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Abstract—In the micro-tolling paradigm, a centralized system
manager sets different toll values for each link in a given
traffic network with the objective of optimizing the system’s
performance. A recently proposed micro-tolling scheme, de-
noted ∆-tolling, was shown to yield up to 32% reduction in
total travel time when compared to a no-toll scheme. ∆-tolling,
computes a toll value for each link in a given network based
on two global parameters: β which is a proportional parameter
and R which controls the rate of toll change over time. In this
paper, we propose to generalize ∆-tolling such that it would
consider different R and β parameters for each link. a policy
gradient reinforcement learning algorithm is used in order to
tune this high-dimensional optimization problem. The results
show that such a variant of ∆-tolling far surpasses the original
∆-tolling scheme, yielding up to 38% reduced system travel
time compared to the original ∆-tolling scheme.

I. INTRODUCTION

Advancements in connected and automated vehicle tech-
nology present many opportunities for highly optimized
traffic management mechanisms [1]. One such mechanism,
micro-tolling, has been the focus of a line of recently
presented studies [2, 3, 4]. In the micro-tolling paradigm,
tolls can be charged on many or all network links, and
changed frequently in response to real-time observations of
traffic conditions. Toll values and traffic conditions can then
be communicated to vehicles which might change routes
in response, either autonomously, or by updating directions
given to the human driver. A centralized system manager is
assumed to set toll values with the objective of optimizing
the traffic flow. Many methods for computing such tolls were
presented over the last century most of which made very
specific assumptions regarding the underlying traffic model.
For instance, assuming that demand is known or fixed [5],
assuming that links’ capacity is known or fixed, assuming
that the user’s value of time (VOT) is homogeneous [6],
assuming traffic follows specific latency functions [7], or
assuming traffic patterns emerge instantaneously [8].

A recent line of work [2, 3] suggested a new tolling
scheme denoted ∆-tolling. Unlike previous tolling schemes,
∆-tolling makes no assumptions regarding the demand, links’
capacity, users’ VOT, and specific traffic formation models.
∆-tolling sets a toll for each link equal to the difference
(denoted ∆) between its current travel time and free flow

travel time multiplied by a proportionality parameter β. The
rate of change in toll values between successive time steps is
controlled by another parameter R. Despite being extremely
simple to calculate, ∆-tolling was shown to yield optimal
system performance under the stylized assumptions of a
macroscopic traffic model using the Bureau of Public Roads
(BPR) type latency functions [9]. Moreover, ∆-tolling pre-
sented significant improvement in total travel time and social
welfare across markedly different traffic models and assump-
tions. In fact, the simple working principle of ∆-tolling is
what allows it to act as a model-free mechanism. Whereas
the original ∆-tolling algorithm required a single β and R
parameter for the entire network, the main contribution of
this paper is a generalization of ∆-tolling to accommodate
separate parameter settings for each link in the network.
While conceptually straightforward, we demonstrate that
doing so enables significant performance improvements in
realistic traffic networks.

The increased representational power of Enhanced
∆-tolling compared to ∆-tolling does come at the cost
of necessitating that many more parameters be tuned. A
secondary contribution of this paper is a demonstration
that policy gradient reinforcement learning methods can
be leveraged to set tune these parameters effectively. Our
detailed empirical study in Section V validates our claim
that Enhanced ∆-tolling has the potential to improve upon
the already impressive results of ∆-tolling when it comes
to incentivizing self-interested agents to coordinate towards
socially optimal traffic flows.

II. PROBLEM DEFINITION AND TERMINOLOGY

We consider a scenario where a set of agents must be
routed across a traffic network given as a directed graph,
G(V,E). Each agent a is affiliated with a source node, sa ∈
V , a target node, ta ∈ V , a departure time, da, and a VOT,
ca (the agent’s monetary value for a delay of one unit of
time).

