.19 68.34 205.44 67.7 57.45 85.54
Avg. Wait 3.21 8.2 26.45 26.15 7.37 5.01
Avg. Queue 0.39 0.71 1.15 8.88 0.76 0.35
MPLight Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.

Avg. Delay *28.31 48.21 78.16 28.74 83.65 60.42
Avg. Trip Time *41.07 76.58 215.72 45.85 102.3 123.93
Avg. Wait *8.27 15.05 34.57 8.61 46.25 30.34
Avg. Queue *0.61 1.34 1.48 2.45 5.4 2.33

FMA2C Ing. Single Ing. Corr. Ing. Reg. Col. Single Col. Corr. Col. Reg.

Avg. Delay 25.36 48.99 90.42 30.12 25.37 33.28
Avg. Trip Time 39.4 85.03 226.5 47.31 61.68 97.53
Avg. Wait 7.27 21.9 44.16 11.23 11.3 14.19
Avg. Queue 0.94 1.79 1.74 3.11 1.68 0.98

Both Table 1 and Figure 4 report either extended state MPLight or the standard MPLight, the better
performing of the two. Extended state MPLight is denoted with an asterisk. In most cases the added
sensing information in extended state MPLight is not beneficial, however in the “Ingolstadt Single
Signal” scenario the additional state information is beneficial and allows for convergence where
standard MPLight failed to converge. MPLight, in our experiments, works well in scenarios with
similarly structured intersections. However, in scenarios with varying irregular intersections we
observed divergence in learning. We suspect that this phenomena is due to shared control parameters
between significantly different control tasks (one controller per intersection).

IDQN achieves the best performance in the “Ingolstadt Region” scenario and “Cologne Single Signal”
scenario, while IPPO achieves the best performance in all other scenarios. However, this is misleading
as IPPO demonstrates significant instability. Failing to converge in the “Ingolstadt Region” and
“Cologne Corridor” scenarios, and converging to significantly worse solutions in the “Cologne Single
Signal”. When examining the performance of each algorithm in the final 10 episodes of training,
IDQN outperforms all other algorithms in all tasks except the “Cologne Regional”, which IPPO
still performs well in. Both FMA2C and IPPO have drastically worse sample efficiency than the
DQN-based methods of MPLight and IDQN. MPLight reaches its best performing episode in 30-80%
of the time IDQN does, but the performance reached is generally worse. The full training results are
provided in the appendix.

4.3 Conclusions

Synthetic scenarios, even if made to be challenging coordination tasks, relate poorly to more realistic
scenarios from the perspective of gauging the performance of reinforcement learning algorithms.
Irregular and sparsely distributed signals require more general solutions than previously proposed.
Deep RL methods should give increased attention to hyper-parameter sensitivity as failing to do so
may result in unstable or poor performance when deployed to previously unseen scenarios.

Our experiments suggest that decentralized control algorithms are more robust compared to coordi-
nated control algorithms when considering realistic traffic scenarios. We speculate that this is, in-part,
due to the efficient data aggregation of the independent learners utilizing convolutional layers as
described by Ault et al. 2020. Future work should examine merging this efficient data representation
with state-of-the-art coordinated control approaches.

9



Coordinated approaches (FMA2C, MPLight) work well under the specific sensing assumptions that
they made, but have limited applicability when advanced sensing capabilities are considered. The
decentralized algorithms, IDQN and IPPO, do not share this limitation as they can effectively learn
instance dependent features.

The time elapsed before an algorithm reaches its best performance is important if the ultimate goal is
real-world implementation. To this end, the MPLight algorithm of Chen et al. 2020 has a considerable
advantage, presenting a trade-off of reliability and converged performance for learning speed. Ma and
Wu 2020’s FMA2C may have an advantage when presented with challenging synthetic coordination
problems, but requires a large amount of time to achieve the feat and it is questionable if scenarios
fashioned from real networks and traffic demands would resemble the studied synthetic scenarios.

References
[1] L. N. Alegre. Sumo-rl. https://github.com/LucasAlegre/sumo-rl, 2019.

[2] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls. Reinforcement learning-based multi-agent system
for network traffic signal control. IET Intelligent Transport Systems, 4(2):128–135, 2010.

[3] J. Ault, J. Hanna, and G. Sharon. Learning an interpretable traffic signal control policy. In
Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2020). International Foundation for Autonomous Agents and Multiagent
Systems, May 2020.

[4] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete
event dynamic systems, 13(1):41–77, 2003.

[5] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. Sumo–simulation of urban mobility:
an overview. In Proceedings of SIMUL 2011, The Third International Conference on Advances
in System Simulation. ThinkMind, 2011.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai GYM. arXiv preprint arXiv:1606.01540, 2016.

[7] C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and Z. Li. Toward a thousand
lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 3414–3421,
2020.

[8] T. Chu, J. Wang, L. Codecà, and Z. Li. Multi-agent deep reinforcement learning for large-
scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3):
1086–1095, 2019.