Agents are assumed to be self-interested and, hence, follow
the least cost path leading from sa to ta. The cost of a path, p,
for an agent, a, is a function of the path’s latency, lp, and tolls
along it, τp. Formally, cost(p, a) = lp · ca + τp. The value of
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time, ca, is assumed to be constant per agent. Although this
assumption might not hold in real-world, it follows common
practice in the transportation literature [3, 10, 11].

Since traffic is dynamically evolving, travel times and
toll values might change over time, agents are assumed to
continually re-optimize their chosen route. As a result, an
agent might change its planned route at every node along
its path. Each link in the network, e ∈ E, is affiliated with
a dynamically changing toll value τe where for any path, p,
τp =

∑
e∈p τe. Moreover, each link is affiliated with a latency

le representing the travel time on link e. Similar to τe, le is
dynamically changing as a function of the traffic state.

The objective of the system manager is to assign tolls
such that if each agent maximizes its own self interest, the
system behavior will maximize social welfare. Denoting the
latency suffered by agent a as la, social welfare is defined as∑
a la · ca.1 The system manager addresses the micro-tolling

assignment problem which is defined as follows.
Given: Li - the vector of links’ latencies at time step i.
Output: τ i+1 - the vector of tolls applied to each link at the
next time step.
Objective: Optimize social welfare.
Assumption: Agents are self interested i.e., they travel
the least cost path (arg minp{cost(p, a)}) leading to their
assigned destination (ta).

III. BACKGROUND AND RELATED WORK

The approach suggested in this paper for solving the
micro-tolling assignment problem builds on two previously
presented algorithms: ∆-tolling, and Finite Difference policy
Gradient Reinforcement Learning (RL).

A. Delta-tolling
It is well known that charging each agent an amount

equivalent to the cost it inflicts on all other agents, also
known as marginal-cost tolling, results in optimal social
welfare [7].

Applying a marginal-cost tolling scheme, when differen-
tiable latency functions are not assumed, requires knowing in
advance the marginal delay that each agent will impose on
all others. This, in turn, requires knowledge of future demand
and roadway capacity conditions, as well as counterfactual
knowledge of the network states without each driver.

∆-tolling [2, 3] was recently suggested as a model-free
scheme for evaluating marginal cost tolling. It requires ob-
serving only the latency (travel time) on each link and makes
no assumption on the underlying traffic model. ∆-tolling
involves charging a toll on each link proportional to its
delay (the difference between observed and free-flow travel
times). ∆-tolling requires tuning of only two parameters: a
proportionality constant (β), and a smoothing parameter (R)
used to damp transient spikes in toll values.

Algorithm 1 describes the toll value update process of
∆-tolling. For each link, ∆-tolling first computes the dif-
ference (∆) between its current latency (lie) and its free flow

1The tolls are not included in the calculation of social welfare, because
we assume that toll revenues are transfer payments which remain internal
to society.

Algorithm 1: Updating tolls according to ∆-tolling.

1 while true do
2 for each link e ∈ E do
3 ∆← lie − Te
4 τ i+1

e ← R(β∆) + (1−R)τ ie

5 i← i+ 1

travel time (denoted by Te). We use i to denote the current
time step. Next, the toll for link e at the next time step (τ i+1

e )
is updated to be a weighted average of ∆ times beta and the
current toll value. The weight assigned to each of the two
components is governed by the R parameter (0 < R ≤ 1).

The R parameter determines the rate in which toll values
react to observed traffic conditions. When R = 1 the
network’s tolls respond immediately to changes in traffic on
the one hand but leave the system susceptible to oscillation
and spikes on the other hand. By contrast, as R → 0 the
tolls are stable, but are also unresponsive to changes in traffic
conditions.

Sharon et al. [2, 3] showed that the performance of
∆-tolling is sensitive to the values of both the R and β
parameters. Their empirical study suggests that values of
β = 4 and R = 10−4 result in the best performance.
However, they do not present a procedure for optimizing
these parameters and relay on brute force search for finding
the optimal values through trial and error.

B. Policy gradient RL

Policy gradient RL is a general purpose optimization
method that can be used to learn a parameterized policy
based on on-line experimental data. While there are several
different methods for estimating the gradient of the policy
performance with respect to the parameters [12], one of the
most straightforward, and the one we use in this paper, is
Finite Difference Policy Gradient RL (FD-PGRL) [13] which
is based on finite differences. In this subsection we review
the methods and formulations presented in [13].

FD-PGRL is presented in Algorithm 2. Under this frame-
work, the policy is parameterized using the parameter vector
π = [θ1, . . . , θN ]ᵀ. The algorithm starts with the initial
parameters π0 = [θ01, . . . , θ

0
N ]ᵀ (line 1). At each step k, the

policy gradient is estimated by running a set of randomly
generated policies Πk = {πk1 , ..., πkM} (lines 5- 7) where
each policy is defined as:

πkm = [θk−11 + δk1,m, . . . , θ
k−1
N + δkN,m]ᵀ, (1)

where δkn,m ∈ {−εn, 0, εn}. The generated policies in (1)
are obtained by randomly changing each parameter from the
previous policy by a small εn, relative to θn. The cost of
each newly created policy, πkm, is observed and denoted by
ckm (lines 8- 9).

To estimate the policy gradient, the policy set in (1) is
partitioned to three subsets (lines 11- 14) for each dimension
depending on whether the change in the policy in that
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Algorithm 2: Finite Difference Policy Gradient RL

1 π0 ← [θ01, . . . , θ
0
N ]ᵀ;

2 k ← 0;
3 while improving do
4 k ← k + 1;
5 generate Πk = {πk1 , ..., πkM},
6 πkm = [θk−11 + δk1,m, . . . , θ

k−1
N + δkN,m]ᵀ,

7 δkn,m ∼ Uniform{−εn, 0, εn};
8 for each m ∈ {1, . . . ,M} do
9 ckm ← run(πkm);

10 for each n ∈ {1, . . . , N} do
11 partition Πk to
12 Πk

−ε,n = {πkm : δkn,m = −ε},
13 Πk

0,n = {πkm : δkn,m = 0},
14 Πk

+ε,n = {πkm : δkn,m = ε};
15 ck−ε,n ← average(ckm : πkm ∈ Πk

−ε,n);
16 ck0,n ← average(ckm : πkm ∈ Πk

0,n);
17 ck+ε,n ← average(ckm : πkm ∈ Πk

+ε,n);
18 if ck−ε,n < ck0,n& ck+ε,n < ck0,n then
19 akn ← 0;

20 else
21 akn ← ck+ε,n − ck−ε,n;

22 πk ← πk−1 − η Ak

|Ak| ,
23 Ak = [ak1 , . . . , a

k
N ]ᵀ;

dimension is negative, positive or zero, that is the three
subsets are:

πkm ∈


Πk
−ε,n = {πkm : δkn,m = −ε}

Πk
0,n = {πkm : δkn,m = 0}

Πk
+ε,n = {πkm : δkn,m = ε}.

(2)

The average costs of above policy subsets are denoted by
ck−ε,n, ck0,n and ck+ε,n (lines 15- 17). The adjustment vector
Ak = [ak1 , . . . , a

k
N ]ᵀ can be constructed by the following

equation for each dimension (lines 18- 21):

akn =

{
0, if ck−ε,n < ck0,nand ck+ε,n < ck0,n
ck+ε,n − ck−ε,n otherwise

(3)

The adjustment vector Ak is normalized and multiplied by
a constant step size η to update the parameter vector at the
end of each step k (lines 22- 23).