[9] L. Codeca and J. Härri. Monaco SUMO Traffic (MoST) Scenario: A 3D Mobility Scenario
for Cooperative ITS. In SUMO 2018, SUMO User Conference, Simulating Autonomous and
Intermodal Transport Systems, May 14-16, 2018, Berlin, Germany, Berlin, GERMANY, 05
2018.

[10] K. Dresner and P. Stone. A multiagent approach to autonomous intersection management.
Journal of artificial intelligence research, 31:591–656, 2008.

[11] Y. Fujita, P. Nagarajan, T. Kataoka, and T. Ishikawa. Chainerrl: A deep reinforcement learning
library. Journal of Machine Learning Research, 22(77):1–14, 2021. URL http://jmlr.org/
papers/v22/20-376.html.

[12] W. Genders and S. Razavi. Using a deep reinforcement learning agent for traffic signal control.
arXiv preprint arXiv:1611.01142, 2016.

[13] L. A. Klein. ITS sensors and architectures for traffic management and connected vehicles. CRC
Press, 2017.

[14] D. M. Levinson. Speed and delay on signalized arterials. Journal of Transportation Engineering,
124(3):258–263, 1998.

10

https://github.com/LucasAlegre/sumo-rl
http://jmlr.org/papers/v22/20-376.html
http://jmlr.org/papers/v22/20-376.html


[15] L. Li, Y. Lv, and F.-Y. Wang. Traffic signal timing via deep reinforcement learning. IEEE/CAA
Journal of Automatica Sinica, 3(3):247–254, 2016.

[16] X. Liang, X. Du, G. Wang, and Z. Han. Deep reinforcement learning for traffic light control in
vehicular networks. arXiv preprint arXiv:1803.11115, 2018.

[17] S. C. Lobo, S. Neumeier, E. M. Fernandez, and C. Facchi. InTAS–the ingolstadt traffic scenario
for SUMO. arXiv preprint arXiv:2011.11995, 2020.

[18] J. Ma and F. Wu. Feudal multi-agent deep reinforcement learning for traffic signal control.
In Proceedings of the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 816–824, 2020.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[20] S. S. Mousavi, M. Schukat, and E. Howley. Traffic light control using deep policy-gradient and
value-function-based reinforcement learning. IET Intelligent Transport Systems, 11(7):417–423,
2017.

[21] T. T. Pham, T. Brys, M. E. Taylor, T. Brys, M. M. Drugan, P. Bosman, M.-D. Cock, C. Lazar,
L. Demarchi, D. Steenhoff, et al. Learning coordinated traffic light control. In Proceedings of
the Adaptive and Learning Agents workshop (at AAMAS-13), volume 10, pages 1196–1201.
IEEE, 2013.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[23] S. M. A. Shabestary and B. Abdulhai. Deep learning vs. discrete reinforcement learning for adap-
tive traffic signal control. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 286–293. IEEE, 2018.

[24] A. Tirachini. Estimation of travel time and the benefits of upgrading the fare payment technology
in urban bus services. Transportation Research Part C: Emerging Technologies, 30:239–256,
2013.

[25] E. Van der Pol and F. A. Oliehoek. Coordinated deep reinforcement learners for traffic light
control. Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016),
2016.

[26] C. Varschen and P. Wagner. Mikroskopische modellierung der personenverkehrsnachfrage auf
basis von zeitverwendungstagebüchern. Integrierte Mikro-Simulation von Raum-und Verkehrsen-
twicklung. Theorie, Konzepte, Modelle, Praxis, 81:63–69, 2006.

[27] H. Wei, G. Zheng, H. Yao, and Z. Li. Intellilight: A reinforcement learning approach for intelli-
gent traffic light control. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2496–2505. ACM, 2018.

[28] H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and Z. Li. Presslight: Learning max
pressure control to coordinate traffic signals in arterial network. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1290–1298,
2019.

[29] M. A. Wiering. Multi-agent reinforcement learning for traffic light control. In Machine Learning:
Proceedings of the Seventeenth International Conference (ICML’2000), pages 1151–1158, 2000.

[30] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

[31] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin, and Z. Li.
Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario.
In The World Wide Web Conference, pages 3620–3624, 2019.

[32] G. Zheng, Y. Xiong, X. Zang, J. Feng, H. Wei, H. Zhang, Y. Li, K. Xu, and Z. Li. Learning
phase competition for traffic signal control. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pages 1963–1972, 2019.

11


	Introduction
	Background
	Reinforcement learning
	Traffic signal control as an MDP
	Multiagent control

	Related work
	Evaluation environments for RL-based signal controllers


	The Reinforced Signal Control (RESCO) toolkit
	State and action Space
	Reward metrics
	Benchmark control tasks
	Benchmark algorithms

	Experiments
	Validation
	Comparative study
	Conclusions