Unlike other policy gradient methods that rely on within-
episode reward signals to search for an optimal policy, or
those in which the agent must learn the policy with no
prior knowledge of a reasonably-performing starting policy
(for example [14] and [15]), in the method employed in
this paper, the policy is parameterized with a finite set
of parameters and the overall system performance at each
episode is optimized using an empirical estimate of the
policy gradient based on finite differences. This approach
is well-suited for the traffic optimization problem for two

reasons. First, the agent can leverage an existing policy with
reasonable system performance. Second, the agent is required
to proceed towards the optimal policy only by slight changes
of the policy parameters in contrast to approaches in which
randomized exploration policies can be executed more freely.
Our empirical study suggests that considering such slight
changes results in a total cost that is within an acceptable
bound. Furthermore, using other RL methods to learn actual
tolls in real-time instead of ∆-tolling parameters requires
modeling traffic as Markov Decision Process which is a
challenging task (see [16]).

IV. ENHANCED DELTA-TOLLING

We now present the main contribution of this paper,
the Enhanced ∆-tolling mechanism for solving the micro-
tolling assignment problem. Enhanced ∆-tolling extends the
∆-tolling mechanism that is presented in Section III-A.
∆-tolling uses two global variables that are used to set tolls
on every link in the network. Since different links possess
different attributes e.g., capacity, length, speed limit, etc.
optimizing the β and R parameters per link can potentially
yield greater benefits (higher social welfare, lower total travel
time). However, doing so would require optimizing a set of
2|E| parameters instead of only two. Optimizing such a high
dimensional function cannot be done efficiently in a brute
force way.

This paper introduces Enhanced ∆-tolling which extends
∆-tolling by first, considering unique β and R parameters
per link and second, incorporating policy gradient RL for
optimizing these parameters.

In order to apply policy gradient RL (specifically FD-
PGRL, as described in Section III-B), the traffic assignment
policy that maps the current state of the traffic to the
appropriate actions, which are assigning tolls to each link of
the network, should be parameterized. Since the ∆-tolling
scheme, inherently implemented a policy that takes into
account the real-time state of the traffic by assigning tolls
proportional to the current links delay, we only use RL policy
gradient method to optimize the performance metric at the
end of each traffic cycle. Therefore, we define the cost to be
the total travel time at the end of each day and consider the
following three parametrization of ∆-tolling:

πR = [β,R1, . . . , Rn]

πβ = [R, β1, . . . , βn]

πR,β = [R1, . . . , Rn, β1, . . . , βn] (4)

The experimental results presented by Sharon et al. [3]
suggest that there is some correlation between the optimally
performing β and R values. However, no conclusions were
presented regarding how they correlate and their individual
impact on the convergence rate in a parameter tuning proce-
dure.

As the relation between the β and R parameters re-
mains unclear, we consider three variants of Enhanced
∆-tollingbased on the parameterized policies listed in (4):

E∆-tollingβ : this variant uses a global R parameter and
link specific β parameters (|E| + 1 parameters in total). It
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should perform well under the assumption that there is a
correlation between the best performing β and R values and
when FD-PGRL estimates the gradient over link specific β
parameters more accurately than it does for link specific R
parameters.

E∆-tollingR: this variant uses a global β parameter and
link specific R parameters (|E| + 1 parameters in total). It
should perform well under the assumption that there is a
correlation between the best performing β and R values and
when FD-PGRL estimates the gradient over link specific R
parameters more accurately than it does for link specific β
parameters.

E∆-tollingβ,R: this variant uses link specific β and R
parameters (2|E| parameters in total). It should perform best
if there is no correlation between the best performing β and R
values and if sufficient computation time is given (converging
on 2|E| parameters is usually slower than on |E|+ 1).

V. EMPIRICAL STUDY

Our experimental evaluation focuses on real-life road net-
works. Traffic is evaluated using the cell transmission model
(CTM) [17, 18] which is a discrete, explicit solution method
for the hydrodynamic theory of traffic flow proposed in [19]
and [20].

CTM is frequently used in dynamic traffic assignment. The
time step used in this model is typically short, on the order
of a few seconds. When used with Enhanced ∆-tolling, this
allows for a truly adaptive toll which can be updated based
on observed traffic conditions.

A. Scenario specification

Demand model: demand is given as a trip table, where
every entry is affiliated with a single agent (a) and specifies:
a source node (sa), a target node (ta), and a departure time
step (ia).

Agent model: let lip be the sum of latency along path p
during time step i and let τ ip be the sum of tolls along p
during time step i. When agent a reaches a diverge node n
at time step i all paths (Pnt) leading from n to destination
ta are considered. Agent a is assigned the minimal cost path
i.e., arg minp∈Pnt

{τ ip + lip · ca}.

B. Experiments and results

For running CTM we used the DTA simulator [21] im-
plemented in Java. Whenever a vehicle is loaded onto the
network, it is assigned a VOT randomly drawn from a Dagum
distribution with parameters â = 22020.6, b̂ = 2.7926, and
ĉ = 0.2977, reflecting the distribution of personal income in
the United States [22, 23].2

The step size in FD-RPGS , η, is 0.4. The policy per-
turbation parameter, ε (see Line 2 in Algorithm 2) is set
to 0.01 and the number of policy runs at each step, M ,
is 60 for all the experiments. These values presented best
performance overall. Our empirical study focuses on three
traffic scenarios:

2The simulation settings were chosen to be identical to those presented
in [3].

(a) Sioux Falls (b) Austin (c) San Antonio

Fig. 1: Maps of traffic networks used in the experiments

Sioux Falls: [24] — this scenario is common in the
transportation literature [25], and consists of 76 directed
links, 24 nodes (intersections) and 28,835 trips spanning 3
hours.

Downtown Austin: [26] — this network consists of 1,247
directed links, 546 nodes and 62,836 trips spanning 2 hours
during the morning peak.

Uptown San Antonio: this network consists of 1,259
directed links, 742 nodes and 223,479 trips spanning 3 hour
during the morning peak.

The networks affiliated with each scenario are depicted in
Figure 1. All of these traffic scenarios are available online
at: https://goo.gl/SyvV5m

1) System performance: Our first set of results aims to
evaluate the performance of the different variants of En-
hanced ∆-tolling, by comparing them with each other and
basic ∆-tolling. Figure 2 presents normalized values of total
latency summed over all trips (top figure) and social welfare
that is the summation of costs, i.e., latency times VOT,
over all agents (bottom figure). The values are normalized
according to the system’s performance when no tolls are
applied. Table I presents the total latency and social welfare
performance when applying no-tolls (representing the value
of 1.0 in Figure 2).

The results present a clear picture in which ∆-tolling
improves on applying no tolls in both total latency and social
welfare. E∆-tollingβ further improve the system’s perfor-
mance and both E∆-tollingR and E∆-tollingβ,R achieve the
best performance.

The fact that E∆-tollingR results in system performance
which is similar to E∆-tollingβ,R suggests that there is
a correlation between the best performing β and R val-
ues. The slight superiority of of E∆-tollingR comparing to
E∆-tollingβ,R is due to faster convergence which will be
discussed later in this section. The fact that E∆-tollingβ
performs worse than E∆-tollingR suggests that policy FD-
PGRL estimates the gradient over link specific R parameters
more accurately than it does for link specific β parameters.

2) Convergence rate: applying E∆-tolling to real-life traf-
fic raises two concerns:

1) Convergence rate - the system should converge to a good
solution with as few learning iterations as possible.

2) Worst case performance - during the learning process
E∆-tolling should perform at least as well as ∆-tolling.
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Sioux Falls Austin San Antonio
Latency (hr) 11,859 21,590 26,362

cost ($) 353,169 637,086 780,739

TABLE I: Average total latency and total generalized cost when
applying no tolls.
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Fig. 2: Total Travel Time and Total Generalized Cost for different
tolling schemes and scenarios.

Figure 3 presents the system performance w.r.t total latency
(y-axis) versus learning iteration step (x-axis) for each of
our three scenarios and every E∆-tolling variant. The error
regions are obtained using 10 different runs of the algorithm
for each example and E∆-tolling variant and they show the
standard error of the average performance in each iteration.
Results for basic ∆-tolling are also included for comparison.
The results are consistent with each other, showing that
E∆-tollingR performs best overall w.r.t convergence rate.

Table II presents the area under the curve for each sce-
nario and E∆-tolling variant. These results give a quanti-
tative comparison of the convergence rates. We learn that
E∆-tollingR has the best overall performance with a total
AUC of 4,285,353. Nonetheless, E∆-tollingβ,R performs
better on the Sioux Falls scenario. All the experiments are
initialized with β = 4 and R = 10−4 for all the links.
A set of experiments (not presented) with different starting
parameter values show that the performance is sensitive to
the initial settings. However, the mentioned default starting
values (β = 4 and R = 10−4) perform relatively well across
all scenarios and E∆-tolling variants.

Scheme S. Falls Austin S. Antonio Total
∆-tolling 962,000 1,640,900 2,300,700 4,903,600

E∆β 943,076 1,619,928 2,257,830 4,820,834
E∆R 779,990 1,360,861 2,144,502 4,285,353

E∆β+R 777,469 1,415,094 2,162,006 4,354,569

TABLE II: Area under the convergence curves from Figure 3.

(a) Sioux Falls

(b) Austin

(c) San Antonio

Fig. 3: System performance w.r.t total latency (y-axis) versus
learning iteration step (x-axis) for different scenarios and E∆-tolling
variants

VI. DISCUSSION AND FUTURE WORK

The promising experimental results reported in Section V
suggest that E∆-tolling can have practical applications where
traffic optimization is performed constantly and in real-
time through manipulations to the R and or β parameters.
Nonetheless, implementation of E∆-tolling raises several
practical issues that must first be addressed.

Limitations: E∆-tolling is limited in its convergence rate.
General traffic patterns might change frequently, preventing
E∆-tolling from advancing in a promising direction. Prac-
titioners must evaluate the convergence rate of E∆-tolling
versus the rate in which traffic patterns change in order
to determine the applicability of E∆-tolling in a specific
network.

Assumptions: E∆-tollingassumes that all agents travers-
ing the network are self-interested and responsive to tolls
in real time. Real world scenarios might violate these as-
sumptions and the trends observed in our results cannot be
assumed in such cases.

Practical aspects of E∆-tolling present many promising
directions for future work. Since the convergence rate of
E∆-tolling plays an important role in determining its applica-
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bility, one promising direction for future work is developing
heuristics and utilizing advanced RL methods to guide the
gradient exploration towards promising directions in order to
facilitate faster learning.

Examining the effects of partial compliance to tolls is
another promising direction. Building on recent study that
examines the effects of partial compliance on similar micro-
tolling schemes [27], studying the practical impacts of partial
compliance on E∆-tolling is a promising direction to pursue.

VII. CONCLUSION

This paper introduced Enhanced ∆-tolling, a micro-
tolling assignment scheme that builds on the previously sug-
gested ∆-tolling scheme. The previously suggested ∆-tolling
scheme makes use of two global parameters, β and R, to tune
the system for optimized performance (minimal total latency
or maximal social welfare). Enhanced ∆-tolling generalizes
∆-tolling in two complementary ways. First, recognizing
that different links in the network have different attributes
(length, capacity, speed limit) Enhanced ∆-tolling considers
individual β and R parameters per link. Second, given the
resulting large parameter set (twice the number of links),
Enhanced ∆-tolling suggests a policy gradient RL approach
for tuning these parameters. Experimental results suggest that
tuning the R parameter while keeping a global β parameter
performs best overall (w.r.t total latency, social welfare, worst
case performance, and convergence rates).
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